Models of Sea Shells

Joceline Lega

These notes give a brief explanation of the significance of the parameters used in the Sea_Shells MATLAB GUI
A sea shell is a **surface in 3-space**, which can be thought of as resulting from the motion of a *generating curve* along a *structural curve*. The latter describes the global shape of the shell while the former models the shape of the shell aperture.

These notes describe a **13-parameter model** of sea shells, based on [1]. The equations we use are a slight modification of those presented in [1], but the notation is similar.

The parameters values used for predefined shells in the MATLAB GUI Sea_Shells are taken from [1] and [2].

The basic structure of a shell is defined by a curve in 3-space, the *structural curve*, shown in yellow on the figures.

Seen from above, this curve looks like a logarithmic spiral of equation

$$\rho = A \sin(\beta) \exp (\theta \cot(\alpha)),$$

where A, α and β are parameters of the model.

The distance R illustrated in the lower figure is given by

$$R = A \exp (\theta \cot(\alpha)).$$
A second curve, whose basic shape is an ellipse parametrized by s (see figure), is used to generate the outer surface of the shell.

The parameters a and b are the half lengths of respectively the major and minor axes of the ellipse.

The ellipse is further rotated by and angle μ about its major axis, by an angle Ω about the vertical axis, and by an angle Φ about a vector normal to its plane.
For shells with “bumps”, five extra parameters are needed:

1. P is an angle measuring the position of the bump along the ellipse;
2. L measures the height of each bump;
3. W_1 measures the width of each bump along the ellipse;
4. W_2 measures the width of each bump along the logarithmic spiral;
5. N is the number of bumps encountered as the angle θ is rotated by 2π.
Based on the above description, the parametric equations describing the shell surface are as follows.

\[
\begin{align*}
x &= \exp(\theta \cot(\alpha)) \left[A \sin(\beta) \cos(\theta) + h(s, \theta) \right] \\
&\quad \left[\cos(s + \Phi) \cos(\Omega + \theta) - \sin(s + \Phi) \sin(\mu) \sin(\theta + \Omega) \right] \\
y &= \exp(\theta \cot(\alpha)) \left[-A \sin(\beta) \sin(\theta) - h(s, \theta) \right] \\
&\quad \left[\cos(s + \Phi) \sin(\Omega + \theta) + \sin(s + \Phi) \sin(\mu) \cos(\theta + \Omega) \right] \\
z &= \left[-A \cos(\beta) + h(s, \theta) \sin(s + \Phi) \cos(\mu) \right] \exp(\theta \cot(\alpha)),
\end{align*}
\]

\[
h(s, \theta) = \left(\left(\frac{\cos(s)}{a} \right)^2 + \left(\frac{\sin(s)}{b} \right)^2 \right)^{-1/2} \\
&\quad + L \exp \left(- \left(\frac{2(s - P)}{W1} \right)^2 - \left(\frac{2 l(\theta)}{W2} \right)^2 \right) \\
l(\theta) &= \frac{2\pi}{N} \left(\frac{N\theta}{2\pi} - \text{int} \left(\frac{N\theta}{2\pi} \right) \right).
\]