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Abstract
The inversion problem for the 3D parallel-beam exponential ray transform is
solved through inversion of a set of the 2D exponential Radon transforms with
complex-valued angle-dependent attenuation. An inversion formula for the
latter 2D transform is derived; it generalizes the known Kuchment–Shneiberg
formula valid for real angle-dependent attenuation. We derive an explicit
theoretically exact solution of the 3D problem which is valid for arbitrary closed
trajectory that does not intersect itself. A simple reconstruction algorithm is
described, applicable for certain sets of trajectories satisfying Orlov’s condition.
In the latter case, our inversion technique is as stable as the Tretiak–Metz
inversion formula. Possibilities of further reduction of noise sensitivity are
briefly discussed in the paper. The work of our algorithm is illustrated by an
example of image reconstruction from two circular orbits.

1. Introduction

Single photon emission computed tomography (SPECT) is based on measurements of the
intensity of gamma rays emitted by a radiotracer injected into the patient’s blood. The
goal of SPECT is to reconstruct the position-dependent activity of the tracer from the data
acquired by a set of collimated detectors moving around the patient. The measured values
are proportional to the weighted line integrals from the activity. To make reconstruction
possible, one has to collect measurements over a 3D set of lines passing through the body. The
SPECT reconstruction problem we consider is a generalization of that arising in traditional
x-ray tomography. For both kinds of tomography the simplest reconstruction techniques are
obtained when the measurement directions are parallel to a plane, and each set of measurements
contains data acquired for parallel rays. In this case (independently of the type of radiation
used), the 3D reconstruction problem naturally decomposes into a set of independent 2D
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problems, whose theory and inversion techniques are currently well understood (see, e.g.,
[11–15] for 2D SPECT reconstruction techniques).

However, the quest for more efficient measurement strategies has led to the use of non-
planar measurement orbits and non-parallel beam acquisition schemes. The problems of x-ray
tomography arising from more complex acquisition geometries have been extensively and
successfully studied (the related references are too numerous to list here). One of the first
results obtained by Orlov [10] in 1975 pertains to the case of the parallel-beam measurements.
When this kind of data acquisition is utilized, one set of measurements (a projection) consists
of the values of integrals taken along lines parallel to a fixed vector. It is convenient to
represent the latter vector by a point on a sphere of directions S2. Orlov [10] has shown that
the reconstruction is possible if each great circle on S2 contains at least one measurement
direction. (A great circle is the intersection of S2 with a plane passing through its centre.)

In this paper, we investigate the problem of SPECT reconstruction from parallel-beam
data. One of the complications of SPECT (as compared to x-ray tomography) is related to
the presence of exponential weights in the integrals modelling propagation of gamma photons
through the absorbing tissue. Most of the recent results on SPECT reconstruction from the
data measured from non-planar and/or non-parallel directions (obtained from the fan-beam
or cone-beam acquisition schemes) either consider the case when the measurement directions
contain a great circle [1, 3] or require computation of certain Neumann series converging to
the exact solution [2].

The only known general and theoretically exact approach is described in [4] (see also
[5]). Work [4] considers the case of a rotating slant-hole (RSH) detector which measures
parallel-beam projections from the set of directions represented by a circle (other than a great
one). The authors process the data using an ingenious exact rebinning procedure based on
the formula [9] which allows one to reconstruct absent measurements corresponding to the
arbitrary directions contained within the circle. Interestingly, the attenuation corresponding
to the reconstructed measurements does not have to coincide with the physical attenuation in
the tissues, and can even be set to zero, although such a choice somewhat reduces the stability
of the method. In order to collect a sufficient amount of data for the full 3D reconstruction,
several measurement circles are positioned in such a way that the union of the interiors of all the
circles covers some great circle. Then, using the re-binning procedure, one reconstructs absent
measurements corresponding to directions lying on the great circle and the problem reduces
to the case of planar measurements. Depending on the value of the artificial attenuation used
to generate absent measurements, the 3D problem is solved by inverting a set of 2D either
exponential or classical Radon transforms. In the classical case, when artificial attenuation
was set to zero, it is sufficient to collect data covering only 180◦ angular range, i.e., only a
half of the great circle. Further, the reb-inning algorithm can be easily generalized [6] to the
case of arbitrary closed non-self-intersecting 1D sets of measurement directions (other than
circles).

In this paper, we propose a different approach to explicit 3D reconstruction from
the parallel-beam data measured along closed non-self-intersecting 1D trajectories, in the
presence of constant attenuation. By the use of the 1D Fourier transform we reduce the 3D
problem to a set of 2D exponential Radon transforms with angle-dependent complex-valued
attenuation (AD-ERT). The latter 2D transforms can be explicitly inverted by application of
the Kuchment–Shneiberg formula [9] generalized to the case of complex-valued attenuation.
Such an approach results in a set of explicit reconstruction formulae; these formulae hold
regardless of whether Orlov’s condition is satisfied or not. A simple analysis of the operations
involved in such an inversion shows that if Orlov’s condition is not satisfied, a stable numerical
reconstruction of certain spatial frequencies is not possible. In the simplest case of a circular
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Figure 1. Geometry of the data acquisition scheme.

measurement trajectory, only frequencies lying outside a certain cone can be recovered in a
stable fashion.

In order to obtain a stable 3D reconstruction one can combine two sets of measurements
from sufficiently wide circular orbits (or, more generally, from two closed non-self-intersecting
trajectories satisfying certain conditions). We present a simple reconstruction algorithm
for such a data acquisition scheme; performance of this method is further illustrated by a
computational example.

2. Formulation of the problem

We seek to recover the 3D radioactivity distribution F(r) from the values of radiation intensity
measured by a collimated parallel-beam detector sensitive only to gamma photons propagating
in a selected direction. A single projection (a 2D set of measurements) consists of the intensity
values for each ray passing through the body and parallel to τ , see figure 1. Since F(r) is
a function of three spatial variables one has to obtain a 3D set of data to reconstruct it. A
natural way to gather such data is to conduct measurements from directions τ varying along
continuous 1D trajectories. We parametrize each direction τ(ϕ, θ) by the elevation angle θ

and azimuthal angle ϕ. In sections 2–5 we restrict our consideration to such trajectories that
can be described by a continuous function θ = θ(ϕ), ϕ ∈ [0, 2π ], with bounded piece-wise
continuous derivative; we assume that the trajectory is closed, i.e., θ(2π) = θ(0), and that
|θ | < π/2. The latter inequality guarantees that the trajectory does not intersect itself. In
section 6, we will consider a case when a second measured trajectory is added, also described
by the equation θ ′ = θ ′(ϕ′) but in a coordinate system rotated in space in a certain way.

Let us introduce a rotating coordinate system (�(ϕ),�⊥(ϕ), k):

�(ϕ) = (cos ϕ, sin ϕ, 0), �⊥(ϕ) = (sin ϕ,− cos ϕ, 0), k = (0, 0, 1).

Each line of measurement in a single projection is uniquely defined by coordinates (p, x3) of
the point of intersection between the line and the plane � spanned by vectors �(ϕ) and k,
see figure 1. We assume that the attenuation ν is constant. Then, the intensity of the radiation
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G(p, ϕ, x3) leaving the body along the line passing through the point (p, x3), in the direction
τ(ϕ, θ(ϕ)), is related to the activity F(r) by the equation

G(p, ϕ, x3) =
∫ t2(p,ϕ,x3)

t1(p,ϕ,x3)

F [p�(ϕ) + x3k + tτ (ϕ, θ(ϕ))] eν(t−t2(p,ϕ,x3)) dt, (1)

where t1(p, ϕ, x3), t2(p, ϕ, x3) are the points at which the line intersects the boundary of the
body. The above equation represents a simplified mathematical model of measurements; it
takes into account absorption of gamma photons on its way to the detector, but neglects effects
of the photon scatter, quantum noise and detector blur.

If the contour of the body is known and is convex, equation (1) can be reduced [7] to the
exponential ray transform (ERT) as follows:

GERT(p, ϕ, x3) = G(p, ϕ, x3) eνt2(p,ϕ,x3) =
∫

R

F [p�(ϕ) + x3k + tτ (ϕ, θ(ϕ))] eνt dt. (2)

Otherwise, if the shape of the body is unknown, the consistency conditions for the ERT can
be used to find the scaling coefficients (see [8]) and thus complete the reduction. We assume
throughout the paper that the modified projections GERT(p, ϕ, x3) are given.

(Note that our parametrization of the data is slightly non-standard. Usually the plane
defining the origin t = 0 of the integration variable is chosen to be perpendicular to the
direction of measurement. In our case this plane (�) is vertical. One of the consequences of
such parametrization is that the projections GERT(p, ϕ, x3) differ from a standard definition
by a known exponential factor ex3 sin θ(ϕ). We choose this parametrization because it makes the
problem invariant to the shift in the k-direction, and thus simplifies its Fourier analysis.)

Our goal is to reconstruct F(r) from the projections GERT(p, ϕ, x3) assuming that the
latter are known for a certain continuous set of directions τ(ϕ, θ(ϕ)). First, we will consider
the case of a single closed trajectory θ = θ(ϕ), with ϕ varying from 0 to 2π . As shown in the
next section, then the problem can be theoretically solved by inverting a set of 2D exponential
Radon transforms with complex-valued angle-dependent attenuation (AD-ERT). We analyse
several explicit inversion formulae for the latter transform in section 4. The discussion of the
original 3D problem resumes in section 6, where we show that in order to obtain a numerically
stable reconstruction, one may need to supplement one-orbit measurements by the second set
of measurements.

3. Reduction to the 2D exponential Radon transform with complex
angle-dependent attenuation

As mentioned in the previous section, under the chosen parametrization the problem becomes
invariant to the vertical shift. We will use this fact to decompose the 3D formulation into a
set of independent 2D problems. To this end let us introduce a new variable of integration
s = t cos θ(ϕ), and express τ as a linear combination of �⊥(ϕ) and k:

τ(ϕ, θ(ϕ)) = �⊥(ϕ) cos θ(ϕ) + k sin θ(ϕ),

so that equation (2) can be re-written as

GERT(p, ϕ, x3) cos θ(ϕ) =
∫

R

F [p� + s�⊥ + k(x3 + s tan θ(ϕ))] esν/ cos θ(ϕ) ds

=
∫

R

F ∗[p� + s�⊥, x3 + s tan θ(ϕ)] esν/ cos θ(ϕ) ds (3)
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where F(r) = F ∗(x, x3) with x = (x1, x2, 0), r = x + x3k. Function F ∗(x, x3) is related to its
1D Fourier transformant f (x, ξ3) by the formula

F(r) = F ∗(x, x3) = 1√
2π

∫
R

f (x, ξ3) eix3ξ3 dξ3. (4)

By substituting (4) into (3) we obtain

GERT(p, ϕ, x3) cos θ(ϕ) = 1√
2π

∫
R

[ ∫
R

f (p� + s�⊥, ξ3) ei(x3+s tan θ(ϕ))ξ3 dξ3

]
esν/ cos θ(ϕ) ds

= 1√
2π

∫
R

[∫
R

f (p� + s�⊥, ξ3) es(iξ3 tan θ(ϕ)+ν/ cos θ(ϕ)) ds

]
eix3ξ3 dξ3. (5)

Finally, taking the 1D Fourier transform from both sides of equation (5) one arrives at the
following formula:

g(p, ϕ, ξ3) =
∫

R

f [p�(ϕ) + s�⊥(ϕ), ξ3] e(ν/ cos θ(ϕ)+iξ3 tan θ(ϕ))s ds (6)

where

g(p, ϕ, ξ3) ≡ 1√
2π

∫
R

GERT(p, ϕ, x3) cos θ(ϕ) e−ix3ξ3 dx3. (7)

Now, by introducing the notation

µ(ϕ) ≡ ν/ cos θ(ϕ) + iξ3 tan θ(ϕ), (8)

one can re-write equation (6) in the form

gξ3(p, ϕ) =
∫

R

f [p�(ϕ) + s�⊥(ϕ), ξ3] eµ(ϕ)s ds. (9)

For each fixed value of the parameter ξ3 the above equation can be viewed as the 2D exponential
Radon transform with a complex-valued angle-dependent attenuation (AD-ERT). The (non-
physical) complex attenuation µ(ϕ) in (9) arises due to the particular technique we used to
simplify the original 3D problem; obviously, it does not coincide with the physical real-valued
attenuation ν.

In the following section, explicit formulae are presented for the inversion of the AD-
ERT (9) for an arbitrary value of ξ3. These formulae allow one to obtain an explicit
expression for f (x, ξ3) in terms of the Fourier transform g(p, ϕ, ξ3) of the projections
GERT(p, ϕ, x3) cos θ(ϕ). Solution F ∗(x, x3) of the 3D problem under consideration is then
computed using equation (4). It is worth mentioning that, since F(r) is a real-valued function,
in the numerical implementations of this method only values of f (x, ξ3) for ξ3 � 0 have to be
computed due to the equality f (x,−ξ3) = f (x, ξ3).

In the next section, we discuss in detail inversion formulae for the 2D AD-ERT; these
formulae will be used in section 6 to complete the analysis of the 3D problem at hand.

4. Inversion of the 2D AD-ERT

As was shown in the previous section, the full 3D reconstruction problem can be solved by
inverting a set of the 2D AD-ERT (9) for each real value of the parameter ξ3. In this section,
we present inversion formulae for the latter 2D transform. In order to simplify notation we
assume that ξ3 is given and fixed, and we omit this parameter throughout this section. Thus,
our goal is to invert the AD-ERT in the following form:

g(p, ϕ) =
∫

R

f [p�(ϕ) + s�⊥(ϕ)] eµ(ϕ)s ds. (10)
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4.1. Kuchment–Shneiberg’s inversion formula

In 1994, a set of explicit formulae was obtained by Kuchment and Shneiberg [9] for inversion
of the AD-ERT (10) in the presence of real angle-dependent attenuation µ(ϕ). These formulae
have an important practical application as an integral part of the 3D reconstruction technique
of [4, 5]. We reproduce below the simplest of the Kuchment–Shneiberg formulae proposed
in [9], in a slightly modified notation. The formula is of the filtration-backprojection (FBP)
type: it combines linear filtration 	µ(ϕ) of the projections g(p, ϕ)

(	µ(ϕ)g)(p, ϕ) = F−1[η̂(ρ, ϕ)ĝ(ρ, ϕ)] (11)

with the exponential backprojection Bµ(ϕ) defined for an arbitrary function u(p, ϕ) as follows:

(Bµ(ϕ)u(p, ϕ))(x) = 1

2π

∫ 2π

0
u(x · �(ϕ), ϕ) e−µ(ϕ)(x·�⊥(ϕ)) dϕ. (12)

In (11), ĝ(ρ, ϕ) is the 1D Fourier transform of g(p, ϕ) in the first variable

ĝ(ρ, ϕ) ≡ (Fg)(ρ, ϕ) = 1√
2π

∫
R

g(p, ϕ) e−iρp dp, (13)

and symbol F−1 stands for the inverse Fourier transform. The filter η̂(ρ, ϕ) used in (11) is
given by the expression

η̂(ρ, ϕ) =
{ |ρ|

2

(
1 − iµ′(ϕ)

ρ

)
, |ρ| > µ(ϕ)

0, |ρ| < µ(ϕ).
(14)

The composition of the filtration and exponential backprojection yields the desired
reconstruction

f (x) = (Bµ(ϕ)	µ(ϕ)g)(x). (15)

The validity of the explicit reconstruction technique described by equations (11)–(15) was
proven in [9] by application of the Cauchy theorem in C2. A proof based on application of
the Cauchy theorem in C1 was later given in [6].

4.2. Inversion formulae for complex-valued attenuation

For the purposes of this paper we need to invert AD-ERT with complex-valued attenuation. We
derive such an inversion formula in section 5 by obtaining a slice-projection theorem in polar
coordinates, in a form containing complex-valued angles, and by applying the Cauchy theorem
in C1. Our derivation generalizes the proof presented in [6]. Although such an approach is
less elegant than the approach of [9], it is more accessible to a wider engineering audience,
and it also yields some additional insight, necessary for the construction of efficient numerical
algorithms. The formula we present is valid under the assumption that f (x) is a continuous
finitely supported function with a bounded piece-wise continuous gradient. We will need to
assume that f (x) is a complex-valued function, since it was originally introduced as the Fourier
transform of another function, see equation (4). We also assume that µ(ϕ) is a continuous
complex-valued periodic function of ϕ with bounded piece-wise continuous derivative.
This requirement is satisfied, for example, if µ(ϕ) is defined by equation (8) in which
function θ(ϕ) describes a trajectory satisfying the restrictions formulated in the beginning of
section 3. Finally, under the above assumptions projection g(p, ϕ) is a continuous function of
both arguments; moreover, for each fixed ϕ the derivative d

dp
g(p, ϕ) is a piece-wise continuous

function.
Similarly to (15), our FBP-type inversion formula can be written in the form

f (x) = (
Bµ(ϕ)	

present
µ(ϕ) g

)
(x). (16)
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The above expression is a composition of the conventional weighted backprojection (12) with
the new filtration operation 	

present
µ(ϕ) that modifies a given continuous compactly supported

function u(p) with a bounded piece-wise continuous derivative as follows:(
	

present
µ(ϕ) u

)
(p) = 1

2
√

2π

∫
�−

µ(ϕ)+�+
µ(ϕ)

û(z) eipz(z, ϕ)z dz, (17)

(z, ϕ) = 1 − iµ′(ϕ)/z. (18)

The integration contour in the above integral consists of two oriented arcs, �+
µ and �−

µ . The
shape of these two arcs varies for different projections; it depends on the value of µ(ϕ). In
detail, arc �

+

µ is defined by the equation

z = t + i
1

t
µRµI , µR � t � ∞, (19)

where

µR ≡ Re µ, µI ≡ Im µ,

and the starting point of the arc corresponds to t = µR . Arc �−
µ is equal to −�

+

µ. The Fourier
transform û(z) in (17) is well defined for complex values of z due to the finite support of u(p).
Obviously, the above new filtration procedure contains equations (11)–(14) as a particular case
corresponding to purely real µ(ϕ).

A different inversion formula for the case of complex-valued µ(ϕ) can be obtained by
modifying the original Kuchment–Shneiberg formula. The only obstacle for a straightforward
generalization of formulae (11), (12) and (14) is the inequalities in (14) which do not make
sense in the case of complex µ(ϕ). However, there is an easy way around. Let us replace
filtration procedure (11), (14) by an equivalent operator(
	Novikov

µ(ϕ) u
)
(p) = 1

4

(
d

dp
+ µ′(ϕ)

)
{e−iµpH[eiµpu(p)] + eiµpH[e−iµpu(p)]}, (20)

where H stands for the Hilbert transform

(Hu) (p) = 1

π

∫ ∞

−∞

u(s)

p − s
ds.

Although the original work of Novikov [15] does not consider the case of the angle-dependent
attenuation, the above operator (20) is rather similar to the one appearing in Novikov’s inversion
formula when attenuation is constant (see [15, 16]). We thus use notation 	Novikov

µ(ϕ) to refer to
the filtration procedure (20). The equivalence of 	µ and 	Novikov

µ for purely real µ(ϕ) is easy
to verify, for example, by slightly modifying analysis of section 4 in [16]. Since the formula

f (x) = (
Bµ(ϕ)	

Novikov
µ(ϕ) g

)
(x) (21)

is valid for real-valued µ(ϕ), and since all the operators involved depend on µ analytically,
one can conjecture that formula (21) is also valid for complex-valued µ(ϕ). We show
in the next section that inversion formulae (21) and (16) are equivalent. This fact, in
particular, can serve as a formal proof of the Kuchment–Shneiberg formula in the form (21) for
complex µ(ϕ).

4.3. Equivalence of the two inversion formulae

It is not difficult to prove that the two inversion operators defined by equations (21) and
(16), respectively, are equivalent when applied to projections g(p, ϕ). Indeed, since the
backprojection parts of these two formulae are exactly the same, in order to prove our assertion
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it is enough to verify equivalence of the filtration operators (17) and (20). To this end, we first
modify the expression in braces in (20) as follows:

e−iµpH[eiµpu(p)] + eiµpH[e−iµpu(p)]

= e−iµp{(H + iI)[u(p) eiµp]}(p) + eiµp{(H − iI)[u(p) e−iµp]}(p), (22)

where I is the identity operator. The action of the operator H− iI on some function v(p) can
be expressed in terms of the Fourier transform of v

[(H − iI)v] (p) = F−1{(−i sign ρ − i)v̂(ρ)}(p) = − 2i√
2π

∫ +∞

0
v̂(ρ) eipρ dρ.

Therefore, taking into account that

̂u(p) e−iµp(ρ) = û(ρ + µ)

we can re-write (22) as

eiµp{(H − iI)[u(p) e−iµp]}(p) = −2i√
2π

∫ ∞

0
û(ρ + µ) eip(ρ+µ) dρ. (23)

Similarly, one obtains the identity

e−iµp{(H + iI)[u(p) eiµp]}(p) = −2i√
2π

∫ −∞

0
û(ρ − µ) eip(ρ−µ) dρ. (24)

Now, taking into account equations (23) and (24), filtration operator 	Novikov
µ(ϕ) (equation (20))

can be re-cast in the form of the following integral operator:(
	Novikov

µ(ϕ) u
)
(p) = 1

2
√

2π

∫
γ −

µ(ϕ)+γ +
µ(ϕ)

û(z) eipz[z − iµ′(ϕ)] dz

= 1

2
√

2π

∫
γ −

µ(ϕ)+γ +
µ(ϕ)

û(z) eipz(z, ϕ) dz (25)

where oriented arc γ +
µ is defined by

γ +
µ : z = t + µ, 0 � t < ∞, (26)

with the starting point z+(µ) = z(0) = µ. Arc γ −
µ is defined as γ −

µ = −γ +
µ . The expressions

representing the filtration operators (17) and (25) differ only by the integration contours. In
both cases, the integration arcs γ ±

µ(ϕ) and �±
µ(ϕ) start at the same points z±(µ(ϕ)) = ±µ(ϕ)

and go towards infinity within the strips 0 � y � µI (ϕ) and −µI (ϕ) � y � 0, respectively,
see figure 2. The integrand in (17) and (25) is an entire function due to the finite support of
u(z). One can also show (see appendix for the details) that this integrand vanishes uniformly
in y (within the strips) as |Re z| goes to infinity. Consider closed contours (shown by the
dashed line in figure 2) generated by segments of integration arcs γ ±

µ(ϕ) and �±
µ(ϕ) and lines
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Re z = ±R. The integrals of û(z) eipz(z, ϕ) along each of the closed contours are equal to
zero, and the integrals along vertical segments of these contours vanish in the limit R → ∞.
Therefore, the values of integrals (17) and (25) coincide, and inversion formulae (16) and (21)
are equivalent when applied to projections g(p, ϕ).

5. Derivation of the inversion formula

In order to derive the inversion formula given by equations (16)–(18) we will utilize a special
form of the slice-projection theorem, presented in the next section. Using this result, in
section 5.2 we develop a circular-harmonic reconstruction (CHR) algorithm. Then, as
explained in section 5.3, the sought FBP-type inversion formula is easily obtained by
integration over all spatial frequencies obtained from the CHR approach.

5.1. The slice-projection theorem

In this section, we analyse the relation between the Fourier transforms of function f and
projections g, also known as the slice-projection theorem. For a fixed angle ϕ the slice-
projection theorem in its simplest form does not differ from the corresponding relation for the
constant attenuation case (see, for example, [11, 12]). Indeed, let us compute the 1D Fourier
transform in p of a projection g(p, ϕ) for an arbitrary complex value of spectral parameter z:

ĝ(z, ϕ) = 1√
2π

∫ ∞

−∞

(∫
R

f [p�(ϕ) + t�⊥(ϕ)] eµ(ϕ)t dt

)
e−ipz dp

= 1√
2π

∫ ∞

−∞

∫ ∞

−∞
f (p� + t�⊥) etµ(ϕ)−ipz dt dp.

Noting that t = �⊥ · x and p = � · x, we obtain

ĝ(z, ϕ) = 1√
2π

∫
R2

f ((� · x)� + (�⊥ · x)�⊥) eµx·�⊥−izx·� dx

= 1√
2π

∫
R2

f (x) e−iξ(µ,z,ϕ)·x dx =
√

2πf̂ (ξ(µ, z, ϕ)) (27)

where

ξ(µ, z, ϕ) = z�(ϕ) + iµ(ϕ)�⊥(ϕ), (28)

and f̂ (ξ) is the 2D Fourier transform of f (x):

f̂ (ξ) ≡ (F2f )(ξ) = 1

2π

∫
R2

f (x) e−iξ ·x dx. (29)

Equation (27) represents the slice-projection theorem in its simplest form. Note that even for
purely real values of µ, equation (27) yields the values of the Fourier transform f̂ corresponding
to the complex-valued frequencies ξ(µ, z, ϕ).

For further use we need a polar-coordinate version of the slice-projection theorem, in
which the frequencies are defined by a vector with a real-valued amplitude but whose direction
is described by complex-valued angles. For the case of real-valued µ and z such a formula was
derived in [11]; here we need a generalization of that result for the complex-valued attenuation.

Note that we have freedom of choice of the frequency z, due to the fact that each projection
is finitely supported, and its Fourier transform is an entire function of z. Our task will be
simplified if we utilize only those values of z that result in the orthogonality of the real and
imaginary components of ξ(µ, z, ϕ). It is easy to see that the condition

Re ξ(µ, z, ϕ) · Im ξ(µ, z, ϕ) = 0,
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for ξ(µ, z, ϕ) defined by equation (28) is satisfied if Im z = µRµI/Re z. Thus, we will restrict
our attention only to the values of z satisfying the equation

z = z(ρ, µ) = ρ + i
µRµI

ρ
. (30)

Now we will cast ξ(µ, z, ϕ) in the form of a vector of a real length pointing in a complex
direction. To this end Re ξ(µ, z, ϕ) is transformed as follows:

Re ξ(µ, z, ϕ) = ρ�(ϕ) − µI�
⊥(ϕ) = sign(ρ)

√
ρ2 + µ2

I

(
cos(ϕ + A(ρ,µI ))

sin(ϕ + A(ρ,µI ))

)
,

with angle A(ρ,µI ) = arctan µI

ρ
. Similarly,

Im ξ(µ, z, ϕ) = µR

ρ
sign(ρ)

√
ρ2 + µ2

I

(
sin(ϕ + A(ρ,µI ))

−cos(ϕ + A(ρ,µI ))

)
.

For |ρ| > |µR|, the first component ξ1 of vector ξ(µ, z, ϕ) = Re ξ(µ, z, ϕ) + i Im ξ(µ, z, ϕ)

can be re-cast in the following form:

ξ1(µ, z, ϕ) = sign(ρ)
1

ρ

√
ρ2 + µ2

I [ρ cos(ϕ + A(ρ,µI )) + iµR sin(ϕ + A(ρ,µI ))]

= 1

ρ

√
ρ2 + µ2

I

√
ρ2 − µ2

R cos(ϕ + A(ρ,µI ) − iB(ρ,µR))

= σ(ρ, µ) cos α(ρ, µ, ϕ),

where we introduced the following notation:

B = B(ρ,µR) = arctanh
µR

ρ
, (31)

σ(ρ, µ) = 1

ρ

√
ρ2 + µ2

I

√
ρ2 − µ2

R, (32)

α(ρ, µ, ϕ) = ϕ + A(ρ,µI ) − iB(ρ,µR). (33)

The second coordinate ξ2(µ, z, ϕ) can be transformed in a similar way, which results in the
equation

ξ(µ, z(ρ, µ), ϕ) = σ(ρ, µ)

(
cos α(ρ, µ, ϕ)

sin α(ρ, µ, ϕ)

)
. (34)

Thus, a slice-projection theorem holds in the form

ĝ

(
ρ + i

µRµI

ρ
, ϕ

)
=

√
2πf̂ polar (σ (ρ, µ), α(ρ, µ, ϕ)) , (35)

where f̂ polar (σ, α) is the 2D Fourier transform of f (x) in the polar coordinates (σ, α):

f̂ polar (σ, α) = f̂ (ξ(σ, α)) .

For further use, we obtain the following equation by representing x =(r cos θ, r sin θ, 0)

in polar coordinates and using equations (28) and (34):

x · ξ(µ, z(ρ, µ), ϕ) = z(ρ, µ)x · �(ϕ) + iµ(ϕ)x · �⊥(ϕ)

= σ(ρ, µ)r cos(α(ρ, µ, ϕ) − θ). (36)

For a fixed µ function, σ(ρ, µ) maps the domain � = R\[−µR,µR) onto R. This
mapping is bijective. Indeed, for z = z(ρ, µ) given by equation (30) the following identity
holds true:

σ 2(ρ, µ) = z2(ρ, µ) − µ2. (37)
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For a given σ this quadratic equation with respect to z has the unique solution

z∗(σ, µ) =
√

σ 2 + µ2, (38)

where the choice of the correct branch of the root is determined by the condition

sign(σ ) = sign(ρ) = sign(Re z∗(σ, µ)). (39)

Obviously, the value of ρ corresponding to z∗(σ, µ) is ρ∗(σ, µ) = Re z∗(σ, µ).
Finally, for future reference we present the following expression for the angle α∗(σ, ϕ) =

α(ρ∗(σ, µ), µ, ϕ):

α∗(σ, ϕ) = ϕ − i arcsinh
µ(ϕ)

σ
, (40)

which can be derived by means of simple trigonometric transformations

A(ρ,µI ) − iB(ρ,µR) = arctan
µI

ρ
− i arctanh

µR

ρ

= arctan
−iµ

ρ + iµRµI

ρ

= −i arctanh
µ

z(ρ, µ)

= −i arcsinh
µ

σ(ρ,µ)
.

5.2. Reconstruction based on expansion in circular harmonics

Most of the advanced analytic algorithms for the inversion of the conventional exponential
Radon transforms are based on expansions in circular harmonics (see [11, 13, 17–19]).
Perhaps the most important advantage of such CHR algorithms is the improved stability
of the reconstruction. (A general analysis of this property is given in [13].) A simple CHR
algorithm for the inversion of AD-ERT can be obtained by combining the approach of [11]
with the slice-projection theorem in the form (35), as explained below.

Let us expand f̂ polar(σ, ϕ) in the Fourier series in the angular variable:

f̂ n(σ ) = 1

2π

∫ 2π

0
f̂ polar(σ, ϕ) e−inϕ dϕ, (41)

f̂ polar(σ, ϕ) =
∞∑

n=−∞
f̂ n(σ ) einϕ. (42)

Consider a fixed value of angle ϕ. For an arbitrary value of σ equations (38) and (40) provide
values of z∗(σ, µ) and α∗(σ, ϕ) such that

ĝ(z∗(σ, µ), ϕ) =
√

2πf̂ polar(σ, α∗(σ, ϕ)). (43)

For each σ > 0, function f̂ polar(σ, ϕ) is the restriction of the Fourier transform f̂ (ξ) to a real
circle |ξ | = |σ |, Im ξ = 0. Since f is finitely supported, f̂ (ξ) is an entire function of 2D
complex variable ξ . Therefore, for any fixed σ function f̂ polar(σ, ϕ) is entire in the angular
variable, and is well defined for the complex values of the latter variable.

In order to compute f̂ polar(σ, ϕ) for real angular values it will suffice to find its Fourier
coefficients f̂ n(σ ). Due to analyticity of f̂ polar(σ, ϕ) in ϕ, the integration over the real
interval [0, 2π ] in (41) can be replaced by integration over a closed arc C defined by equation
α = α∗(σ, µ(ϕ), ϕ), 0 � ϕ � 2π :

f̂ n(σ ) = 1

2π

∮
C

f̂ polar(σ, α∗) e−inα∗
dα∗

= 1

2π

∫ 2π

0
f̂ polar(σ, α∗(σ, ϕ)) e−inα∗(σ,ϕ) ∂

∂ϕ
α∗(σ, ϕ) dϕ.
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Due to our assumptions on µ(ϕ), arc C is a rectifiable curve, and the above change of the
integration contour is justified.

Values of f̂ polar (σ, α∗) required by the last equation can be obtained from equation (43).
We thus arrive at the reconstruction formula for f̂ n(σ ):

f̂ n(σ ) = (2π)−
3
2

∫ 2π

0
ĝ(z∗(σ, µ), ϕ) e−inα∗(σ,ϕ) ∂

∂ϕ
α∗(σ, ϕ) dϕ. (44)

The differentiation of α∗(σ, ϕ) yields

∂

∂ϕ
α∗(σ, ϕ) = 1 − i

sign(σ )µ′(ϕ)√
σ 2 + µ2(ϕ)

=
(

1 − i
µ′(ϕ)

z∗(σ, µ)

)
.

One can note that ∂
∂ϕ

α∗(σ, ϕ) coincides with the factor (z∗(σ, µ), ϕ) defined by equation (18).
Now (44) can be re-written in the form

f̂ n(σ ) = (2π)−
3
2

∫ 2π

0
ĝ(z∗(σ, µ), ϕ) e−inα∗(σ,ϕ)(z∗(σ, µ), ϕ) dϕ. (45)

This equation solves our reconstruction problem, since with f̂ n(σ ) known f̂ polar(σ, ϕ) can be
recovered by summing the Fourier series (42), and then f (x) can be computed by the inverse
Fourier transform.

The above derivation holds true also for negative values of σ , if one defines
f̂ polar (−σ, ϕ) = f̂ polar(σ, ϕ + π). This fact can be used to increase the stability of numerical
implementation. Indeed, instead of f̂ n(σ ) one can choose to reconstruct f̂ n(−σ) in view of
the relation

f̂ n(−σ) = 1

2π

∫ 2π

0
f̂ polar(−σ, ϕ) e−inϕ dϕ

= 1

2π

∫ 2π

0
f̂ polar(σ, ϕ + π) e−inϕ dϕ = (−1)nf̂ n(σ ).

The sign of the imaginary part of α∗(σ, ϕ) depends on the sign of σ , according to equations (31),
(33) and (39); the sign of Im α∗(σ, ϕ) in turn determines the sign of the real part of the
expression −inα∗(σ, ϕ) in equation (45). If σ is positive, then Re(−inα∗(σ, ϕ)) is negative for
positive n, and positive for negative n. While theoretically computation of f̂ n(σ ) and f̂ n(−σ)

is done in a similar manner, the sign of Re(−inα∗(σ, ϕ)) determines whether the exponent
in equation (45) is smaller or greater than 1, which, in turn, affects the noise amplification
properties of the algorithm. It is beneficial to compute f̂ n(σ ) for n � 0 using positive σ , and
find negative harmonics by computing f̂ n(−σ), σ � 0, n < 0. Such a regularizing technique
is similar to the methods utilized in [11, 13, 17, 19] to reduce noise amplification in constant
attenuation algorithms. In particular, one could generalize the approach of [11] to the case
AD-ERT at hand. Such a method would consist in first recovering f̂ n(σ ) as discussed above,
then computing non-attenuated projections using a classical slice-projection theorem, and,
finally, reconstructing f (x) by backprojection of filtered (non-attenuated) projections. It is
known that such an algorithm is significantly less unstable than Tretiak–Metz-like formulae
described in the next section.

5.3. The FBP inversion formula

In this section, we use equation (45) to derive the FBP-type inversion formula given by
equations (16)–(19).
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Our assumptions on function f (x) (see the beginning of section 4.2) allow us to express
it through its inverse 2D Fourier transform in polar coordinates as follows:

f (x(r, ψ)) = 1

2π

∫ 2π

0

∫ ∞

0
f̂ polar(σ, ϕ′) eiσr cos(ϕ′−ψ)σ dσ dϕ′

= 1

2π

∫ 2π

0

∫ ∞

0

[ ∞∑
n=−∞

f̂ n(σ ) einϕ′+iσr cos(ϕ′−ψ)

]
σ dσ dϕ′. (46)

Let us introduce a mollified version f N,R(r, ψ) of f (x(r, ψ)) defined by its truncated Fourier
transform:

f N,R(r, ψ) = 1

2π

∫ 2π

0

∫ R

0

[
N∑

n=−N

f̂ n(σ ) einϕ′+iσr cos(ϕ′−ψ)

]
σ dσ dϕ′

= 1

2π

∫ R

0

∫ 2π

0

[
N∑

n=−N

f̂ n(σ ) einϕ′+iσr cos(ϕ′−ψ)

]
dϕ′σ dσ.

Now we can substitute for f̂ n(σ ) the right-hand side of equation (45), and change the
integration order:

f N,R(r, ψ) = (2π)−
5
2

∫ R

0

∫ 2π

0

×
[

N∑
n=−N

(∫ 2π

0
ĝ(z∗, ϕ) e−inα∗

(z∗, ϕ) dϕ

)
einϕ′+iσr cos(ϕ′−ψ)

]
dϕ′σ dσ

= (2π)−
5
2

∫ R

0

∫ 2π

0
ĝ(z∗, ϕ)(z∗, ϕ)

×
[

N∑
n=−N

(∫ 2π

0
einϕ′+iσr cos(ϕ′−ψ) dϕ′

)
e−inα∗

]
dϕ σ dσ,

z∗ = z∗(σ, µ), α∗ = α∗(σ, ϕ).

The expression in brackets can be viewed as the Fourier series of eiσr cos(ϕ′−ψ) evaluated at the
point ϕ′ = α∗(σ, ϕ):

lim
N→∞

1

2π

N∑
n=−N

(∫ 2π

0
einϕ′+iσr cos(ϕ′−ψ) dϕ′

)
e−inα∗(σ,ϕ) = eiσr cos(α∗(σ,ϕ)−ψ)

= eiz∗(σ,µ)x·�(ϕ)−µ(ϕ)x·�⊥(ϕ).

The last line in the above equation follows from (36). We thus obtain

f ∞,R(x) = lim
N→∞

f N,R(r(x), ψ(x))

= (2π)−
3
2

∫ R

0

∫ 2π

0
ĝ(z∗(σ, µ), ϕ)(z∗(σ, µ), ϕ) eiz∗(σ,µ)x·�(ϕ)−µ(ϕ)x·�⊥(ϕ) dϕ σ dσ.

Change of variables z∗(σ, µ)2 = σ 2 + µ2(ϕ) yields

f ∞,R(x) = (2π)−
3
2

∫ 2π

0

∫
�+(µ(ϕ),R)

ĝ(z, ϕ) eizx·�(ϕ)−µ(ϕ)x·�⊥(ϕ)(z, ϕ)z dz dϕ,
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where the integration contour �+(µ(ϕ), R) is defined by the equation z =
√

t2 + µ2(ϕ), 0 �
t � R, Re z > 0. Now passing to the limit R → ∞ we obtain

f (x) = lim
R→∞

f ∞,R(x)

= (2π)−
3
2

∫ 2π

0

∫
�+(ϕ,∞)

ĝ(z, ϕ) eizx·�(ϕ)−µ(ϕ)x·�⊥(ϕ)(z, ϕ)z dz dϕ

= 1

2π

∫ 2π

0
e−µ(ϕ)x·�⊥(ϕ)

[
1√
2π

∫
�+(µ(ϕ),∞)

ĝ(z, ϕ) eizx·�(ϕ)(z, ϕ)z dz

]
dϕ. (47)

Comparing equations (30), (38) and (19) one can conclude that arc �+(µ(ϕ),∞) coincides
with arc �+

µ(ϕ) defined by equation (19). The inversion formula (47) can be viewed as the
composition of the conventional weighted backprojection (see equation (12)) with the filtration
operator 	+

µ(ϕ) defined by the expression in the brackets in equation (47), i.e.,

(
	+

µ(ϕ)u
)
(p) = 1√

2π

∫
�+

µ(ϕ)

û(z) eipz(z, ϕ)z dz. (48)

A similar inversion formula in which filtration results from the integration over arc �+
µ(ϕ)

can be derived by defining f̂ polar (−σ, ϕ) = f̂ polar (σ, ϕ + π) and setting 0 and −∞ as the
integration limits in the inner integral of equation (46). By repeating the derivation presented
earlier in this section we arrive at the inversion formula

f (x) = (Bµ(ϕ)	
−
µ(ϕ)g)(x),

where 	−
µ(ϕ) is obtained by replacing �+

µ(ϕ) with �−
µ(ϕ) in equation (48). Alternatively, the use

of the average 	
present
µ(ϕ) of the two filtration operators

	
present
µ(ϕ) = 1

2

(
	+

µ(ϕ) + 	−
µ(ϕ)

)
. (49)

combined with the weighted backprojection (12) also yields theoretically exact inversion.
Equation (49) is equivalent to the filtration operator (17) presented in section 4.2. This
completes our derivation of the inversion formulae (16) and (17).

5.4. Reconstruction with additional filtration

It is frequently desirable in computational practice to reconstruct the convolution f E(x) of
the source term f (x) with some distribution E(x). The latter is usually defined by its Fourier
transform Ê(ζ ), so that

f E(x) = F−1
2 [Ê(ζ )f̂ (ζ )](x),

where ζ is the 2D vector dual to x. It will suffice for the purposes of this paper to consider
only rotationally symmetric filters Ê(ζ ) = Ê(σ ), σ = |ζ |. By repeating the derivation of the
previous section with f̂ polar(σ, ϕ′) replaced by Ê(σ )f̂ polar(σ, ϕ′), one obtains the following
equation:

f E(x) = (
Bµ(ϕ)	

E
µ(ϕ)g

)
(x),

where filtration operator 	E
µ(ϕ) contains an additional factor Ê(σ (z, µ)) under the integral:

(
	E

µ(ϕ)u
)
(p) = 1

2
√

2π

∫
�+

µ(ϕ)+�−
µ(ϕ)

û(z) eipz(z, ϕ)Ê(|σ ∗(z, µ)|)z dz. (50)

In the next section, we will need to use a particular kind of filtration that eliminates low
spatial frequencies of a function. More precisely, we will utilize the filter ÊM(|σ |) equal to 1
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for |σ | � M and equal to 0 otherwise. The use of this filter in (50) is equivalent to restricting
the integration to the portions of the chain �+

µ(ϕ) + �−
µ(ϕ) corresponding to |σ | � M . In other

words, starting points zM
± of the truncated integration arcs are given by the condition

M2 = σ 2 = z2 − µ2(ϕ)

or zM
± (µ(ϕ)) =

√
M2 + µ2(ϕ), where Re zM

+ > 0 and Re zM
− < 0. We will use the notation

	
present
µM(ϕ)

to refer to this filtration operator.
The same effect can be achieved with the Novikov-style filtration procedure (equation (20)

or, equivalently, (25)) if we replace µ(ϕ) by a modified value µM(ϕ) = zM
+ (µ(ϕ)). Indeed,

the integration arcs in (25) will also start at the points zM
± (µ(ϕ)). Therefore, according to the

analysis of section 4.3, the Novikov-style filtration procedure will yield the equivalent result.
We will denote the corresponding operator by 	Novikov

µM(ϕ)
.

As explained in the next section, evaluation of the Fourier transform of a function for
complex values of the frequencies leads to instabilities proportional to the imaginary part of
the frequency. When filtration is done using operator 	

present
µM(ϕ)

(or equivalently, 	Novikov
µM(ϕ)

), the
portions of the integration arcs with the largest values of |Im z| are eliminated, thus reducing
the instability of the computation.

Assume, for simplicity, that µ(ϕ) = µ does not depend on ϕ. (This situation corresponds
to a circular measurement trajectory θ(ϕ) = θ0 in the original 3D problem.) Given some
number K � 0 we would like to find such a filtration operator that utilizes only those portions
of �+

µ + �−
µ for which |Im z| � K . In view of equation (30), these parts of the path are

described by the condition

|ρ| � |µRµI |/K. (51)

If |µI | � K then this condition is automatically satisfied and no additional filtration is needed;
all the range of frequencies σ is stably reconstructed. If |µI | > K , then the range of the
reconstructed frequencies can be determined by combining inequality (51) with equation (32)

|σ | � M(K,µ), M(K,µ) ≡
√(

µ2
R

/
K2 + 1

)(
µ2

I − K2
)
.

The parameter µM that produces the required filtration when substituted into 	Novikov
µM(ϕ)

is

obtained by substituting ρ = µRµI/K into equation (30) which results in the value µM =
µRµI/K + iK . To summarize, we define µM as follows:

µM =
{
µ, |µI | � K

µRµI/K + iK, |µI | > K.
(52)

In order to simplify analysis and computations, we will only consider a subset of the
reconstructed frequencies defined by inequality

|σ | � |µI |
√

1 + µ2
R

/
K2. (53)

In other words, in order to guarantee stability of computations we need to exclude a disc
of frequencies with the radius proportional to |µI |. We further note that if trajectory is not
circular but |θ(ϕ)| � θ0, use of the cut-off µM = µR(θ0)µI (θ0)/K + iK still results in a stable

reconstruction of frequencies outside the disc of radius |µI (θ0)|
√

1 + µ2
R(θ0)

/
K2.

6. 3D reconstruction from closed-orbit measurements

We are now in a position to complete the development of the analytic procedure for the
3D SPECT reconstruction from parallel-beam data acquired from closed 1D paths. From
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Figure 3. (a) Two-circle acquisition trajectory. (b) Cone of inaccessible frequencies.

the theoretical point of view, the solution to this problem has already been given in the
previous sections. Indeed, in order to reconstruct the spatial activity distribution F(r) from
its 3D exponential Radon transform GERT(p, ϕ, x3) (see equation (2)) it is enough to (i)
compute the 1D Fourier transform g(p, ϕ, ξ3) (equation (7)), (ii) find f (x, ξ3) for each value
of parameter ξ3 by evaluating either of the inversion formulae (16), (21) and (iii) compute
F(r) by a set of the 1D inverse Fourier transforms (4). However, stability of numerical
implementation of these theoretically exact formulae cannot be guaranteed in general. In what
follows we first analyse the stability of the reconstruction from measurements described by a
circular orbit of directions. Then, in section 6.2 we describe an algorithm that permits stable
reconstruction from two closed orbits satisfying certain conditions. A numerical example of
such a reconstruction is presented.

6.1. Data measured from one circular orbit

First, let us consider the case of constant angle θ = θ0, ϕ ∈ [0, 2π ]. Then the directions
of measurement are represented by the circle C on S2, with radius cos θ0 (see figure 3(a)).
Obviously, if θ0 
= 0, there are great circles on S2 that do not intersect C. Therefore, Orlov’s
condition is not satisfied, and, in the absence of attenuation, the reconstruction is not possible,
according to [10]. This statement seems to contradict the results of the previous sections
which contain explicit reconstruction formulae valid under rather general conditions.

Let us try to reconcile these two points of view. Orlov’s statement is based on the fact
that (in the absence of attenuation) the 2D Fourier transform of a projection coincides (up to
a constant factor) with a restriction of the 3D Fourier transform F̂ (ξ) of the function F(r) to
a plane ξ · τ = 0 passing through the origin and perpendicular to the measurement direction
τ(ϕ, θ). Therefore, from a single projection one can reconstruct values of F̂ (ξ) on that plane.
In the simplest case when θ is constant and ϕ varies from 0 to 2π , the values of F̂ (ξ) will be
recovered for all ξ lying in the exterior of the cone Q0,

Q0 = {
ξ
∣∣ξ 2

3 �
(
ξ 2

1 + ξ 2
2

) ∣∣ cot θ0

∣∣}
where subscript 0 in Q0 indicates the absence of attenuation. While from the theoretical point
of view it is possible to reconstruct F̂ (ξ) for ξ ∈ Q0 due to analyticity of F̂ (ξ), such an
analytic continuation is highly unstable and is impossible to implement numerically.

In turn, a closer look at the filtration operator 	
present
µ(ϕ) (equation (17)) reveals that it

utilizes the values of the Fourier transform computed for complex values of the frequency z

with max(|Im z|) = |µI | = |ξ3 tan θ0| (see equation (8)). Such a shift of the frequency in the
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imaginary direction leads to instability of computations; this instability increases exponentially
with the growth of ξ3. (The same problem arises if one uses 	Novikov

µ(ϕ) instead of 	
present
µ(ϕ) .) This

type of instability is closely related, for example, to the well-known instability of computation
of the Laplace transform. Of course, some amount of instability is expected from problems
of SPECT reconstruction. Indeed, in the simplest case when θ = 0 and attenuation is purely
real, there is still a shift of frequencies in the imaginary direction, as can be seen from
equation (28). This shift leads to the well-known heightened noise sensitivity of the Tretiak–
Metz inversion formula. Note, however, that in the latter case the shift is bounded. In our case
the shift grows with the growth of ξ3, rendering reconstruction of F(r) practically impossible
for this type of measurement, in spite of the existence of the explicit reconstruction formulae.

However, it is possible to reconstruct from one-circle measurement, in a stable fashion,
spatial frequencies lying outside a certain cone in the frequency space. Indeed, as follows
from the consideration of the previous section, the composition of the conventional weighted
backprojection with the operator 	Novikov

µM(ϕ)
, where µM is defined by equation (52), leads to

correct reconstruction of frequencies lying outside the disc of radius |µI |
√(

µ2
R

/
K2 + 1

)
. In

turn, |µI | = |ξ3 tan θ0|. The components of 2D frequency variable ζ from the previous section
can be identified with the first two components of the 3D frequency variable ξ , i.e.,

ζ1 = ξ1, ζ2 = ξ2.

Thus using the filtration parameter µM , we reconstruct spatial frequencies satisfying the
inequality √

ξ 2
1 + ξ 2

2 | � |ξ3 tan θ0|
√

µ2
R

/
K2 + 1.

When this algorithm is used as a part of the 3D reconstruction, the frequencies outside the

cone QK = {
ξ ||ξ3| � | cot θ0|

√
ξ 2

1 + ξ 2
2

/√
µ2

R

/
K2 + 1

}
will be correctly reconstructed, with

the imaginary shift remaining bounded by K.
Conversely, if it is desirable to reconstruct all frequencies in the exterior of a given cone

Q defined by the equation

Q = {
ξ ||ξ3| �

√
ξ 2

1 + ξ 2
2 | cot θ cutoff|},

where angle θ cutoff is given, the relation between the admissible direction angle θ0 and the
value of the shift K takes the form

cot θ cutoff � cot θ0
/√

µ2
R

/
K2 + 1

or, equivalently,

θ0(K, θ cutoff) � arctan


 1√

µ2
R

/
K2 + 1

tan θ cutoff


 . (54)

For example, in the next section we will need to reconstruct frequencies outside the cone with
the angle θ cutoff = 45◦. It follows from the inequality (54), that if K is chosen to equal µR ,
the measurement angle θ0 can be as large as arctan(1/

√
2) ≈ 35.264◦. If a larger value of K

(and a larger noise sensitivity of the algorithm) can be tolerated, then a larger angle θ0 can be
used. For example, if K is equal to 2µR , angle θ0 can be increased to 41.81◦, and so on. By
choosing K large enough one can make angle θ0 be arbitrarily close to θ cutoff while keeping
the imaginary shift bound by a constant K for all values of ξ3.

To summarize, the 3D reconstruction problems with and without attenuation turn out to
be quite similar. In both cases reconstruction of the spatial frequencies in the interior of the
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Figure 4. Two-circle acquisition trajectory.

prohibited cone is extremely (exponentially) unstable, in spite the fact that in the attenuated
case we have a formal explicit representation for the solution of the problem. In the exterior of
the cone reconstruction is possible; by using the filtration technique discussed in this section
one can avoid exponential instabilities associated with progressive shifting of the frequencies
in the imaginary direction.

In conclusion, we would like to note that from measurements corresponding to a wider
non-circular trajectory θ = θ(ϕ) such that |θ(ϕ)| � θ0, one can reconstruct at least the same
(possibly wider) range of frequencies than that reconstructed with θ = θ0.

6.2. Data measured from two circular orbits

As demonstrated in the previous section, from one closed orbit one can reconstruct, in a stable
fashion, only spatial frequencies of a function that lie outside a certain cone. One way to
obtain a full reconstruction is to utilize a second trajectory of measurements supplying those
frequencies that cannot be reconstructed from the first orbit.

An example of such a set of measurements is the two-circle path, consisting of two
intersecting circles of directions with centres defined by two perpendicular vectors, as shown
in figure 4. A simple reconstruction algorithm suitable for the two-circle measurements is
presented below.

The method discussed in the previous section allows one to recover, from a circular
trajectory θ(ϕ) = θ0 with θ0 < 45◦, all frequencies F̂ (ξ) for ξ lying outside the cone
Q

(1)

45◦ = {
ξ
∣∣ξ 2

3 �
(
ξ 2

1 + ξ 2
2

)}
. Similarly, if the circle of directions is rotated by 90◦, one can

compute all frequencies outside the cone Q
(2)

45◦ = {
ξ
∣∣ξ 2

1 �
(
ξ 2

2 + ξ 2
3

)}
. Clearly, the union of

the exteriors of these two cones contains all of R3:

R3 ⊆ (
R3∖Q

(1)

45◦
) ∪ (

R3∖Q
(2)

45◦
)
.

Combining the two sets of frequencies corresponding to each of the circles would be quite
straightforward in a frequency domain algorithm, for example in the method based on
circular harmonics formulae of section 5.2. (Algorithms of this sort usually require accurate
interpolations between grids in the spectral domain, and the design of such methods is not
a trivial task.) For the FBP-type algorithm presented here, we choose a different approach.
For each of the circular paths, we will reconstruct a function with a missing 90◦ wedge of
frequencies (instead of a function lacking a certain cone of frequencies). This can be achieved
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by additional filtration of function f (x, ξ3) in x for each value of ξ3. We will thus obtain
from the data corresponding to the first circular trajectory, a function F1(r) with such Fourier
transform F̂1(ξ) that

F̂1(ξ) =



F̂ (ξ), |ξ3| < |ξ1|
1
2 F̂ (ξ), |ξ3| = |ξ1|
0, |ξ3| > |ξ1|.

Similarly, from the second trajectory we recover function F2(r) such that

F̂2(ξ) =



F̂ (ξ), |ξ3| > |ξ1|
1
2 F̂ (ξ), |ξ3| = |ξ1|
0, |ξ3| < |ξ1|.

Obviously, the sum of F1(r) and F2(r) yields the sought function F(r).
In detail, the first part of the algorithm consists of

• computing g(p, ϕ, ξ3), equation (7) for the first set of data,
• setting θ cutoff = 45◦ and finding the smallest value of the constant K satisfying

inequality (54),
• for each value of ξ3:

(i) setting µI = ξ3 tan θ0,
(ii) choosing µM according to equation (52),

(iii) reconstructing f M
1 (x, ξ3) = (

Bµ	Novikov
µM g(p, ϕ, ξ3)

)
(x, ξ3),

(iv) filtering f M
1 (x, ξ3)

f filtered
1 (x, ξ3) = F−1

2

[
h(ξ, ξ3)f̂

M
1 (ξ, ξ3)

]
(x, ξ3)

with a filter h(ξ1, ξ3) such as

h(ξ1, ξ3) =



1, |ξ1| > |ξ3|
1
2 , |ξ1| = |ξ3|
0, |ξ1| < |ξ3|,

• and, finally, reconstructing F1(r) through the inverse 1D Fourier transform of
f filtered

1 (x, ξ3):

F1(r) = F ∗
1 (x, x3) = 1√

2π

∫
R

f filtered
1 (x, ξ3) eix3ξ3 dξ3.

Computation of F2(r) is done by rotating the coordinate system and applying the same
algorithm as was used to reconstruct F1(r). Finally, F(r) is obtained as a sum of F1(r)
and F2(r).

The above algorithm can also be used, without any changes, for reconstruction from two
orbits of more general shape, such that the first orbit satisfies the condition |θ(1)(ϕ)| � θ0, and
the second trajectory satisfies the similar condition |θ(2)(ϕ)| � θ0 (in the rotated coordinate
system).

It is easy to give an approximate asymptotic estimate of the number of floating point
operations required for this method. Assume for simplicity that the number of projections
equals n, the dimension of data in one projection is n × n, and the image is reconstructed
on a n × n × n 3D Cartesian grid. Since a 2D FBP algorithm requires O(n3) floating point
operations, and there are O(n) spatial slices in discretization in ξ3, the total number of required
operations is O(n4).
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(a) (b)

Figure 5. Reconstructed image: (a) activity in the plane ξ2 = 0 and (b) comparison of the
reconstructed activity on the line ξ2 = 0, ξ3 = 0 with the exact values.

Table 1. Parameters of the model functions.

j c
(j)
x c

(j)
y c

(j)
z Rj

1 0.45 0.0 0.05 0.20
2 −0.05 0.0 0.05 0.15
3 −0.40 0.0 0.05 0.10
4 −0.05 0.4 0.05 0.15
5 0.05 0.0 0.45 0.10

6.2.1. Numerical example. In this section, we present an example of image reconstruction
from data measured from the two-circle orbit, described by equation θ0 = 35◦ (in the original
and rotated coordinates) and shown in figure 4. In the present test the model activity distribution
was given by a sum of five characteristic functions χ(c(j), Rj ) of spheres with centres c(j) and
of radius Rj :

F(r) =
5∑

j=1

χ(c(j), Rj ),

with the values of the parameters chosen as shown in table 1.
The reconstruction was performed in the region |r| � 1/

√
2, and the (physical) attenuation

ν was set to 3. The total optical diameter of the domain was equal to 3
√

2 ≈ 4.24. Under such
a combination of parameters the reconstruction problem is equivalent to that for an object of
35 cm in diameter in the presence of realistic attenuation of 12 cm−1. A total of 800 projections
were modelled (400 for each circular path); each projection was of the size 129×129. The unit
cube in the reconstruction domain was mapped onto a 129×129×129 Cartesian grid; however,
the actual computations were restricted to the sphere of radius 1/

√
2. The computation took

21.5 min on a PC with AMD Athlon 1600+ processor.
The result of the reconstruction is shown in figure 5. Part (a) of the figure demonstrates

the section of the 3D image by the plane y = 0. The graph of the activity along the line y = 0,

z = 0 is shown in figure 5(b), with the graph of the original function on the background.
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7. Conclusions

We have shown that the problem of the 3D reconstruction from attenuated parallel-beam
measurements can be reduced to a set of the 2D AD-ERTs with complex-valued attenuation.
Explicit formulae were presented for inversion of such transforms. One of our formulae are
of the FBP type, while the other is based on decomposition in cylindrical harmonics in the
angular variable. We have proved these formulae by a rather elementary approach based
on the Cauchy theorem in 1D variable. It was also shown that the simple substitution of
the complex-valued attenuation into the Kuchment–Shneiberg formula (in a slightly modified
form) also leads to correct FBP-type reconstruction.

The proposed set of explicit reconstruction formulae for the solution of the original 3D
problem is theoretically valid for any closed set of measurement directions. A simple analysis
shows, however, that in general, only a certain cone of frequencies can be reconstructed from
measurements whose direction are described by one closed trajectory.

On the other hand, if two sets of measurements are available such that frequencies that
cannot be obtained from one set are available from the other, a stable reconstruction is possible.
We showed that the two partial reconstructions can be combined if one recovers a certain wedge
of frequencies from one set, and a complimentary wedge of frequencies from the other one.

As an example, we presented a reconstruction algorithm and obtained a satisfactory
reconstruction for the two-circle trajectory satisfying certain conditions. The proposed
algorithm can be applied, without any changes to a more general trajectory consisting of
two closed orbits, provided that these two orbits are wider than the circles in our example
(i.e., angle θ(ϕ) is smaller than or equal in absolute value to θ0). A similar approach can be
used to combine more partial reconstructions obtained from more than two sets of closed-orbit
measurements, provided that the union of the wedges of frequencies that can be recovered
from each orbit covers all of R3.

The algorithm we developed is intended to serve as a ‘proof of the idea’ rather than a
ready-to-use reconstruction technique. The noise sensitivity of this method (as presented)
is similar to the noise sensitivity of the original Tretiak–Metz formula. The practical
application of such methods is impeded by a significant level of noise present in experimentally
measured data. More advanced, stable analytical techniques in the case of constant attenuation
usually (although not necessarily) involve cylindrical harmonic decomposition allowing one
to filter out unstable harmonics (see [13] and references therein for a unified analysis of such
techniques). A similar technique can be utilized to design a stable circular reconstruction
algorithm for the case of AD-ERT, based on the results of section 5.2 (see, in particular, the
discussion at the end of that section). Moreover, it is desirable to combine such a technique
with the fast FFT-based methods employing interpolations in the spectral domain. Such
methods, well studied in the context of x-ray tomography (see, for example, [20–24]), yield
full 3D reconstructions in just O(n3 log n) floating point operations, which is important in
view of significant volume of data describing 3D images. However, a detailed design of
such a more advanced, stable and fast numerical algorithm is outside of the scope of this
paper.

Finally, we would like to compare the present algorithm to the methods of [4, 6] from
the point of view of practical reconstruction. The latter techniques require computation of the
composition of the inverse classical and exponential Radon transforms (or two exponential
Radon transforms) each of which is an ill-posed inverse problems. In contrast, the present
method combines a set of the inverse exponential Radon transforms with the numerically
stable Fourier transform, which, we believe is advantageous. On the other hand, the methods
of [4, 6] seem to be more flexible and, at least at present, they allow one to treat a wider set
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of trajectories. For example, it is not clear currently how to modify our approach to treat
elongated trajectories, such as the one given by

θ(ϕ) = π

2
sin2 ϕ − 0.1

although this orbit does satisfy Orlov’s condition and can be processed using the methods
of [6].
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Appendix

In this appendix, we show that if u(z) is a finitely supported continuous function with a
bounded piece-wise continuous derivative, then the expression û(z) eipz[z − iA] vanishes in
the limit Re z → +∞ uniformly in y = Im z within the strip 0 � y � B, where p and A are
arbitrary real numbers and B is an arbitrary positive number. In other words, we would like
to prove that for any ε0 > 0 there exists R0 > 0 such that |û(z) eipz[z − iA]| < ε0 for all
z = x + iy such that x > R0 and 0 � y � B.

Without loss of generality it is enough to consider the case A = 0, p = 0, i.e., it is
sufficient to prove that |izû(z)| < ε0. For a fixed y, the expression izû(z) is the Fourier
transform of the function d

dp
(u(p) eyp)

i(x + iy)û(x + iy) = i(x + iy)√
2π

∫
u(p) e−ip(x+iy) dp

= 1√
2π

∫
u′(p) e−ip(x+iy) dp

= 1√
2π

∫
(u(p) eyp)′ e−ipx dp.

By the well-known Riemann–Lebesgue theorem [25], since d
dp

(u(p) eyp) is a bounded piece-
wise continuous function, its Fourier transform vanishes in the limit x → ∞. Therefore, for
a fixed Im z = y,∀ε > 0 there exists R(y) > 0 such that |zû(z)| < ε when Re z > R(y). In
other words, zû(z) goes to zero as z goes to infinity along any of the lines y = Im z = const.
However, for our purposes we need to prove that such convergence is uniform in y within the
strip 0 � y � B.

Pick R1 = max(R(B), R(0)). Then |zû(z)| < ε for x > R1, y ∈ {0, B}. Consider
harmonic function v(z) = Re(zû(z)). It can be represented as a sum v(z) = v1(z) + v2(z) of
two harmonic functions each of which is a solution of the Dirichlet problem in a half strip S
defined by inequalities 0 < Re z < B, x > 0, with the following boundary conditions:

v1(z) =
{
v(z), z ∈ ∂S, Re z < R1,

0, z ∈ ∂S, Re z � R1,

v2(z) =
{
v(z), z ∈ ∂S, Re z � R1,

0, z ∈ ∂S, Re z < R1.
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Since |v(z)| < ε when Re z > R1, by the maximum principle |v2(z)| < ε within the half-strip.
In the half-strip S1 = {z| x > R1, 0 < y < B} function v1(z) can be represented by the
following series:

v1(z) =
∞∑

k=1

Ck exp

(
−πk(x − R1)

B

)
sin

πky

B

with |Ck| → 0 as k → ∞. For x > R1, the following estimate holds:

|v1(z)| � max |Ck|
∞∑

k=1

exp

(
−πk(x − R1)

B

)

= max |Ck| exp

(
−π(x − R1)

B

)
1

1 − exp
(−π(x−R1)

B

) .

As x → ∞, the latter expression converges to 0. Therefore, ∃R2 > R1 such that |v1(z)| <

ε for x > R2. Hence, |Re(zû(z))| = |v(z)| < 2ε for x > R2. Similarly, ∃R3 > R1 such
that |Im(zû(z))| < 2ε. Therefore for x > R0 = max(R2, R3), we obtain |zû(z)| < 2

√
2ε.

Selecting ε = ε0

2
√

2
completes the proof of the claim made in the beginning of this section.

Similarly, one can prove the uniform convergence of |zû(z)| to zero within the strip
−B < Re z < 0, x < 0 in the limit x → −∞.
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