Problem set 1, Math 413-513 Spring 2003

This problem set is devoted to examples in which a change of basis in a vector space is the key to the simple solution of an important problem. Let \(P_n \) denote the vector space of polynomials of degree less than or equal to \(n \) with real coefficients. As mentioned in class this is a vector space with dimension \(n + 1 \) and \(\{1, x, x^2, \ldots, x^n\} \) is a basis. The simplest interpolation problem for polynomials is to specify \(n + 1 \) points \((x_j, y_j)\) for \(j = 1, \ldots, n \) with all the \(x_j \) distinct and to seek a polynomial \(p \) of degree \(n \) which passes through all these points,

\[
p(x_j) = y_j \quad \text{for} \quad j = 1, \ldots, n + 1.
\]

It is plausible that these \(n + 1 \) equations determine the \(n + 1 \) coefficients of \(p \) but the simplest way to see this is to introduce a different basis for \(P_n \), the Lagrange interpolation basis described in your text. The \(j^{th} \) element in this basis is,

\[
\ell_j(x) = \prod_{k \neq j} \frac{x - x_k}{x_j - x_k}.
\]

The property which makes this basis useful in the interpolation problem is that the \(\ell_j(x) \) are all clearly polynomials of degree \(n \) with \(\ell_j(x_k) = 0 \) if \(k \neq j \) and \(\ell_j(x_j) = 1 \). The solution of the interpolation problem (1) is then,

\[
p(x) = \sum_{j=1}^{n+1} y_j \ell_j(x).
\]

It is worth recalling the argument that shows that the \(\ell_j \) are linearly independent (and hence a basis!). If the linear combination of the \(\ell_j \) given by (2) is zero as a function then in particular \(p(x_j) = 0 \) for \(j = 1, \ldots, n + 1 \).

But then \(y_j = p(x_j) = 0 \) and it follows that the \(\ell_j \) are linearly independent (this argument is almost magically simple). There is another way to look at the Lagrange basis which is instructive. Let \(E_j \) be the linear functional defined on \(P_n \) by,

\[
E_j(p) = p(x_j).
\]

\(E_j \) just evaluates the polynomial \(p \) at the point \(x_j \). Then

\[
E_j(\ell_k) = \delta_{jk} = \begin{cases}
1 & \text{for } j = k \\
0 & \text{for } j \neq k
\end{cases},
\]

and \(E_j \) and \(\ell_j \) are dual bases (\(E_j \) gives the coordinates for \(\ell_j \)).

1. Determine the Lagrange interpolation basis of \(P_2 \) for the three points \(x_1 = -h \), \(x_2 = 0 \) and \(x_3 = h \) (three evenly spaced points with spacing \(h \)). Use this basis to answer the following questions.

(a) Suppose that you have three data points \((x_1, y_1), (x_2, y_2), \) and \((x_3, y_3)\) which represent a discrete “approximation” to a differentiable function (such approximations are important in computer modeling of differential equations). Find an approximation to the value of the second derivative of this function at the center point \(x_2 = 0 \) by first calculating the quadratic polynomial \(p(x) \) which passes through these three points and then evaluating \(p''(0) \) (the second derivative of \(p \) at \(0 \)). Do you get the same result if the three data points are altered by changing the \(x \) coordinates to \(x_1 = a - h, x_2 = a, \) and \(x_3 = a + h \) without changing the \(y \) values? The expression you obtain in this way is called a finite difference approximation to \(\frac{d^2}{dx^2} \).

(b) Suppose that you want to approximate the area under the “curve” which has the discrete representation \((x_1, y_1), (x_2, y_2)\) and \((x_3, y_3)\). Find the quadratic polynomial \(p(x) \) which passes through these three points (you did this in part (a)) and evaluate,

\[
\int_{-h}^{h} p(x) \, dx.
\]

Show that the result doesn’t change if \(x_1 = a - h, x_2 = a \) and \(x_3 = a + h \) with the \(y \) values unchanged. Apply this result to the more general problem of estimating \(\int_{a}^{b} f(x) \, dx \). Divide the interval \([a, b]\) into \(2n \) equal segments of size \(h = \frac{b-a}{2n} \) and consider the discrete approximation to \(f(x) \) obtained by evaluating \(f(x) \) at the points \(x_j = a + jh \) for \(j = 0, 1, \ldots, 2n \). Find an approximation to \(\int_{a}^{b} f(x) \, dx \) which depends only on
the $2n + 1$ values $f(x_j)$ by starting at a and adding together the approximations obtained above for the intervals $(a, a + 2h), (a + 2h, a + 4h)$ and etc. The result is called Simpson’s rule which is a popular numerical integration scheme.

2. Consider the following polynomials in P_3.

$$
\begin{align*}
 s_1(x) &= (2x + 1)(x - 1)^2 = 2x^3 - 3x^2 + 1, \\
 s_2(x) &= x(x - 1)^2 = x^3 - 2x^2 + x, \\
 s_3(x) &= -(2x - 3)x^2 = -2x^3 + 3x^2, \\
 s_4(x) &= x^2(x - 1) = x^3 - x^2.
\end{align*}
$$

Show that $\{s_j\}$ is a basis for P_4 by observing that the linear functionals,

$$
\begin{align*}
 F_1(p) &= p(0), \\
 F_2(p) &= p'(0), \\
 F_3(p) &= p(1), \\
 F_4(p) &= p'(1),
\end{align*}
$$

are coordinate functions for $\{s_j\}$. That is $F_j(s_k) = \delta_{jk}$. Now argue as in the case of interpolation polynomials that if,

$$
p(x) = \sum_{k=1}^{4} a_j s_j(x) = 0,
$$

then $a_1 = p(0) = 0$, $a_2 = p'(0) = 0$ and etc. Being able to specify derivatives allows one to draw curves through discrete points which don’t have any sharp turns (with continuous derivatives). Use the basis $\{s_j\}$ to solve the following problem. Find a cubic function $p_1(x)$ defined on the interval $[0,1]$ and a cubic function $p_2(x)$ defined on the interval $[1,2]$ so that the function $f(x)$ you get by putting these two functions together to give a function on the interval $[0,2]$ satisfies the following conditions,

(a) The graph of f passes through the three points $(0,2)$, $(1,3)$, and $(2,1)$.

The slope of f at 0 is equal to the slope of the line joining the first two points $(0,2)$ and $(1,3)$. The slope of f at 1 is equal to the slope of the line joining $(0,2)$ with $(2,-1)$ and the slope of f at 2 is equal to the slope of the line joining $(1,3)$ with $(2,-1)$.

Hint: To find the appropriate polynomial $p_2(x)$ on the second interval work with the functions $s_j(x - 1)$ rather than $s_j(x)$.

The functions you are working with here are called cubic splines and are used in computer graphics programs to draw smooth curves passing through discrete points.