Comments on Homework 2

1.3.24 The map \(x \to \frac{2}{\sqrt{1 - |x|^2}} \) maps the open unit disk onto \(\mathbb{R}^n \). Compose this with the inverse of stereographic projection from the north pole to get,

\[
\phi(x) = \left(2\sqrt{1 - |x|^2}x, 2|x|^2 - 1\right) \in \mathbb{R}^{n+1}.
\]

This is a continuous map from the closed disk, \(D^n \), onto the sphere \(S^n \). Every point on the boundary of \(D^n \) is mapped to the north pole \((0,1)\). Thus \(\phi \) induces a continuous map from \(D^n / S^{n-1} \) onto \(S^n \). It is obvious by construction (and easy to check directly) that the induced map is one to one. Since \(D^n / S^{n-1} \) is compact Hausdorff and \(S^n \) is Hausdorff the induced map is a homeomorphism.

1.7.6 Suppose that \(G \) is a topological group and \(H \) is a discrete subgroup. We will first show that \(\pi : G \to G/H \) is a covering space, where \(\pi(g) = gH \). Define a map \(r(g_1, g_2) = g_1^{-1}g_2 \). Because \(G \) is a topological group this is a continuous map. Choose a neighborhood \(U \) of the identity \(e \) in \(G \) so that \(U \cap H = \{e\} \). Since \(r \) is continuous \(r^{-1}(U) \) is open and since \((e,e) \in r^{-1}(U) \) we can find open neighborhoods \(V_1 \) and \(V_2 \) of \(e \) in \(G \) so that \(V_1 \times V_2 \subseteq r^{-1}(U) \). Let \(V = V_1 \cap V_2 \). Then \(V \) is a neighborhood of \(e \) and if \(g_1 \) and \(g_2 \) are both in \(V \) then \(g_1^{-1}g_2 \in U \). I claim that \(gVH \) is an evenly covered neighborhood of the point \(gH \in G/H \). Clearly,

\[
\pi^{-1}gVH = \bigcup_{h \in H} gVh, \tag{1}
\]

Suppose that,

\[
gVh_1 \cap gVh_2 \neq \emptyset.
\]

Then for some \(g_j \in V \) we have,

\[
gg_1h_1 = gg_2h_2,
\]

which implies,

\[
U \ni g_1^{-1}g_2 = h_2h_1^{-1} \in H.
\]

Thus \(h_1 = h_2 \) and we see that (1) is a disjoint union. It is clear that \(\pi \) maps the open neighborhood \(gVh \) of \(gh \) in \(G \) bijectively on \(gVH \). To see that \(\pi \) is a homeomorphism it suffices to check that \(\pi \) is an open map. Suppose that \(W \) is open in \(G \) then

\[
\pi^{-1}(\pi W) = \pi^{-1}(WH) = \bigcup_{h \in H} Wh.
\]

Since \(G \) is a topological group \(Wh \) is open, hence the union in the preceeding equation is also open and so by definition \(\pi W \) is open. This shows that \(\pi \) is a covering space map.

Next we want to see that the deck transformations are all given by right translation by an element in \(H \). Define,

\[
\varphi_h(g) = gh^{-1}.
\]

It is simple to check that \(\varphi_h \) is a deck transformation and that \(\varphi_h(\varphi_{h'}(g)) = gh'^{-1}h^{-1} = g(hh')^{-1} = \varphi_{hh'}(g) \).

Now suppose that \(\varphi \) is a deck transformation. Then,

\[
\varphi(g)H = gH.
\]

This implies that \(g^{-1}\varphi(g) \) takes values in the subgroup \(H \). Since \(g \to g^{-1}\varphi(g) \) is continous, \(G \) is connected, and \(H \) has the discrete topology this implies that this map is constant. Thus there exists an \(h \) in \(H \) so that,

\[
\varphi(g) = gh,
\]

so \(\varphi = \varphi_{ha^{-1}} \).
1.7.12 If the group of covering transformations, \(\Gamma \), acts transitively on one fiber of a covering space \(p : Y \to X \) with a path connected base then \(\Gamma \) acts transitively in all fibers.

Proof: Suppose that \(\Gamma \) acts transitively in \(p^{-1}(x_0) \) for some \(x_0 \in X \). Let \(x_1 \in X \) denote a point in \(X \) and connect \(x_1 \) to \(x_0 \) by a path \(\sigma \) in \(X \). Suppose that \(u_1 \) and \(v_1 \) are in the fiber \(p^{-1}(x_1) \). Lift \(\sigma \) to a path \(\sigma_u \) in \(Y \) starting at \(u_1 \). Lift \(\sigma \) to a path \(\sigma_v \) starting at \(v_1 \). Let \(v_0 \in p^{-1}(x_0) \) denote the endpoint of \(\sigma_u \). Let \(u_0 \in p^{-1}(x_0) \) denote the endpoint of \(\sigma_v \). By hypothesis there exists a deck transformation \(\varphi \) so that \(\varphi(u_0) = v_0 \). Since a lift of \(\sigma \) is uniquely determined by either its initial or final endpoint it is clear that \(\varphi(\sigma_u) = \sigma_v \). But this implies that for the initial points \(\varphi(u_1) = v_1 \). Since \(u_1 \) and \(v_1 \) are arbitrary points in \(p^{-1}(x_1) \) it follows that \(\Gamma \) is transitive in \(p^{-1}(x_1) \).