Solutions to Homework 1, Math 534a

1. Let \(X \) and \(Y \) denote the \(x \) and \(y \) axes in \(\mathbb{R}^2 \). If \(X \cup Y \) is locally Euclidean then for a sufficiently small ball, \(B \), about \((0,0) \) there exists a homeomorphism,

\[\varphi : X \cup Y \cap B \rightarrow U, \]

where \(U \) is connected open subset of \(\mathbb{R}^n \). The complement of \((0,0) \) in \(X \cup Y \cap B \) has four connected components and the complement of \(\varphi(0,0) \) in \(U \) has \(n \geq 2 \) and \(2 \) components for \(n = 1 \). The homeomorphic image of a space with four connected components must have \(4 \) connected components. Thus no such homeomorphism can exist.

2. Write \((x, y) \in \mathbb{R}^{n+1} \) with \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R} \). The line through \(e_{n+1} = (0, 1) \) and \(p = (x, y) \in S^n \) has the parametric representation,

\[(1 - t)e_{n+1} + t(x, y). \]

The \(n + 1 \) coordinate on this line vanishes for \(t = \frac{1}{1 - y} \) so the image of stereographic projection from the north pole is,

\[\varphi(p) = \frac{x}{1 - y} \in \mathbb{R}^n. \]

The line through \(e_{n+1} \) and \((x, 0) \) is,

\[(1 - s)e_{n+1} + s(x, 0). \]

This is on the unit sphere if,

\[(1 - s)^2 + s^2|x|^2 = 1, \text{ or } s = \frac{2}{1 + |x|^2}. \]

(the other root \(s = 0 \) just gives the north pole). Thus,

\[\varphi^{-1}(x, 0) = \left(\frac{2x}{1 + |x|^2}, \frac{|x|^2 - 1}{|x|^2 + 1} \right). \]

It is easy to see that both \(\varphi : S^{n+1} \setminus \{e_{n+1}\} \rightarrow \mathbb{R}^n \) and \(\varphi^{-1} \) are continuous, so \(\varphi \) is a homeomorphism. Stereographic projection from the south pole \(-e_{n+1} \) is,

\[\psi(p) = \frac{x}{1 + y}. \]

Composing this with \(\varphi^{-1} \) we find,

\[\psi\varphi^{-1}(x) = \frac{2x}{1 + |x|^2}, \quad \frac{1 + |x|^2}{2|x|^2} = \frac{x}{|x|^2}. \]

3. Let \(A \) denote the antipodal map, \(Ax = -x \), acting on \(S^n \). Then \(A \) is continuous and since it is its own inverse it is a homeomorphism of \(S^n \). The topology of \(P^n \) is defined so that the map \(\pi : S^n \rightarrow P^n \) is continuous. It is also an open map. To see this, suppose that \(U \) is open in \(S^n \). Then \(\pi(U) \) is open in \(P^n \) if and only if,

\[\pi^{-1}(\pi(U)) = U \cup AU, \]

is open in \(S^n \). But \(AU \) is open since \(A \) is a homeomorphism. Thus \(\pi \) is an open map. Let \(H_k \) denote the closed hyperplane \(x_k = 0 \) in \(\mathbb{R}^{n+1} \). Then \(S^n \setminus H_k = V_k^+ \cup V_k^- \) where,

\[V_k^\pm = \{ x \in S^n : \pm x_k > 0 \}. \]

The map \(\pi : V_k^+ \rightarrow \pi V_k^+ \) is a continuous bijective open map and hence is a homeomorphism. The open sets \(\pi V_k^\pm \) for \(k = 1, \ldots, n+1 \), cover \(P^n \) since any point not in the union would have to have vanishing coordinates.
for all \(k \). To find a homeomorphism of \(\pi V_k^+ \) with an open set in \(\mathbb{R}^n \) it suffices to find a homeomorphism of \(V_k^+ \) with and open subset of \(\mathbb{R}^n \). Such a map is given by,

\[
V_k^+ \ni x \mapsto (x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1})
\]

with inverse,

\[
D^n \ni x \mapsto (x_1, \ldots, x_{k-1}, \sqrt{1 - |x|^2}, x_k, \ldots, x_n),
\]

where the square root is the positive choice. Thus \(P^n \) is locally Euclidean. Since every open set in \(P^n \) is \(\pi(U) \) for an open set \(U \) in \(S^n \) and \(S^n \) has a countable base it follows that \(P^n \) also has a countable base (just the image under \(\pi \) of the base in \(S^n \)). To see that \(P^n \) is Hausdorff suppose that \(p = \{ x, -x \} \) and \(q = \{ y, -y \} \) are two distinct points in \(P^n \). Let \(\epsilon > 0 \) be chosen less than,

\[
\frac{1}{2} \min\{|x - y|, |x + y|\},
\]

and define, \(B(x, \epsilon) = \{ u \in S^n : |u - x| < \epsilon \} \). Then the open sets \(\pi B(x, \epsilon) \) and \(\pi B(y, \epsilon) \) don’t intersect and so \(P^n \) is Hausdorff.

4. The map \(F(t) = \exp(2\pi it) \) from \([0,1]\) to \(S^1 \) is clearly continuous, and it induces a bijective map from \([0,1]/\sim\) to \(S^1 \) which we denote by \(f \). Evidently \(f \pi = F \). Thus \(f \) is continuous since \(f^{-1}(U) \) is open iff \(\pi^{-1}(f^{-1}(U)) = F^{-1}(U) \) is open and \(F \) is continuous. Since \([0,1]/\sim\) is the continuous image of a compact space it is compact. It is easy to see how to separate points in \([0,1]/\sim\) so this space is Hausdorff. Since \(f \) is continuous and bijective, \([0,1]/\sim\) is compact and Hausdorff, and \(S^1 \) is Hausdorff it follows that \(f \) is a homeomorphism.