Selected Definitions, Equations, and Theorems

Area Vector

The area vector of a flat, oriented surface is a vector \vec{A} such that

- The magnitude of \vec{A} is the area of the surface.
- The direction of \vec{A} is the direction of the orientation vector \vec{n}.

Flux Through a Surface - Constant vector field, flat surface

Suppose the velocity vector field, \vec{v}, of a fluid is constant and \vec{A} is the area vector of a flat surface. Then, the flux through the surface is given by $\vec{v} \cdot \vec{A}$.

Flux Through a Surface Given By a Graph

Suppose the surface S is the part of the graph $z = f(x,y)$ above a region R in the xy-plane, and suppose S is oriented upward. The flux of \vec{F} through S is

$$\int_S \vec{F} \cdot d\vec{A} = \int_R \vec{F}(x,y,f(x,y)) \cdot (-f_z\vec{i}, -f_y\vec{j}, \vec{k}) dx dy$$

Flux Through a Cylinder

The flux of \vec{F} through the cylindrical surface S, of radius R and oriented away from the z-axis, is given by

$$\int_S \vec{F} \cdot d\vec{A} = \int_R \vec{R}(R,\Theta,z) \cdot (\cos\Theta\vec{i} + \sin\Theta\vec{j}) Rd\Theta, $$

where T is the Θz-region corresponding to S.

Note: We must be careful using this formula if S is oriented along the x- or y-axis. The vector field should be put in terms of $(f(y,z), y, z)$ or $(x, f(x,y), z)$, respectively. The normal vectors should be given by $(\cos\Theta\vec{j} + \sin\Theta\vec{k})$ or $(\sin\Theta\vec{i} + \cos\Theta\vec{j})$ respectively. Remember the right hand rule!
Flux Through a Sphere
The flux of \vec{F} through the spherical surface S, with radius R and oriented away from the origin, is given by

$$\int_S \vec{F} \cdot d\vec{A} = \int_S \vec{F} \cdot \frac{\vec{r}}{||\vec{r}||} dA$$

$$= \int_T \vec{F}(R, \Theta, \phi) \cdot (\sin \phi \cos \Theta \vec{i} + \sin \phi \sin \Theta \vec{j} + \cos \phi \vec{k}) R^2 \sin \phi d\phi d\Theta,$$

where T is the $\Theta\phi$-region corresponding to S.

Note: Some students have asked what this \vec{r} vector is. The book and WebAssign both like to use it, but they didn’t introduce the notation very explicitly. It is what we might call the position vector, given by $\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$.

Divergence of a Vector Field
The divergence, also known as flux density, of a smooth valued vector field \vec{F}, written $\text{div} \, \vec{F}$, is a scalar-valued function determined as follows: If $\vec{F} = F_1\vec{i} + F_2\vec{j} + F_3\vec{k}$, then

$$\text{div} \, \vec{F}(x, y, z) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

The Divergence Theorem
If W is a solid region whose boundary S is a piecewise smooth surface, and if \vec{F} is a smooth vector field on an open region containing W and S, then

$$\int_S \vec{F} \cdot d\vec{A} = \int_W \text{div} \, \vec{F} \, dV,$$

where S is given the outward orientation. The Curl of a Vector Field
The curl of a smooth vector field \vec{F}, written $\text{curl} \, \vec{F}$, is the vector field given as follows: if $\vec{F} = F_1\vec{i} + F_2\vec{j} + F_3\vec{k}$, then

$$\text{curl} \, \vec{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \vec{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) \vec{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \vec{k}$$
Stokes’ Theorem
If S is a smooth oriented surface with piecewise smooth, oriented boundary C, and if \vec{F} is a smooth vector field on an open region containing S and C, then

$$\int_C \vec{F} \cdot d\vec{r} = \int_S \text{curl} \vec{F} \cdot d\vec{A}$$

Gradient and Curl
Recall that gradient fields are path independent. In particular, the circulation around a closed curve is always 0 on gradient fields, by the Fundamental Theorem of Calculus for Line Integrals. Thus, we see that $\text{curl} \text{grad} f = \vec{0}$. Thus, if $\vec{F} = \text{grad} f$, then $\text{curl} f = 0$. As it turns out, the converse is also true. This motivates the next concept.

The Curl Test for Vector Fields in 3–Space
Suppose \vec{F} is a smooth vector field on 3-space such that

- The domain of \vec{F} has the property that every closed curve in it can be contracted to a point in a smooth way, staying at all times within the domain.
- $\text{curl} \vec{F} = \vec{0}$

Then \vec{F} is path independent, and thus f is a gradient field.

Divergence Test for Vector Fields in 3–Space
Suppose \vec{F} is a smooth vector field on 3-space such that

- The domain of \vec{F} has the property that every closed surface in it is the boundary of a solid region completely contained in the domain.
- $\text{div} \vec{F} = 0$

Then \vec{F} is a curl field.