Beamer
(up up and away)

Kathleen Holm

program in Applied Math,
University of Arizona

8 Nov 2006, SWIG
Features of beamer

▶ Complicated, elegant templates
▶ Viewers can see the progress of the presentation
▶ Nice boxes for theorems, definitions, etc.
▶ With extra options and goodness comes complication
Features of beamer

- Complicated, elegant templates
- Viewers can see the progress of the presentation
- Nice boxes for theorems, definitions, etc.
- With extra options and goodness comes complication
Features of beamer

- Complicated, elegant templates
- Viewers can see the progress of the presentation
- Nice boxes for theorems, definitions, etc.
- With extra options and goodness comes complication
Features of beamer

- Complicated, elegant templates
- Viewers can see the progress of the presentation
- Nice boxes for theorems, definitions, etc.
- With extra options and goodness comes complication
.tex file Setup

```latex
\documentclass[ options ]{beamer}
\mode<presentation>{
  \usetheme[ options ]{ name }
  \usecolortheme[ options ]{ name }
}
\title{Title of Presentation}
\subtitle{}
\author{Author's name}
\institute{University of Arizona}
```

Kathleen Holm
program in Applied Math, University of Arizona
Beamer
.tex file Setup

\begin{document}
\begin{frame}
\titlepage
\end{frame}

\section*{Outline}
\begin{frame}
\tableofcontents
\end{frame}

\begin{frame}
\end{frame}

\end{frame}

...
.tex file Setup

\section{Name of Section}
\subsection{...}
\begin{frame}
\frametitle{slide’s title }
content of slide
\end{frame}
\section{Another Section}
...
\end{document}
Outline

Introduction

Overlays

Math

Conclusions

Kathleen Holm

program in Applied Math, University of Arizona

Beamer
First point
Second point, however...
 If this,
 then That!
Therefore, Third point,
Fourth point

Summary
The final point
Last thing to say
First point

Second point, however...
 ▶ If this,
 ▶ then That!

Therefore, Third point,

Fourth point

Summary

The final point

Last thing to say
First point
Second point, however...
 ▶ If this,
 ▶ then That!
Therefore, Third point,
Fourth point

Summary
The final point
Last thing to say
First point
Second point, however...
 - If this,
 - then That!
Therefore, Third point,
Fourth point

Summary
The final point
Last thing to say
First point

Second point, however...
 ▶ If this,
 ▶ then That!

Therefore, Third point,

Fourth point

Summary
 ▶ The final point
 ▶ Last thing to say
Creating overlays

\begin{itemize}
 \item First point.
 \pause
 \item Second point, however...
 \begin{itemize}
 \item If this,
 \pause
 \item then That!
 \end{itemize}
 \item Therefore, Third point,
 \pause
 \item Fourth point
\end{itemize}
...
Creating overlays

... Summary

\begin{itemize}
 \onslide % \onslide: on every slide
 \item The final point
 \pause
 \item Last thing to say
\end{itemize}
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary

- The final point
- Last thing to say
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary

- The final point
- Last thing to say
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary

- The final point
- Last thing to say
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary
- The final point
- Last thing to say
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary

- The final point
- Last thing to say
Outline

Introduction

Overlays

Math

Conclusions
Theorems, Definitions, Proofs,...

- Beamer supports environments to make professional looking theorems
- Also in a block style
- Unfortunately, not available for demonstration at this time
Theorems, Definitions, Proofs,...

- Beamer supports environments to make professional looking theorems
- Also in a block style
- Unfortunately, not available for demonstration at this time
example of what we want

- **Definition**
 The Riemann Zeta function is defined, for all $s \in \mathbb{C}$, by
 \[
 \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}}
 \]

- **Riemann’s Hypothesis**
 All non-trivial zeros of $\zeta(s)$ have real part one-half.

- **Sketch of proof**
example of what we want

- **Definition**
 The Riemann Zeta function is defined, for all \(s \in \mathbb{C} \), by
 \[
 \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}}
 \]

- **Riemann’s Hypothesis**
 All non-trivial zeros of \(\zeta(s) \) have real part one-half.

- **Sketch of proof**
example of what we want

- Definition
 The Riemann Zeta function is defined, for all \(s \in \mathbb{C} \), by
 \[
 \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}}
 \]

- Riemann’s Hypothesis
 All non-trivial zeros of \(\zeta(s) \) have real part one-half.

- Sketch of proof
Dividing the space with Columns

Bifurcation Diagram for

\[x_{n+1} = rx_n(1-x_n^2) \]
the Columns Environment

\begin{frame}
\begin{columns}[options] % opt for alignment, example: ’t’
\column{width of col 1}
stuff
\column{width of col 2}
stuff
...
\end{columns}
\end{frame}
Outline

Introduction

Overlays

Math

Conclusions
Conclusions

- Beamer has the most functionality, and changable options
- Something for everyone: simplicity vs complexity, visually boring vs stylish
- Will require some research on documentation and patience.
For more information:

To download, see examples, etc.:

http://latex-beamer.sourceforge.net/

For Documentation:
Search the web for beameruserguide.pdf