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We begin with a random variable X and we want to start looking at the random variable Y = g(X) = g◦X
where the function

g : R→ R.

The inverse image of a set A,

g−1(A) = {x ∈ R; g(x) ∈ A}.

In other words,
x ∈ g−1(A) if and only if g(x) ∈ A.

For example, if g(x) = x3, then g−1([1, 8]) = [1, 2]
For the singleton set A = {y}, we sometimes write g−1({y}) = g−1(y). For y = 0 and g(x) = sinx,

g−1(0) = {kπ; k ∈ Z}.
If g is a one-to-one function, then the inverse image of a singleton set is itself a singleton set. In this

case, the inverse image naturally defines an inverse function. For g(x) = x3, this inverse function is the cube
root. For g(x) = sinx or g(x) = x2 we must limit the domain to obtain an inverse function.

Exercise 1. The inverse image has the following properties:

• g−1(R) = R

• For any set A, g−1(Ac) = g−1(A)c

• For any collection of sets {Aλ;λ ∈ Λ},

g−1

(⋃
λ

Aλ

)
=
⋃
λ

g−1(A).

As a consequence the mapping

A 7→ P{g(X) ∈ A} = P{X ∈ g−1(A)}

satisfies the axioms of a probability. The associated probability µg(X) is called the distribution of g(X).
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1 Discrete Random Variables

For X a discrete random variable with probabiliity mass function fX , then the probability mass function fY
for Y = g(X) is easy to write.

fY (y) =
∑

x∈g−1(y)

fX(x).

Example 2. Let X be a uniform random variable on {1, 2, . . . n}, i. e., fX(x) = 1/n for each x in the state
space. Then Y = X + a is a uniform random variable on {a+ 1, 2, . . . a+ n}

Example 3. Let X be a uniform random variable on {−n,−n + 1, . . . , n− 1, n}. Then Y = |X| has mass
function

fY (y) =
{ 1

2n+1 if x = 0,
2

2n+1 if x 6= 0.

2 Continuous Random Variable

The easiest case for transformations of continuous random variables is the case of g one-to-one. We first
consider the case of g increasing on the range of the random variable X. In this case, g−1 is also an increasing
function.

To compute the cumulative distribution of Y = g(X) in terms of the cumulative distribution of X, note
that

FY (y) = P{Y ≤ y} = P{g(X) ≤ y} = P{X ≤ g−1(y)} = FX(g−1(y)).

Now use the chain rule to compute the density of Y

fY (y) = F ′Y (y) =
d

dy
FX(g−1(y)) = fX(g−1(y))

d

dy
g−1(y).

For g decreasing on the range of X,

FY (y) = P{Y ≤ y} = P{g(X) ≤ y} = P{X ≥ g−1(y)} = 1− FX(g−1(y)),

and the density

fY (y) = F ′Y (y) = − d

dy
FX(g−1(y)) = −fX(g−1(y))

d

dy
g−1(y).

For g decreasing, we also have g−1 decreasing and consequently the density of Y is indeed positive,
We can combine these two cases to obtain

fY (y) = fX(g−1(y))
∣∣∣∣ ddy g−1(y)

∣∣∣∣ .
Example 4. Let U be a uniform random variable on [0, 1] and let g(u) = 1− u. Then g−1(v) = 1− v, and
V = 1− U has density

fV (v) = fU (1− v)| − 1| = 1

on the interval [0, 1] and 0 otherwise.
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Example 5. Let X be a random variable that has a uniform density on [0, 1]. Its density

fX(x) =

 0 if x < 0,
1 if 0 ≤ x ≤ 1,
0 if x > 1.

Let g(x) = xp, p 6= 0. Then, the range of g is [0, 1] and g−1(y) = y1/p. If p > 0, then g is increasing and

d

dy
g−1(y) =


0 if y < 0,
1
py

1/p−1 if 0 ≤ y ≤ 1,
0 if y > 1.

This density is unbounded near zero whenever p > 1.
If p < 0, then g is decreasing. Its range is [1,∞), and

d

dy
g−1(y) =

{
0 if y < 1,
− 1
py

1/p−1 if y ≥ 1,

In this case, Y is a Pareto distribution with α = 1 and β = −1/p. We can obtain a Pareto distribution
with arbitrary α and β by taking

g(x) =
(x
α

)1/β

.

If the transform g is not one-to-one then special care is necessary to find the density of Y = g(X). For
example if we take g(x) = x2, then g−1(y) =

√
y.

Fy(y) = P{Y ≤ y} = P{X2 ≤ y} = P{−√y ≤ X ≤ √y} = FX(
√
y)− FX(−√y).

Thus,

fY (y) = fX(
√
y)
d

dy
(
√
y)− fX(−√y)

d

dy
(−√y)

=
1

2
√
y

(fX(
√
y) + fX(−√y))

If the density fX is symmetric about the origin, then

fy(y) =
1
√
y
fX(
√
y).

Example 6. A random variable Z is called a standard normal if its density is

φ(z) =
1√
2π

exp(−z
2

2
).

A calculus exercise yields

φ′(z) = − 1√
2π
z exp(−z

2

2
) = −zφ(z), φ′′(z) =

1√
2π

(z2 − 1) exp(−z
2

2
) = (z2 − 1)φ(z).

Thus, φ has a global maximum at z = 0, it is concave down if |z| < 1 and concave up for |z| > 1. This
show that the graph of φ has a bell shape.

Y = Z2 is called a χ2 (chi-square) random variable with one degree of freedom. Its density is

fY (y) =
1√
2πy

exp(−y
2

).
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3 The Probability Transform

Let X a continuous random variable whose distribution function FX is strictly increasing on the possible
values of X. Then FX has an inverse function.

Let U = FX(X), then for u ∈ [0, 1],

P{U ≤ u} = P{FX(X) ≤ u} = P{U ≤ F−1
X (u)} = FX(F−1

X (u)) = u.

In other words, U is a uniform random variable on [0, 1]. Most random number generators simulate
independent copies of this random variable. Consequently, we can simulate independent random variables
having distribution function FX by simulating U , a uniform random variable on [0, 1], and then taking

X = F−1
X (U).

Example 7. Let X be uniform on the interval [a, b], then

FX(x) =


0 if x < a,
x−a
b−a if a ≤ x ≤ b,
1 if x > b.

Then
u =

x− a
b− a

, (b− a)u+ a = x = F−1
X (u).

Example 8. Let T be an exponential random variable. Thus,

FT (t) =
{

0 if t < 0,
1− exp(−t/β) if t ≥ 0.

Then,

u = 1− exp(−t/β), exp(−t/β) = 1− u, t = − 1
β

log(1− u).

Recall that if U is a uniform random variable on [0, 1], then so is V = 1−U . Thus if V is a uniform random
variable on [0, 1], then

T = − 1
β

log V

is a random variable with distribution function FT .

Example 9. Because ∫ x

α

βαβ

tβ+1
dt = −αβt−β

∣∣∣x
α

= 1−
(α
x

)β
.

A Pareto random variable X has distribution function

FX(x) =
{

0 if x < α,

1−
(
α
x

)β if x ≥ α.

Now,

u = 1−
(α
x

)β
1− u =

(α
x

)β
, x =

α

(1− u)1/β
.
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As before if V = 1− U is a uniform random variable on [0, 1], then

X =
α

V 1/β

is a Pareto random variable with distribution function FX .
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