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We begin with a random variable X and we want to start looking at the random variable Y = g(X) = goX
where the function
g:R—R.

The inverse image of a set A,
971 (A) = {z € Ryg(z) € A}.

In other words,
x € g '(A) if and only if g(z) € A.

For example, if g(z) = x3, then g~1([1,8]) = [1, 2]

For the singleton set A = {y}, we sometimes write g~ '({y}) = g~ 1(y). For y = 0 and g(x) = sinx,
g 10) = {km; k € Z}.

If g is a one-to-one function, then the inverse image of a singleton set is itself a singleton set. In this
case, the inverse image naturally defines an inverse function. For g(x) = 3, this inverse function is the cube
root. For g(x) = sinx or g(z) = 22 we must limit the domain to obtain an inverse function.

Exercise 1. The inverse image has the following properties:
e g (R)=R
o For any set A, g7 1(A°) = g~ 1(A)°
e For any collection of sets {Ax; A € A},

9! (L/\JAA> =Js ',

A
As a consequence the mapping
A P{g(X) € A} = P{X € g7'(A)}

satisfies the axioms of a probability. The associated probability j4(x) is called the distribution of g(X).



1 Discrete Random Variables

For X a discrete random variable with probabiliity mass function fx, then the probability mass function fy
for Y = g(X) is easy to write.

fry) = Z fx (@).

z€g~ 1 (y)

Example 2. Let X be a uniform random variable on {1,2,...n}, i. e., fx(x) =1/n for each x in the state
space. Then'Y = X + a is a uniform random variable on {a +1,2,...a +n}

Example 3. Let X be a uniform random variable on {—n,—n+1,...,n—1,n}. Then Y = |X| has mass
function
= if =20
_ ) oyt ! J
() { 2 ifa 0.

2 Continuous Random Variable

The easiest case for transformations of continuous random variables is the case of g one-to-one. We first
consider the case of ¢ increasing on the range of the random variable X. In this case, g~ is also an increasing
function.
To compute the cumulative distribution of ¥ = g(X) in terms of the cumulative distribution of X, note
that
Fy(y) = P{Y <y} = P{g(X) <y} = P{X < g ()} = Fx(9~ ' (v))-

Now use the chain rule to compute the density of Y

fr(y) = Fi(y) = %Fx(g‘l(y)) - fx(g_l(y))d%g_l(y)-

For g decreasing on the range of X,
Fy(y)=P{Y <y} = P{g(X) <y} =P{X 2 g7 (y)} =1 - Fx(97'(v)),

and the density
) = Foy) = — L Fy(gi(y) = —fx<g*1<y>>di‘lyg*1<y>.

dy
For g decreasing, we also have g~ ! decreasing and consequently the density of Y is indeed positive,
We can combine these two cases to obtain

o) = Fxla— ) jyg-l(y)\ .

Example 4. Let U be a uniform random variable on [0,1] and let g(u) =1 —u. Then g~ (v) =1 — v, and
V =1—-U has density
fv()=fo(l-v)[-1=1

on the interval [0,1] and 0 otherwise.



Example 5. Let X be a random variable that has a uniform density on [0,1]. Its density

0 if z <0,
fx(x)= 1 ifo<z<1,
0 if x> 1.

Let g(x) = xP, p # 0. Then, the range of g is [0,1] and g~ (y) = y*/P. If p > 0, then g is increasing and

d 0 if y <0,
0 = /P sy <,
4 0 ify > 1.

This density is unbounded near zero whenever p > 1.
If p <0, then g is decreasing. Its range is [1,00), and

d . [0 ify <1,
@g (y) - _%yl/p—l if y > 17

In this case, Y is a Pareto distribution with o« =1 and 3 = —1/p. We can obtain a Pareto distribution

with arbitrary « and B by taking
x\1/8
gl@) = ()"

@
If the transform g is not one-to-one then special care is necessary to find the density of ¥ = g(X). For
example if we take g(z) = 2%, then g~ (y) = /¥.

Fy(y) = P{Y <y} = P{X* <y} = P{—\/y < X <y} = Fx(Vy) — Fx(=V)-

Thus,
) = (VB W)~ (Vi - (~VD)
= 5 Ux V) + Ix (Vi)
If the density fx is symmetric about the origin, then
1) = — £ (o).

VY
Example 6. A random variable Z is called a standard normal if its density is
1 22
z) = —exp(——).
8(:) = = exn(-)
A calculus exercise yields
2 1 2

/ _ ]' Z _ / _ < _
§(2) =~ gmrem(- ) = ), (0= = (2 - Dew(-5) = (- Dala)

Thus, ¢ has a global mazimum at z = 0, it is concave down if |z| < 1 and concave up for |z| > 1. This
show that the graph of ¢ has a bell shape.
Y = 72 is called a x? (chi-square) random variable with one degree of freedom. Its density is

) = —g=exp(=3).




3 The Probability Transform

Let X a continuous random variable whose distribution function Fx is strictly increasing on the possible
values of X. Then F'x has an inverse function.
Let U = Fx(X), then for u € [0,1],
P{U < u} = P{Fx(X) <u} = P{U < Fx'(u)} = Fx(Fx'(u)) = u
In other words, U is a uniform random variable on [0,1]. Most random number generators simulate
independent copies of this random variable. Consequently, we can simulate independent random variables

having distribution function Fx by simulating U, a uniform random variable on [0, 1], and then taking

X = F¢H(U).
Example 7. Let X be uniform on the interval [a,b], then

0 if z < a,
Fx(x) i ifa <z <b,
1 if > b.
Then
r—a

— (b—a)u+a=x=Fg(u).

Example 8. Let T be an exponential random variable. Thus,

FT(t):{O if t <0,

1—exp(—t/B) ift>0.
Then,

u=1—exp(—t/0), exp(—t/B)=1—u, t= f%log(l —u).

Recall that if U is a uniform random variable on [0,1], then so is V =1—U. Thus if V is a uniform random
variable on [0,1], then

1
g

T=-
is a random variable with distribution function Frp.

Example 9. Because

logV/

x
ﬁOé’B L a\ B
PO gt = —aPt P :1—( ) .
/atﬁﬂ

a z
A Pareto random variable X has distribution function

0 if z < a,
Fx<x>={

1-(2) ifz>a
Now,



As before if V.=1—U is a uniform random variable on [0, 1], then

(07

X =17

is a Pareto random variable with distribution function Fx.



