The University of Arizona
Please note that this event has ended!

Exponential mixing and limit theorems of quasi-periodically forced 2D stochastic Navier-Stokes Equations in the hypoelliptic setting

Analysis, Dynamics, and Applications Seminar

Exponential mixing and limit theorems of quasi-periodically forced 2D stochastic Navier-Stokes Equations in the hypoelliptic setting
Series: Analysis, Dynamics, and Applications Seminar
Location: Hybrid: Math, 402/Online
Presenter: Rongchang Liu, Department of Mathematics, University of Arizona

We consider the incompressible 2D Navier-Stokes equations on the torus driven by a deterministic time quasi-periodic force and a noise that is white in time and extremely degenerate in Fourier space. We show that the asymptotic statistical behavior is characterized by a uniquely ergodic and exponentially mixing quasi-periodic invariant measure. The result is true for any value of the viscosity and does not depend on the strength of the external forces.

By utilizing this quasi-periodic invariant measure, we are able show the strong law of large numbers and central limit theorem for the continuous time inhomogeneous solution processes. Estimates of the corresponding rate of convergence are also obtained, which is the same as in the time homogeneous case for the strong law of large numbers, while the convergence rate in the central limit theorem depends on the Diophantine approximation property on the quasi-periodic frequency and the mixing rate of the quasi-periodic invariant measure. We also prove the existence of a stable quasi-periodic solution in the laminar case (when the viscosity is large).

Place: Math, 402 and  
Zoom:
 https://arizona.zoom.us/j/89568982253    
Password:    applied