ALGEBRA QUALIFYING EXAMINATION

SPRING 2024

- 1A. For $x = (x_1, ..., x_n) \in \mathbb{R}^n$, let $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$. For a linear map $A \colon \mathbb{R}^n \to \mathbb{R}^n$, set $||A|| = \sup_{||x||=1} ||Ax||$ (the supremum is taken over all $x \in \mathbb{R}^n$ such that ||x|| = 1). Suppose that ||A|| < 1. Prove that A + I, where I is the identity map, is invertible.
- 1B. Let

$$M = \begin{pmatrix} 4 & 2 & -2 & 5 & -1 \\ 0 & 4 & 0 & 2 & 3 \\ 0 & 0 & 4 & 2 & 3 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

be a matrix over \mathbb{C} . Find the Jordan canonical form of M.

- 2A. Recall that the exponent of a finite group G is the minimal positive integer k such that $x^k = e$ for all $x \in G$. Suppose a group G has order 12 and exponent 12. Prove that G has a subgroup of index 2.
- 2B. Let G be a finite group, H a normal subgroup of G, and P a Sylow p-subgroup of G. Prove that $P \cap H$ is a Sylow p-subgroup of H.
- 3A. Suppose \mathbb{F} is a field, and $p \in \mathbb{F}[x]$ is a degree n polynomial which has n distinct roots in \mathbb{F} . Prove that the ring $\mathbb{F}[x]/(p)$ is isomorphic to $\mathbb{F}^n = \mathbb{F} \oplus \cdots \oplus \mathbb{F}$.
- 3B. Let R be a commutative ring with 1. Prove that if R[x] is a PID, then R is a field.
- 4A. Consider the polynomial $p(x) = x^4 3x^2 + 3$.
 - (a) Let $\pm \alpha, \pm \beta$ be its roots. Calculate $\alpha^2 \beta^2 (\alpha^2 \beta^2)^2$.
 - (b) Prove that the Galois group of p(x) over $\mathbb{Q}[\sqrt{-1}]$ is cyclic.
- 4B. Let $K = F(\alpha)$ be a Galois extension of F, with $\alpha \notin F$. Suppose there exists $\sigma \in \operatorname{Gal}(K/F)$ such that $\sigma(\alpha) = \alpha^{-1}$. Prove that the degree of the extension [K : F] is even and $[F(\alpha + \alpha^{-1}) : F] = \frac{1}{2}[K : F]$.
- 5A. Find invariant factors of the \mathbb{Z} -module $M = (\mathbb{Z}^2 \oplus \mathbb{Z}_6) \otimes_{\mathbb{Z}} (\mathbb{Z} \oplus \mathbb{Z}_4)$, i.e. integers $d_1 \mid \cdots \mid d_n$ such that $M \simeq \mathbb{Z}/(d_1) \oplus \cdots \oplus \mathbb{Z}/(d_n)$.
- 5B. Let R be a commutative ring, and M be a Noetherian R-module. Suppose $f: M \to M$ is a surjective homomorphism. Prove that f is an isomorphism.