ANALYSIS QUALIFYING EXAM

AUGUST 2021

Please show all of your work. GOOD LUCK!

(1) Evaluate

$$\int_0^1 \left(\frac{\ln(1-x)}{x^2} + \frac{1}{x} \right) dx.$$

Justify your steps. Hint: You may find using Taylor series useful.

(2) Let f be a real valued continuously differentiable function on the real line. Suppose that f' is bounded, f(0) = 0, and f'(0) = 5. Find

$$\lim_{n \to \infty} n^2 \int_0^\infty f(x) e^{-n^2 x^2} dx.$$

Justify all steps.

(3) Let $f \in L^2([a,b])$ be real-valued. Show that

$$\sqrt{\left(\int_{a}^{b} f(x)^{2} \cos(x) \, dx\right)^{2} + \left(\int_{a}^{b} f(x)^{2} \sin(x) \, dx\right)^{2}} \le \int_{a}^{b} f(x)^{2} \, dx.$$

Hint: One may, for example, write $f(x)^2 \cos(x) = f(x) \cdot f(x) \cos(x)$.

(4) Let (X, \mathcal{M}, μ) be a finite measure space, and let f(x) be a measurable function on X. Suppose that

$$m(t) = \mu\{x: |f(x)| > t\} = \frac{1}{t^4}$$

for t > 1. Find all values of $p, 1 \le p \le \infty$ such that $f(x) \in L^p(X, \mu)$.

(5) Let $\{f_n\}_{n=1}^{\infty}$ be an orthonormal basis of $L^2([0,1])$. For each p>0 and any $t\in[0,1]$, calculate

$$\sum_{n=1}^{\infty} \left| \int_0^t s^p f_n(s) \, ds \right|^2 \, .$$

(6) Let $f(x) = (\sin x)/x$. Define a measure μ on \mathbb{R} :

$$\mu(X) = m(\{x: \ f(x) \in X\})$$

1

for every Borel set X. Here m is the Lesbegue measure. Prove that μ is absolutely continuous with respect to m and find $(d\mu/dm)(3/\pi)$. Here $d\mu/dm$ is the Radon–Nikodym derivative. Hint. $f(\pi/6) = 3/\pi$.