REAL ANALYSIS QUALIFYING EXAM, AUGUST 2022

Please show all of your work and state any basic results from analysis which you use.

- 1. For subsets A and B of \mathbb{R}^2 , define $A+B=\{x+y|x\in A \text{ and }y\in B\}$. Prove the following statements:
 - (a) If A is closed and B is open in \mathbb{R}^2 , then A+B is open.
 - (b) If A is closed and B is compact, then A + B is closed.
- 2. Define $F(\lambda) = \int_1^\infty \frac{e^{-\lambda t}}{t} dt$ for all $\lambda > 0$. Show that, for all $0 < \alpha \le 1$, there is a constant $C_\alpha < \infty$ such that $F(\lambda) \le C_\alpha \lambda^{-\alpha}$ for all $\lambda > 0$, but there is no $C < \infty$ such that $F(\lambda) \le C$ for all $\lambda > 0$.
- 3. Suppose that F(x) is a right continuous function of bounded variation on \mathbb{R} , μ is the corresponding complex measure, and $\phi(x)$ is a smooth function on \mathbb{R} having compact support. Show that

$$-\int_{\mathbb{R}} \phi'(x)F(x)dx = \int_{\mathbb{R}} \phi(y)d\mu(y)$$

Under what conditions is

$$-\int_{\mathbb{R}} \phi'(x)F(x)dx = \int_{\mathbb{R}} \phi(y)F'(y)dy$$

Clarifications: μ and F are related by $\mu((-\infty, b]) = F(b)$. In the second displayed line, F'(y) denotes the pointwise derivative (as in calculus), which is known to exist for Lebesgue almost every y.

- 4. Determine whether the following statements are true or false and justify your answer (a picture and brief explanation is acceptable).
- (a) $C(\mathbb{R}) \cap L^1(\mathbb{R}, dx) \subset C_0(\mathbb{R})$, i.e. a continuous Lebesgue integrable function vanishes at infinity.
 - (b) $L^1 \cap L^\infty(\mathbb{R}, dx) \subset L^2(\mathbb{R}, dx)$.
- 5. Let $\mathcal{P} \subset C([0,1])$ denotes the subspace of polynomials. Determine whether the following linear functionals have continuous extensions to C([0,1]):

1

- (a) $\Phi(p) = a_0$
- (b) $\Psi(p) = a_0 + a_1$

where
$$p(x) = a_0 + a_1 x + ... + a_n x^n$$
.

6. Show that the Fourier transform of a finite measure is a uniformly continuous function on \mathbb{R}^n (with the Euclidean metric).