ALGEBRA QUALIFYING EXAMINATION

AUGUST 2024

Do either one of nA or nB for $1 \le n \le 5$. Justify all your answers.

1A. Put

Are A and B similar? Explain why.

- 1B. Suppose V is a finite-dimensional vector space over \mathbb{R} , and let $\phi: V \to V$ be a linear operator such that $\phi^3 = \phi$. Let $V_{\lambda} = \{v \in V \mid \phi(v) = \lambda v\}$ be the λ -eigenspace of ϕ . Prove that $V = V_0 \oplus V_1 \oplus V_{-1}$.
- 2A. Let A be an abelian group. Denote by 2A the subgroup generated by elements of the form $2a, a \in A$.
 - (1) Prove that if A is finitely generated, then A/2A is finite.
 - (2) Give an example to show that if A/2A is finite, A itself might not be finitely generated. You need to justify your claims.
- 2B. Suppose G is a simple group of order 2025. Prove that G has a subgroup of order 5 which is contained in at least two subgroups of order 25.
- 3A. Consider the ring $\mathbb{C}[x,y]$.
 - (1) Show that $\mathfrak{m} = (x, y)$ is a maximal ideal and it is not principal.
 - (2) What is the dimension of $\mathfrak{m}/\mathfrak{m}^2$ as a vector space over \mathbb{C} ? You need to justify your claims. (Note: the notation \mathfrak{m}^2 means the ideal generated by elements of the form ab where $a, b \in \mathfrak{m}$.)
- 3B. Prove that $\mathbb{Z}[\sqrt{-7}]$ is not a PID.
- 4A. (1) Show that the extension $\mathbb{Q}(\sqrt[4]{5})/\mathbb{Q}$ is not Galois.
 - (2) Compute the Galois group of $x^4 5$ over $\mathbb{Q}(\sqrt{-1})$.
 - (3) Show that the Galois group of $x^4 5$ over \mathbb{Q} is not abelian. (Hint: find two non-commuting elements; you do not need to actually compute this Galois group.)
- 4B. Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$ is a Galois extension with cyclic Galois group. (Hint: Show that the minimal polynomial of $\sqrt{2+\sqrt{2}}$ over \mathbb{Q} splits over $\mathbb{Q}(\sqrt{2+\sqrt{2}})$.)

1

- 5A. Let R be a commutative unital ring. Let M, N and P be R-modules, and $f: M \to N$ be a homomorphism.
 - (1) Show that there is a unique homomorphism $f \otimes 1_P : M \otimes_R P \to N \otimes_R P$ which sends $m \otimes p$ to $f(m) \otimes p$, for all $m \in M$ and $p \in P$.
 - (2) Show that if f is surjective, then so is $f \otimes 1_P$.
 - (3) Give an example of R, M, N, P and f as above, such that f is injective but $f \otimes 1_P$ is not. You do not need to give a detailed justification, but you need to clearly state what your R, M, N, P and f are and what $M \otimes_R P$, $N \otimes_R P$ and $f \otimes 1_P$ are.
- 5B. Endow the Abelian group $\mathbb{R} \oplus \mathbb{R}$ with a ring structure by setting

$$(a, a')(b, b') = (ab, ab' + a'b).$$

- (1) Prove that the map $a_0 + a_1x + \cdots \mapsto (a_0, a_1)$ is a surjective ring homomorphism $\mathbb{R}[x] \to \mathbb{R} \oplus \mathbb{R}$.
- (2) Using the result of the previous part or otherwise, prove that any finitely generated module over $\mathbb{R} \oplus \mathbb{R}$ is a direct sum of cyclic modules.