Analysis Qualifying Exam — August 2024

The University of Arizona

Directions: Read carefully and provide complete, well written, well explained and organized answers. State any basic results or major theorems used, verifying their applicability.

1. Let (M,d) be a metric space. A function $f:M\to\mathbb{R}$ is called Lipschitz if there exists a constant C>0 such that

$$|f(x) - f(y)| \le Cd(x, y)$$

for every $x, y \in M$.

Give a counter example for the following statement:

If $\{f_n\}_{n\geq 0}$ is a sequence of Lipschitz functions on M that converges uniformly to a function f, then f is Lipschitz.

2. Find the following limit

$$\lim_{n\to\infty} \sqrt{n} \int_0^1 (1-x^2)^n dx.$$

Justify all steps.

3. Let (X, \mathcal{A}, μ) be a measure space. If f is a non-negative, μ -integrable function, then

$$\nu(A) := \int_{A} f \, d\mu$$

is a measure over \mathcal{A} . Prove that if g is a non-negative function that is integrable with respect to ν , then fg is integrable with respect to μ and

$$\int g \, d\nu = \int f g \, d\mu.$$

- 4. Suppose that f is monotone, absolutely continuous on [0,1]; for $A \subset [0,1]$ we let $f(A) = \{f(x) : x \in A\}$. Prove that if A has Lebesgue measure 0, then f(A) has Lebesgue measure 0.
- 5. Suppose that p > 1 and q are Hölder conjugates. Let f be an absolutely continuous function on [0,1] with $f' \in L^p$, and f(0) = 0. Prove that if $g \in L^q$ then

$$\int_0^1 |fg| dx \le (1/p)^{1/p} ||f'||_p ||g||_q.$$

6. Suppose that H is a separable Hilbert space, $\{e_n\}_{n\geq 0}$ is an orthonormal basis for H, and $\{f_n\}_{n\geq 0}$ is an orthonormal set such that $\sum_{n=1}^{\infty}\|e_n-f_n\|^2<1$. Prove that $\{f_n\}_{n\geq 0}$ is a basis.

Hint. Suppose that there exists a unit vector that is orthogonal to all vectors f_n . Show that this leads to a contradiction.

1