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What'’s relevant in molecular modeling?

Cross-Section of an Animal Cell

(bottom image: David Goodsell)
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What'’s relevant in neuronal modeling?

(right image: Chandrajit Bajaj)
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at’s relevant in diffusion
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Mathematics used in biological models

N
AX=Db
) Geometry Linear algebra
Analysis Toool N ol analvi
opolo umerical analysis
PDEs pology y

Combinatorics

Mathematics helps answer distinguish relevant and irrelevant features of a model:
@ Does the PDE have a unique solution, bounded in some norm?
@ Does the domain discretization affect the quality of the approximate solution?
@ |s the solution method optimally efficient? (e.g. Why isn’t my code working?)

Focus of my research in these areas: the Finite Element Method
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0 Introduction to the Finite Element Method
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The Finite Element Method: 1D

The finite element method is a way to numerically approximate the solution to PDEs.J

(Example worked out on board)
Ex: The 1D Laplace equation: find u(x) € U (dim U = o) s.t.

—u"(x) =f(x) on]Ja,b]
u(a) =0,
u(b)=0

Weak form: find u(x) € U (dim U = o) s.t.
b b
/ U (X)V (x) dx :/ FX)v(x) dx, eV (dimV = o)
a a
Discrete form: find up(x) € Uy (dim Uy < o0) s.t.

/b Un(x)vi(x) dx = /b f(X)vh(x) dx, Yvh € Vi (dimV, < o0)
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The Finite Element Method: 1D

(Example worked out on board)
Suppose up(x) can be written as linear combination of V;, elements:

Uun(x) = > uvi(x)

vieVy

The discrete form becomes: find coefficients u; € R such that
b b
Z/ uv/ (x)v/ (x) dx:/ f(X)vi(x) dx, Yvye Vi (dimVy < o0)
i a a

Written as a linear system:
[Al; [ul;=[f];, Yve Vs

With some functional analysis we can prove: 3 C > 0, independent of h, s.t.

2
U — Unll 1 (o < Chlulieq ) Yu e H(Q)
—_———— ———— ——
error between cnts bound in terms of holds for any u with
and discrete solution 2nd order osc. of u bounded 2nd derivs.

where h = maximum width of elements use in discretization.
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e Tensor product finite element methods
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Tensor product finite element methods

Generalizing the 1st order, 1D method

Goal: Efficient, accurate approximation of the solution to a PDE over Q c R” for
arbitrary dimension n and arbitrary rate of convergence r.

Standard O(h") tensor product finite element method in R":
— Mesh Q by n-dimensional cubes of side length h.
— Set up a linear system involving (r + 1)" degrees of freedom (DoFs) per cube.
— For unknown continuous solution u and computed discrete approximation up:
lu = Unllyr gy < CH Ul yririqy, VU E H™Y(Q).

approximation error optimal error bound

Implementation requires a clear characterization of the isomorphisms:

—_
=,
o

{ xy® } PR { $i(X)¥i(y) } s

1<ij<4

o,
o

o
~“¢ Ne “e 4
> Yo o ¢
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&,

o

31 11
monomials — basis functions +— domain points
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Cubic Hermite Geometric Decomposition (1D, r=3)

{17X7X27X3} A {7/)177/’277,03»1/14} S .1_.2_.5_.4
approxim. geometry
monomials —> basis functions —> domain points
a2 3
Cubic :f)‘ 1X _3)2‘Xj f;
Hermite Basis 1/}2 = > s
on [0, 1] 8 X
s 3x* —2x
. 1 0 0 1
. . o1 -1 1
Approximation: x" = Zs,,,'z/;,-, forr=0,1,2,3, where [¢ ;] = 00 -2 1
= 00 -3 1

Geometry: If a(x) is a cubic polynomial then:

a(X):@¢1+ i’\(ﬁ)llﬁz— i’(\}l¢3+:’1’£’14)1/14

value derivative derivative value
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Tensor Product Polynomials

We can use our 1D Hermite functions to make 2D Hermite functions:

X =
¥1(x) X P1(y) =
X =
P1(x) X p2(y) = P12(x, y)

Andrew Gillette - U. Arizona Finite Element Research Problems RTG Talk - Jan 2014



Cubic Hermite Geometric Decomposition (2D, r=3)

14 24 34 14
x"y$ (X)) SRR S Pt S
0<r,s<3 1<i,j<4
12. 22. 32. 42|
. . . 11 21? 30 K
monomials <y basis functions +— domain points

4 4
Approximation: xy® => " "¢, g5y, for0<r,s<3, & asin1D.

Geometry:

a(x,y) = al(o,0) Y11 + 9xal(0,0) Y21 + Iy al(0,0) Y12 + IxIya|(0,0) Y22 + - - -
N—— N—— N—— N——
value 1st deriv. 1st deriv. 2nd deriv.
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Cubic Hermite Geometric Decomposition (3D, r=3)

x"yszt Li(X)w;(¥)vk(2)
0 S r,s, t S 3 1 S i7j7 k S 4 Ny W.uz'm 2n® 315 115]
monomials +—  basis functions +— domain points
4 4
Approximation: x'y°z' =3 "> " "e e jerxth, for0<r,s,t<3, ¢ asin1D.
i=1 j=1 k=1

Geometry: Contours of level sets of the basis functions:
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Tensor Product FEM Summary

O(h) o(?) o(r°) | o(h")

4 9 16 (r+1)

Xryszt Xryszt Xryszt Xryszt
{ r,s,t<1 } { r,s,t<2 } { r,s,t<3 } { r,s,t<r }

8 27 64 (r+1)>» <+ alot!
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e The minimal approximation question

Andrew Gillette - U. Arizona Finite Element Research Problems RTG Talk - Jan 2014 17/36



How many functions are minimally needed?

For unknown continuous solution u and computed discrete approximation up:

|l = tnll 1@y < CH |Ulyrirgy YU € HH(Q).

approximation error optimal error bound

The proof of the above estimate relies on two properties of finite elements:

Continuity: Adjacent elements agree on order r polynomials their shared face

Approximation: Basis functions on each element span all degree r monomials

{1, %, ¥, X, y%, xy}
—_————

required for
O(h?) approximation
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—

. — {1,y X5 Y2 xy, Py xy? xPyPY

standard polynomials in

O(K?) tensor product method
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@ Characterization of the ‘minimal’ approximation question for any order
@ Intriguing mathematical difficulties and recent ‘serendipitous’ solutions
@ Benefits of serendipity solutions to biological modeling

@ Open research problems for an RTG study
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e Serendipity finite element methods
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Serendipity Elements

9 16 25 36 49
O(H) o(h*) O(h*) o(h°) O(h°)
8 12 17 23 30

O(h") tensor product method :  r? 4+ 2r + 1 dots

> : -
Forr > 4 on squares O(h") serendipity method: 1 (r® +3r+6) dots

U = Unll @) < CH |Ulpret () VU E H™(Q).

approximation error optimal error bound
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Serendipity Elements

o(?) o(h°) o(h*) o(h°) O(h°)
8 12 17 23 30

— Why r + 1 dots per edge?
Ensures continuity between adjacent elements.

— Why interior dots only for r > 47
Consider, e.g. p(x,y) == (1 +x)(1 —x)(1 —y)(1 + y)
Observe p is a degree 4 polynomial but p = 0 on 3([—1, 1]?).

— How can we recover tensor product-like structure. . .
... without a tensor product structure?

Andrew Gillette - U. Arizona Finite Element Research Problems RTG Talk - Jan 2014 22/36



Mathematical Challenges More Precisely

O(h) o(h°) O(h*) o(h) O(h®)
8 12 17 23 30

Goal: Construct basis functions for serendipity elements satisfying the following:

@ Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements.

@ Tensor product structure: Write as linear combinations of standard tensor
product functions.

@ Hierarchical: Generalize to methods on n-cubes for any n > 2, allowing
restrictions to lower-dimensional faces.
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Which monomials do we need?

3
Se(ri;rzdipity total degree at most cubic
3 . .
clement: (req. for O(h®) approximation)

{1,902, %, xy, X2, y%, Py, xy? Xy, xy® P y2 xyP xPyR Py

at most cubic in each variable
(used in O(h®) tensor product methods)

We need an intermediate set of 12 monomials!
The superlinear degree of a polynomial ignores linearly-appearing variables.

Example: sldeg(xy®) =3, eventhough deg(xy®) =4

n
Definition: sldeg(x{" x;% - - - x;") 1= (Z e,-) —#{e : =1}
i=1

2 2 3 .3 .2 2 3 3 . 2.,2 32 23 33
{1’X7y7x?y’xy7x 7y>Xanany7Xy 7Xy7Xy7Xy’Xy}
superlinear degree at most 3 (dim=12)

ARNOLD, AWANOU The serendipity family of finite elements, Found. Comp. Math, 2011.
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Superlinear polynomials form a lower set

Given a monomial ~ x® := x{"" - .- x79,

associate the multi-index of d non-negative integers o = (a1, s, ..., aq) € Ng.

d

Define the superlinear norm of a as  |aspin == » _
j=1
aj22

so that the superlinear multi indices are S, = {a eNg: || spriin < r} .

Observe that S; has a partial ordering p < ameans pu; < a;.

Thus S; is a lower set, meaning ‘a eSS, p<a = pues

We can thus apply the following recent result.

Theorem (Dyn and Floater, 2013)

Fix a lower set L ¢ N¢ and points z, € R? for all « € L. For any sufficiently smooth
d-variate real function f, there is a unique polynomial p € span{x® : « € L} that
interpolates f at the points z,, with partial derivative interpolation for repeated z,
values.

DYN AND FLOATER Multivariate polynomial interpolation on lower sets, J. Approx. Th., to appear.
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Partitioning and reordering the multi-indices

By a judicious choice of the interpolation points z, = (X;, y;), we recover the
dimensionality associations of the degrees of freedom of serendipity elements.

[ ] [ ]
® ®
[ ]

LN J
[ ] [ ]
® ®

The order 5 serendipity
element, with degrees of
freedom color-coded by
dimensionality.
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Ys

Ya

Ys

Y2

hn

The lower set Ss, with
equivalent color coding.

Finite Element Research Problems

Y1 A L A @
Ys @ [ ]
Y1 @ [ ]
Y @ [ ) [ ]
20 [ ] [ ] [ ]
Yo @ A A4 L

Ty T2 T3 Ty x5 Ty

The lower set S5, with
domain points z,
reordered.
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Symmetrizing the multi-indices

By collecting the re-ordered interpolation points z, = (X;, y;), at midpoints of the
associated face, we recover the dimensionality associations of the degrees of freedom
of serendipity elements.

Y1 *—eo—o * h ®

Us @ ®
Yo,

Yr @ ® }/2,
o ) ® [
Ya, =

Y3 @ [ ) [ ] Ys

e [ ] [} ®

Y% *—o—o—o Yo o -

Ty Ty T3 T4 x5 T Zo T2, T3, Ty, T 1

A symmetric reordering, with multiplicity. The

The lower set S, with associated interpolant recovers values at dots, three
domain points z., partial derivatives at edge midpoints, and two partial
reordered. derivatives at the face midpoint.
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2D symmetric serendipity elements

Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements. J

L] e [ ] [ ] (@l [ ] ll
O(H®) O(H) ) O(H)
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Tensor product structure

The Dyn-Floater interpolation scheme is expressed in terms of tensor product
interpolation over ‘maximal blocks’ in the set using an inclusion-exclusion formula.

T

Put differently, the linear combination is the sum over all blocks
within the lower set with coefficients determined as follows:

coefficient — Place the coefficient calculator at the extremal block corner.
calculator — Add up all values appearing in the lower set.
— The coefficient for the block is the value of the sum.

Hence: black dots — +1; white dots — -1; others — 0.
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Tensor product structure

Thus, using our symmetric approach, each maximal block in the lower set becomes a
standard tensor-product interpolant.

hn & hn &
Ys
Ya Y2,
Ua. _
;“ ¢ ° [
5 s U -
Ys @ [ ] [ ]
Ys
Y2 @ [ ] [ ]
Yo & Yo @
To T2 Z3 T4 5 z Lo L2, X3, Ly, T 1
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Linear combination of tensor products

Tensor product structure: Write basis functions as linear combinations of standard
tensor product functions. J
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3D elements

Hierarchical: Generalize to methods on n-cubes for any n > 2, allowing restrictions to
lower-dimensional faces.

J

ke @I

Andrew Gillette - U. Arizona

Finite Element Research Problems

RTG Talk - Jan 2014



3d coefficient computation

Lower sets for superlinear polynomials in 3 variables:

l.I IL .'!'~
L

Decomposition into a linear combination of tensor product
interpolants works the same as in 2D, using the 3D coefficient
calculator at left. (Blue — +1; Orange — -1).

FLOATER, GILLETTE Nodal basis functions for the serendipity family of
finite elements, in preparation.
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Brief aside: historical quiz

What video game is shown on the right?
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e RTG Project Ideas
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RTG Project ideas

Email me if you'd like a copy of the slides with the project ideas. )
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