Derivation of Simpson's Rule Math 129

1. The form of Simpson's Rule given in the book is

$$
\operatorname{SIMP}(n)=\frac{1}{3}[2 \operatorname{MID}(n)+\operatorname{TRAP}(n)]
$$

But

$$
\operatorname{TRAP}(n)=[\operatorname{LEFT}(n)+\operatorname{RIGHT}(n)] / 2
$$

$\operatorname{So} \operatorname{SIMP}(n)$ is really

$$
\frac{1}{3}[(\operatorname{LEFT}(n)+\operatorname{RIGHT}(n)) / 2+2 \operatorname{MID}(n)]
$$

or

$$
\frac{1}{3}(\operatorname{LEFT}(n) / 2+\operatorname{RIGHT}(n) / 2+2 \operatorname{MID}(n))
$$

2. So this suggests a refinement of the Riemann sum that approximates

$$
\int_{a}^{b} f(x) d x
$$

We will want to use three points in each subinterval of the partition for the Riemann Sum, the left and right-hand endpoints, and the midpoint. To use all three points we will fit a parabola through them. So the first step is to find the area under a piece of a parabola in terms of these three points. We shall assault this problem in steps.
3. The book claims that if $f(x)$ is quadratic, then this formula applies:

$$
\int_{a}^{b} f(x) d x=\frac{h}{3}\left(\frac{f(a)}{2}+2 f(m)+\frac{f(b)}{2}\right)
$$

where $h=b-a$ and the midpoint is $m=(b-a) / 2$. Let us verify this, and then apply it to the parabola approximates the function over one strip in the Riemann Sum.
4. A general parabola looks like $A x^{2}+B x+C 1$ and we need to get

$$
\int_{a}^{b} A x^{2}+B x+C 1 d x=A \int_{a}^{b} x^{2} d x+B \int_{a}^{b} x d x+C \int_{a}^{b} 1 d x
$$

a. If $f(x)=1$ then

$$
\int_{a}^{b} f(x) d x=(b-a)
$$

and

$$
\frac{h}{3}\left(\frac{f(a)}{2}+2 f(m)+\frac{f(b)}{2}\right)=\frac{(b-a)}{3}\left(\frac{1}{2}+2+\frac{1}{2}\right)
$$

which is $(b-a)$, so the formula works for $f(x)=1$.
b. We do the same for $f(x)=x$.

$$
\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}
$$

and

$$
\begin{aligned}
\frac{h}{3}\left(\frac{f(a)}{2}+2 f(m)+\frac{f(b)}{2}\right) & =\frac{b-a}{3}\left(\frac{a}{2}+2 \frac{a+b}{2}+\frac{b}{2}\right) \\
& =\frac{b-a}{3}\left(\frac{a}{2}+a+b+\frac{b}{2}\right) \\
& =\frac{b-a}{3}\left(\frac{3}{2} a+\frac{3}{2} b\right) \\
& =\frac{(b-a)(b+a)}{2} \\
& =\frac{b^{2}-a^{2}}{2}
\end{aligned}
$$

and so the formula works for $f(x)=x$.
c. For $f(x)=x^{2}$,

$$
\int_{a}^{b} f(x) d x=\frac{b^{3}-a^{3}}{3}
$$

and

$$
\frac{h}{3}\left(\frac{f(a)}{2}+2 f(m)+\frac{f(b)}{2}\right)=\frac{b-a}{3}\left(\frac{a^{2}}{2}+2\left(\frac{a+b}{2}\right)^{2}+\frac{b^{2}}{2}\right)
$$

$$
\begin{aligned}
& =\frac{b-a}{3}\left(\frac{a^{2}}{2}+\frac{a^{2}+2 a b+b^{2}}{2}+\frac{b^{2}}{2}\right) \\
& =\frac{b-a}{3}\left(\frac{2 a^{2}+2 a b+2 b^{2}}{2}\right) \\
& =\frac{b-a}{3}\left(a^{2}+a b+b^{2}\right) \\
& =\frac{b^{3}-a^{3}}{3}
\end{aligned}
$$

and again it works.
5. For our general quadratic, $f(x)=A x^{2}+B x+C$, we have

$$
\int_{a}^{b} A x^{2}+B x+C 1 d x=A \int_{a}^{b} x^{2} d x+B \int_{a}^{b} x d x+C \int_{a}^{b} 1 d x
$$

and using the above results we get

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =A \frac{h}{3}\left(\frac{a^{2}}{2}+2 m^{2}+\frac{b^{2}}{2}\right)+B \frac{h}{3}\left(\frac{a}{2}+2 m+\frac{b}{2}\right)+C \frac{h}{3}(3) \\
& =\frac{h}{3}\left(\frac{A a^{2}+B a+C}{2}+2\left(A m^{2}+B m+C\right)+\frac{A b^{2}+B b+C}{2}\right) \\
& =\frac{h}{3}\left(\frac{f(a)}{2}+2 f(m)+\frac{f(b)}{2}\right)
\end{aligned}
$$

and we get the same formula for the general quadratic that we got for the pieces.
6. Now we are home free. To get the Riemann sum for

$$
\int_{a}^{b} f(x) d x
$$

using the quadratic approximation, assuming $f(x)$ is any integrable function, we partition the interval $[a, b]$, and let $q_{i}(x)$ be the quadratic approximation to $f(x)$ on the subinterval $\left[x_{i}, x_{i+1}\right]$. Let m_{i} be the midpoint of this subinterval, and $\Delta x=h=\left(x_{i+1}-x_{i}\right)$. Our q_{i} passes through the endpoints and the midpoint of the subinterval. Then

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x \approx \int_{x_{i}}^{x_{i+1}} q_{i}(x) d x
$$

and using the results above on this second approximating integral we get

$$
\frac{\Delta x}{3}\left(\frac{q_{i}\left(x_{i}\right)}{2}+2 q_{i}\left(m_{i}\right)+\frac{q_{i}\left(x_{i+1}\right)}{2}\right)
$$

Now we sum over all the subintervals

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} q_{i}(x) d x=\sum_{i=0}^{n-1} \frac{\Delta x}{3}\left(\frac{q_{i}\left(x_{i}\right)}{2}+2 q_{i}\left(m_{i}\right)+\frac{q_{i}\left(x_{i+1}\right)}{2}\right)
$$

Splitting the sum into two parts we get,

$$
\begin{aligned}
& \frac{2}{3} \sum_{i=0}^{n-1} q_{i}\left(m_{i}\right) \Delta x+\frac{1}{3} \sum_{i=0}^{n-1}\left(\frac{q_{i}\left(x_{i}\right)}{2}+\frac{q_{i}\left(x_{i+1}\right.}{2}\right) \Delta x \\
= & \frac{2}{3} \operatorname{MID}(n)+\frac{1}{3} \operatorname{TRAP}(n) \\
= & \frac{1}{3}[2 \operatorname{MID}(n)+\operatorname{TRAP}(n)] \\
= & \operatorname{SIMP}(n)
\end{aligned}
$$

as was to be shown.
7. Who's afraid of a little algebra??

