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The following questions are addressed: How did the symmetries which lead to fractional invariants arise?
Can one start with systems with much simpler symmetries, say space translation and rotation, and, by
stressing such systems, give rise via phase transitions to objects with natural fractional invariants? Such
systems are manifold in nature. They are called pattern forming systems. One has to go no further than
one’s own fingertips to see examples of two dimensional cross sections of the objects which are the
centerpieces of this paper.
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1. Introduction

One of the outstanding successes of modern science has been
The Standard Model (TSM) which, among particle physicists, has
achieved the status of Abrahamic deities [1]. All beginning letters
are capitalized, even in mid sentence. It has provided a theoretical
framework for combining three of the four fundamental forces,
the electromagnetic, weak and strong, into a unified theory and
has laid the groundwork for describing interactions between all
subatomic particles, bosons and fermions. The simplest boson
is the photon. One of the more complex is the Higgs which is
purported to give particles their mass. Recent announcements
from CERN indicate that manifestations of the Higgs have been
observed. There are twelve elementary fermions, six quarks and
six leptons. Among the latter group, the electron is the most
familiar example. Combinations of quarks give rise to protons
and neutrons. Quarks, whose experimental confirmation in the
early 1970s informed the choice of symmetries, namely U(1),
SU(2), and SU(3), embedded in TSM, are characterized by their
spin (integer multiples of 1

2 ) and charge (integer multiples of 1
3 )

invariants. Leptons, which also have half integer spins, have unit
charges. The Standard Model is also seen as a basis of building
more sophisticated models, such as those with super symmetries,
which seek to address and explain the presence of the mysterious
elements of dark matter and energy.

In this paper, I address a different question. How did the
symmetries which lead to fractional invariants arise in the first
place? Can one start with systems with much simpler symmetries,
say space translation and rotation, and, by stressing such systems,
give rise via phase transitions to objects with natural fractional
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invariants? While I have no illusions that the story I shall tell
will have much impact on particle physics, it is nevertheless
interesting that such systems are manifold in nature. They are
called pattern forming systems. Indeed, one has to go no further
than one’s own fingertips to see examples of two dimensional
cross sections of the objects which are the centerpieces of this
lecture. In the context of epidermal ridge patterns, they are called
triradii and loops. More generally, they are recognized in the
literature [2] as the canonical point defects of two dimensional
patterns, concave and convex disclinations. They are seen widely
in many contexts, Rayleigh–Benard convection at high Prandtl
numbers [3], ferrofluids [4] and in liquid crystals [5]. Their three
dimensional extensions are twisted string-like line defects whose
cross sections are concave and concave disclinations. These objects
are the main focus of this lecture. They are not simply expressed
as algebraic entities, gauge group representations as is the case
with the particles in TSM, but as real geometrical objectswhich can
be imagined visually. Indeed, after a lecture I gave in Goettingen
about these ideas last year, I learned of a wonderful experiment
which has just been reported in a recent issue of Science [6]
(see also [7]) in which the authors demonstrate the knotting of
topological defect lines in chiral nematic liquid crystal colloids
which clearly have fractional invariants. The objects we study
are also first cousins of the three dimensional spiral or scroll
waves observed in excitable chemical media [8] although the
latter have integer rather than fractional invariants connected
with their well defined circulations


C k⃗ · dx⃗ of their vector order

parameters k⃗. Such vortices are also seen in solutions of the three
dimensional complex Ginzburg–Landau equation inwhich context
their dynamics have been extensively studied by Aranson, Bishop
and Kramer [9,10]. To my knowledge, the only other example of
fractionally charged quasiparticles is in the fractional quantum
Hall effect [11,12].
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2. Description of patterns far from onset

We focus on externally stressed pattern forming systemswhich
have stripes as their preferred planform and which have no soft
or zero (Goldstone or ‘‘mean drift’’) modes. We will show, first
in two dimensions, how concave (V) and convex (X) disclinations
spontaneously arise as instabilities and how they are solutions of
the field equationwhich describes themacroscopic behavior of the
striped pattern. Their three-dimensional extensions, whichwe call
V and X strings, are constructed by adding loop backbones to these
structures in exactly the same manner that the twisted vortices
are constructed in excitable media. We begin the story using a
toy model for pattern forming systems, the Swift–Hohenberg (SH)
equation [13] for the real fieldw(x⃗, t),

∂w

∂t
+ (∇2

+ 1)2w − Rw + w3
= 0. (2.1)

We start by summarizing briefly the Cross–Newell (CN) phase dif-
fusion equation [14–16] which captures the slow andmacroscopic
dynamics of patterns far from onset. The SH equationmimics qual-
itatively the patterns seen, for example, in Rayleigh–Benard con-
vection at high Prandtl numbers in a horizontal layer of fluid heated
from below. In (2.1), R is analogous to the difference between the
Rayleigh number Ra and the onset value (Ra)c at which value the
spatially uniform conduction state becomes unstable to striped
convective patterns (rolls) which break the translational symme-
try of the original system. Ra is a nondimensional measure of the
temperature difference across the layer. We can think of the field
w(x⃗, t) in (2.1) as being the temperature or vertical velocity field
at the middle of the layer. Roll solutions, the stable planform for
R > 0, can be easily calculated as a 2π periodic Fourier cosine
series

w(x⃗, t) = F(θ; An(k, R), k, R) =

∞
n=1

An(k, R) cos nθ, (2.2)

where F is 2π periodic in θ , the phase θ(x⃗, t) = k⃗ · x⃗ + θ0 and
k = |k⃗| = 1 is the preferred wavenumber (the ‘‘one’’ with the
Laplacian in (2.1)). The preferredwavelength is 2π . The direction of
k⃗ is the direction normal to the roll axes. Because it does notmatter
whether we label the neighboring constant phase contours corre-
sponding to field maxima (minima) as 0, 2π, 4π or 0,−2π,−4π ,
the field must be even in θ . This fact also leads to some crucial
topological features of pattern defects. The amplitudes An(k, R) are
slaved to the wavenumber k by algebraic relations.

Although (2.1) is a purely gradient system, we expect similar
behaviors as we describe here to occur in Hamiltonian systems
with wave-like patterns induced by adding external forcing
through gradient like non conservative terms. But that is for a later
study.

Why do natural patterns have defects and why does one need
to introduce the notion of phase variation and diffusion? The key
realization is that whereas the pattern planform (rolls) and pattern
wavelength (2π ) are chosen for energetic reasons, the rotational
symmetry leaves open the choice of the roll direction k⃗. Indeed, in
large boxes, (the inverse aspect ratio ε of the system is defined to
be the ratio of the wavelength to some macroscopic length such
as box size or interdefect distance) where 0 < ε ≪ 1, local
biases due to boundary conditions or variations in the bulk will
determine the local orientations of the roll patches. These patches
spread and, in two dimensions, they meet, merge and meld along
line and at point defects. The line defects are called phase grain
boundaries (PGBs) across which the phase is continuous but its
gradient, the local wavevector, changes direction. If the change in
direction is too much, we show that a nipple instability occurs and
leads to the creation of concave–convex point disclination pairs.
An example of such a natural pattern in a ferrofluid is shown at
the top right corner of Fig. 2.1. The other parts of the figure show
concave and convex disclinations in convection patterns and on
counter propagating light beams. The concave disclination on the
lower right corner results from a simulation of the SH equation
with carefully chosen boundary conditions. The coarsening of such
patterns takes a very long time so for all intents and purposes they
are stationary.

To describe such patterns analytically, we have to allow for the
local wavevector k⃗ to change slowly almost everywhere in the bulk
and also to allow for more sudden changes (shock like solutions)
near point and line defects. The Cross–Newell (CN) theory
[2,14,15,17], a derivative ofWhitham [18] theory for waves, allows
us to do this. We seek solutions w(x⃗, t) which are modulations of
(2.2),

w0(x⃗, t) = F


θ =

Θ(X⃗, T )
ε


=

∞
1

An(k, R) cos nθ, (2.3)

where X⃗ = εx⃗, T = ε2t, k⃗ = ∇x⃗θ = ∇X⃗Θ , and ε, 0 < ε ≪ 1
is the inverse aspect ratio and the small parameter in far from
equilibrium situations. Because k⃗(X⃗, T ) changes, (2.3) is no longer
an exact solution of (2.1) and corrections

w(x⃗, t) = w0(x⃗, t)+ εw1(x⃗, t)+ · · · (2.4)

must be sought. Because of translational invariance, both F(θ) and
F(θ + δθ) are exact solutions of (2.1) to leading order. Therefore
∂F
∂θ

is a symmetry, meaning that it satisfies (2.1) linearized about
w = w0. Thismeans that the equations for the iteratesw1, w2, . . . ,
whose right hand sides contain terms involving the variations
of Θ(X⃗, T ) and k⃗(X⃗, T ) with respect to the slow spatial variable
and time, must satisfy certain solvability conditions which express
constraints on the manner in which the order parameter k⃗ = ∇Θ

of the macroscopic system can vary. These solvability conditions
can be written as two asymptotic expansions. The first is the
amplitude component which, at leading order, gives a system of
nonlinear algebraic equations for An(k, R) in terms of A1(k, R) and
an algebraic equation for A1(k, R) in terms of k and R (roughly
(R− (k2 −1)2)A1 −

3
4A

3
1 = 0). Its corrections at ε2, ε4 involve time

and space partial derivatives of A1 and k⃗. They are only important
when A1 is small, that is, near onset when R is small. Near R =

0, they combine with the solvability conditions arising at odd
powers of ε, the CN phase diffusion equation, to give the familiar
Ginzburg–Landau type Newell–Whitehead–Segel equation [19,20]
for a complex order parameter A = A1 exp iθ . Far from onset,
however, there is only one order parameter, the phase or phase
gradient, and it satisfies

τ(k)
∂Θ

∂T
+ ∇ · k⃗B(k)+ ε2η∇4Θ = 0, (2.5)

the regularized CN (RCN) equation. In (2.5), τ(k) is positive and η
is calculable. The interesting structure is contained in the function
B(k) which, because of rotational invariance, only depends on k. It
is defined for kL < k < kR, where kL(R) and kR(R) are the left-
and right-hand boundaries of the neutral stability curve for the
instability in (2.1) of the ‘conduction’ solutionw = 0. The graph of
kB(k) is cubic in shape, zero at kL, positive between kL and k0 and
negative between k0 and kR. k0 is the single internal zero of kB(k)
in (kL, kR) and here is equal to one, the preferred wavenumber,
although more generally it will depend on R. The graph has a
maximum at k = kEL and a minimum at kER, called the Eckhaus
stability boundaries. A little analysis shows that the second order
quasilinear partial differential expression ∇ · k⃗B in Θ(X⃗, T ) is
elliptic positive in (kL, kEL), hyperbolic in (kEL, k0), elliptic negative
in (k0, kER), a region called the Busse balloon, and again hyperbolic
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Fig. 2.1. Concave–convex point disclinations in experiments.
in (kEL, kR). Since natural patterns have a wavenumber k = k0 = 1
almost everywhere except at line and point defects, at the line
and point defects the deviation from 1 is negative (see Fig. 2.1).
Therefore if one plots a histogram of wavenumbers in that class
of natural patterns for which the SH equation is a useful model,
one sees that it has its maximum at a wavenumber slightly below
k = k0 = 1. As a consequence, without the correction, Eq. (2.5) is
the reverse heat equation along the direction parallel to the local
axis of the rolls. Therefore the correction bi-Laplacian is required
in the vicinity of those regions where k < k0 = 1 and plays a role
entirely analogous to dissipation and diffusion in shock formation
situations. It stops the unbounded amplification of small scales and
leads to smooth transitions in thewavevector direction along PGBs.

3. Properties of (2.5) in two space dimensions

We now state several properties of Eq. (2.5) in two spatial
dimensions. The interested reader can consult the cited Refs.
[2,14,15,17,21] for more discussion.

1. It is universal for all pattern forming systems assuming no soft
modes, such as the mean drift we would find in moderate to
low Prandtl number situations, are present. The graph of kB(k)
always has the cubic shape, positive between kEL and k0 and
negative from k0 to kER.

2. It inherits the fact that if (2.1) is gradient, then so is (2.5),
namely

τ(k)
∂Θ

∂T
= −

δE
δΘ

(3.1)

where

E =

 
G2

+ ε2η(∇2Θ)2

dX⃗ (3.2)

and

G2
= −2

 k

k0=1
kB(k)dk.

For (2.1),

4kB(k) =
d
dk

 2π

0
F 4dθ.
Indeed 1
ε
E is simply the free energy for (2.1) averaged over

many wavelengths. One can also derive (3.1) and (3.2) by tak-
ing the original free energy for (2.1) and averaging over a pat-
tern period. So E in (3.2) is analogous to Whitham’s averaged
Lagrangian in his theory of nonlinear wave modulations. It
turns out that even though the Oberbeck–Boussinesq equa-
tions for high Prandtl number convection are not exactly gra-
dient, the ‘‘averaged’’ pattern behaves as if they were.

3. Because in many circumstances the wavenumbers k through-
out the region are close to the preferred wavenumber, one can
often approximate G2 by (k2 − 1)2. By rescaling, we can take
η = 1. Then the free energy (2.2) divided by ε is

1
ε
E =

 
1
ε
(1 − (∇Θ)2)2 + ε(∇2Θ)2


dX⃗ (3.3)

which, after writing X⃗ = εx⃗, is exactly analogous to the
sum of the strain and bending energies for thin elastic sheets
with thickness proportional to ε and vertical deformation
Θ(X⃗, T ) [22].

4. The connection between (3.3) and the family of Ginzburg–
Landau minimization problems is given in [17,23]. The chal-
lenges in dealing with nonconvex energies and the associated
lack of uniqueness are discussed there.

5. We will be searching for minimizers of (3.3) over fields
Θ(X⃗, T ) and gradients ∇Θ which are double valued, namely
director fields (vector fields without the arrow!) or vector
fields over a double cover of the plane (in two dimensions).
The reason for this is the property, mentioned earlier, that we
can label neighboring contours of constant phase as either in-
creasing or decreasing by 2π . Mathematically, one can see that
given a real field w(x⃗, t) = A cos θ one can determine θ and
∇θ from w(x⃗, t) only up to sign. As a consequence, the point
defects V , a concave disclination, and X , a convex disclination,
shown in Figs. 3.1 and 3.2, have the property that if one fol-
lows the ‘‘wavevector’’ on any contour surrounding the point
singularity, it twists by −π or π . When divided by 2π , these
invariant indices are analogous to spins of ∓

1
2 . The minimum

energy configuration for a concave disclination will have 120
degree angles between the PGBs.

By contrast, for complex valued fields, such as that occur
in systems described by the complex Ginzburg–Landau equa-
tion, the phase gradient is determined uniquely by the com-
plex field w and its gradient (e.g. w = A exp(iθ)). In such
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Fig. 3.1. Concave disclination.

Fig. 3.2. Convex disclination.

systems, the defects are loop dislocations and loop vortices
with corresponding spins of ∓1 corresponding to circulations
C (k · dr) of ∓2π .

6. The minimization of (3.3) has a wonderful self-dual property.
Solutions of the self dual equations

ε∇2Θ = ±

√

G2 ≃ s

1 − (∇Θ)2


, s = ±1, (3.4)

are solutions of the full fourth order Euler–Lagrange equa-
tion for (3.2) and (3.3), if the solution (level surface) Θ(X⃗, T )
has zero Gaussian curvature. The Gaussian curvature for phase
grain boundaries is always zero. For disclinations (Figs. 3.1 and
3.2), it resides at the point singularity in each of their centers
and is zero elsewhere.

7. The phase grain boundary (PGB) solution: This self-dual prop-
erty allows us to linearize the Euler–Lagrange equation via the
transformationΘ = εs lnψ, s = ±1 whence (3.4) becomes

ε2∇2ψ − ψ = 0. (3.5)

Exact solutions such as ψ = esk⃗·
X⃗
ε , |k⃗| = 1, correspond to

stripes. A linear combination of exponentials, ψ = esk⃗+·
X⃗
ε +

esk⃗−·
X⃗
ε , |k⃗+| = |k⃗−| = 1, to a phase grain boundary (PGB)

whose direction is k⃗++k⃗−
2 . The phase for the PGB is given by

(we write the expression in terms of the original phase θ and
space variables x⃗(x, y))

θ =
(k⃗+ + k⃗−)

2
· x⃗ + s ln cosh s

(k⃗+ − k⃗−) · x⃗
2

(3.6)

with corresponding wavevector

∇θ = (f , g)

=
k⃗+ + k⃗−

2
+

k⃗+ − k⃗−

2
tanh s

(k⃗+ − k⃗−)

2
· x⃗. (3.7)

For s k⃗+−k⃗−
2 · x⃗ ≷ 0,

∇θ →


k⃗+

k⃗−.
(3.8)

The PGB has a boundary layer structure in which the wavevec-
tor k⃗undergoes a transition from k⃗− to k⃗+ within severalwave-
lengths of the PGB. One can also interpret it as a weak shock
Fig. 3.3. The nipple instability.

solution of the hyperbolic equation∇·k⃗B(k) = 0which is regu-
larized by the biharmonic term in (2.5) (see [21]). The solutions
(3.6) and (3.7) are vector field minimizers of the free energy
(3.2). The PGB energy is proportional to sin3 ϕ per unit length
where k⃗± = (cosϕ,± sinϕ). Its energy is also proportional to
the mean curvature ∇

2θ of the phase surface integrated over
an area containing the PGB.

8. For large enough angles ϕ, the PGB solution is unstable to a
director field perturbation leading to VX pair creation. Why
is this? Clearly if ϕ →

π
2 , the two sets of stripes k⃗+ and k⃗−

become parallel to both the PGB (which now becomes a max-
imum of the real field w(x⃗, t)) and each other. The fact that
they point in different directions does not affect the cost be-
cause as we have pointed out, it matters not at all to the real
field w(x⃗, t) whether the phase contours corresponding to its
maxima are labeled θ = −2π, 0, 2π or θ = 2π, 0, 2π, . . . .
But according to our formula the cost, proportional to sin3 ϕ, is
maximum at ϕ =

π
2 . Therefore onewould expect some kind of

instability or phase transition to occur when ϕ reaches a cer-
tain value. It does. For large ϕ, one can significantly lower the
energy bymaking a transition to a director field corresponding
to the creation of a VX pair, as shown in Fig. 3.3b. The principal
cost in the new configuration arises again from the two PGBs
which replace a unit length of the original one. They are longer
by a factor of 1

cos( π4 +
ϕ
2 )

but the angles they make with k⃗+ and

k⃗− are π
4 −

ϕ

2 . Their combined energy is 2 sin3( π4 −
ϕ
2 )

cos( π4 −
ϕ
2 )

= 1−sinϕ.

This is lower than sin3 ϕ when ϕ ≥ 43◦. Therefore, the VX pair
configuration is preferred for ϕ > ϕC ≃ 43◦. This instability
and VX pair creation marks a distinct departure from the anal-
ogy with elastic surfaces. There θ = h, the height of the sheet
above a given level, is single valued. Moreover, an elastic sur-
facewhich is bent along a rooftop requires finite energy. On the
other hand, aswe have already stressed, a set of parallel rolls at
the preferred wavelength requires no energy just because the
phase contours are labeled −4π,−2π, 0,−2π,−4π rather
than −4π,−2π, 0, 2π, 4π .

9. We emphasize the point: The creation of VX pairs results from
a phase transition/instability which occurs when two patches
with different orientations (made possible by the rotational
symmetry) meet at too sharp an angle. Note that even saddle
point singularities, the merging of two concave disclinations,
for which the phase grain boundaries are at angles of 45◦ with
respect to the roll wavevectors, are unstable. Far from equilib-
rium, saddles will disintegrate into two concave disclinations
(see Figure 12 in [2]).

10. As R approaches zero, the pattern onset value, at a certain
R0(ε), which depends on ε, the amplitude becomes an active
rather than a passive (slaved) order parameter. It combines
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Fig. 3.4. Sectors for a concave disclination.

with the phase to give a complex order parameter and con-
sequently, disclinations, which have double valued k⃗ values,
disappear. The reason is that the complex order parameter
A1 exp iθ and its gradient determine∇θ uniquely. Experiments
indeed show that they do.

11. Exact multivalued solutions of the stationary hyperbolic equa-
tion ∇ · k⃗B(k) = 0 have been found using a hodograph trans-
formation [2,21]. When regularized using (5), they give the V
(concave) and X (convex) disclinations shown in Figs. 3.1 and
3.2. The concave disclinations have three phase grain bound-
aries and their energy scales with their size L. The convex
disclinations require much less energy, proportional in fact to
ln L, where L is their size.

12. It is a useful exercise to consider the multivalued solutions of
∇ · k⃗B(k) = 0 when we set B(k) = 1. In this case, the con-
straint that k = 1 almost everywhere is lost but the topo-
logical structure of the point defects remains the same. Let
∇Θ = k⃗ = (f , g) = (k cosϕ, k sinϕ) and write ζ = ρeiα =

X + iY andΘ = Im 2
3ζ

3/2
= ρ3/2 sin 3α

2 . A little analysis shows
f − ig = ρ1/2 exp(i α2 ) = ke−iϕ . Thus ϕ = −

α
2 . As α travels

around the defect at ζ = 0, ϕ twists by −π . This is the Laplace
concave disclination. The Laplace convex disclination is found
by setting Θ = Im 2ζ 1/2. The Laplace equation disclinations
arise in the theory of quadratic differentials.

13. Approximate solution for the concave disclination by six PGBs.
For r =


x2 + y2 ≫ 2π (the preferred wavelength), the con-

cave disclination can be well represented by six PGBs, three
on one plane and three on its cover. Consider Fig. 3.4 which
shows two circles split up into six sectors S1–S6, 2(n−1)π

3 <

α < 2nπ
3 , n = 1, . . . , 6. Using the formulas given in (11), (12),

the corresponding phases wavevectors (written in original co-
ordinates based upon the preferred wavelength scale) are:

S1 0 < α <
2π
3
, k⃗+ =

√
3
2
,
1
2


,

k⃗− = (0, 1), s = −1

θ1 =

√
3
4

x +
3
4
y − ln


2 cosh


1
4
y −

√
3
4

x



=

√
3
2

r cos

α −

π

3


− ln


2 cosh

r
2
sin

α −

π

3


(3.9)

(f , g)1 =

√
3
4

+

√
3
4

tanh
r
2
sin

α −

π

3


,

3
4

−
1
4
tanh

r
2
sin

α −

π

3

 (3.10)

→


√
3
2
,
1
2

α >
π

3
0, 1 α <

π

3

S2
2π
3
< α <

4π
3
, k⃗+ =

√
3
2
,−

1
2


,

k⃗− =

√
3
2
,
1
2


, s = +1.

θ2 =

√
3
2

x + ln

2 cosh


−

1
2
y


= −

√
3
2

r cos(α − π)+ ln

2 cosh

r
2
sin(α − π)


(3.11)

(f , g)2 =

√
3
2
,

1
2
tanh

r
2
sinα. (3.12)

S3
4π
3
< α < 2π, k⃗+ = (0,−1),

k⃗−

√
3
2
,−

1
2


, s = −1.

θ3 =

√
3
4

x −
3
4
y − ln


2 cosh

√
3
4

x +
1
4
y



=

√
3
4

r cos

α −

5π
3


− ln 2 cosh

r
2
sin

α −

5π
3


(3.13)

(f , g)3 =

√
3
4

−

√
3
4

tanh
r
2
sin

α −

5π
3


,

−
3
4

−
1
4
tanh

r
2
sin

α −

5π
3

 (3.14)

S4 2π < α <
8π
3
, θ4 = −θ1(s = +1) (3.15)

S5
8π
3
< α <

10π
3
, θ5 = −θ2(s = −1) (3.16)

S6
10π
3

< α < 4π, θ6 = −θ3(s = +1). (3.17)

14. Approximate solution for a convex disclination. Let θ = s lnψ
in (3.1) and obtain (3.5). On the first branch (s = +1), the
piecewise continuous solution

ψ = ey, x ≫ 0, y > 0 or r > 0, 0 < α <
π

2

ψ = I0(r) ∼
er
√
r
, x < 0, r > 0,

π

2
< α <

3π
2

ψ = e−y, x ≫ 0,−y > 0 or r > 0,
3π
2
< 0 < 2π (3.18)

can be matched in second derivative along x = 0 by seeking
solutions for x > 0 in the form eyf (x, y) and neglecting the
fyy term leading to the heat equation fxx + 2fy = 0 for f (x, y).
Solutions can be found which match the expansion of er

√
r for

|x| ≪ y. The second branch makes the choice s = −1.
15. Spin invariant and Gaussian curvature. It is important to note

that the expressions given in remarks (13) and (14) are only
approximate because the self dual solutions are not exact
solutions of the full Euler–Lagrange equation for (3.2). The ob-
stacle is a nonzero Gaussian curvature of the constant phase
contour θ(x, y) = constant. Nevertheless, they contain the cor-
rect topologies. Any initial distribution of Gaussian curvature
with twist −π (in the case of the concave disclination) or +π
(in the case of the convex disclination) will gather and con-
dense on the singular point at r = 0. The twist is defined as
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Fig. 4.1. V-string.

the angle bywhich any straight linewith direction∇θ turns on
any closed contour surrounding the point singularity at r = 0.
The twist divided by 2π is called the index. For a concave (con-
vex) disclination the index is −

1
2 (+

1
2 ). The index encodes the

area integral of Gaussian curvature of θ(x, y) = constant. To
see this, note that

1
2π

2

S
(∇f × ∇g) · n̂dS =

1
2π


C
(fdg − gdf ) (3.19)

where n̂ is a unit vector to the x, y plane and C is any contour
surrounding the origin enclosing the area S. The integrand of
the LHS of (3.19) is proportional to the Gaussian curvature of
the phase surface θ(x, y). If we write f = k cosϕ, g = k sinϕ,
the RHS is 1

2π


C k2dϕ. In the far field, k → 1. Therefore the

RHS is simply 1
2π [ϕ] where [ϕ] represents the angle through

which the direction (f , g) turns as we traverse the contour C .
(One can obtain a similar expression for the actual Gaussian
curvature but, because k → 1 in the far field, it is equivalent
to (3.19).)

Therefore we see that the spin invariant is related to the
condensation of Gaussian curvature at the center of the point
defect. We will find in the following section that the ‘‘charge’’
invariant is related to the condensation of the sectional Gaus-
sian curvature along the loop backbone of the string disclina-
tion.

4. V and X string defects in three and higher dimensions

Nothing in the theory outlined in Section 3 precludes k⃗ from
being a director field in three or more dimensions. Indeed, one
can construct [24] three dimensional point defect analogues of
concave disclinationswith a tetrahedral skeleton replacing the two
dimensional triangular one. Here, however, we focus on a different
set of objects we call loop disclinations by attaching backbones
to the two dimensional cross sections seen in Figs. 3.1 and 3.2
and asking that the real w(x⃗, t) field be periodic in the backbone
direction.

Whereas in two dimensions the hodograph transformation
linearized the unregularized form of (2.5), ∇ · k⃗B(k) = 0, in three
dimensions we no longer have that simplification. What we do
have, however, are:
Fig. 4.2. V-string loop.

Fig. 4.3. X-string.

(i) The three dimensional analogues of the harmonic functions
Θ = Im 2

3ζ
3
2 andΘ = Im2ζ

1
2 , ζ = X + iY obtained by solv-

ing Laplace’s equation on S(1) × R(2). These solutions will cap-
ture the topology of the defects but not the constraint which
chooses the length of the director field to be unity almost ev-
erywhere.

(ii) Approximate solutions to the full RCN equation (2.5)

∇ · k⃗B(k)+ η∇4θ = 0 (4.1)

obtained by piecing together solutions of the self dual equation

∇
2θ = s(1 − (∇θ)2), s = ±1. (4.2)

To obtain (4.2) from (4.1), we approximate B(k) by its Taylor
series about k2 = 1 and rescale the spatial variables so as to
remove the factor −η/k( dB

dk2
) estimated at k2 = 1. The self

dual solutions are only approximate (they at best provide up-
per bounds to the associated free energy) because, in addition
to the approximation for B(k), they only capture the solution
far from the line singularity on the backbone at r = 0 onwhich
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nonzero Gaussian curvature is condensed. Nevertheless, they
are good in the far field and do possess the correct topologies.

Before we give the results of these calculations, we point out that
themain ideas of the two invariants can be seen froma geometrical
viewpoint. For the V string, the object of interest is a loop with
a concave disclination cross-section which is twisted about the
backbone so as to match the w(x⃗, t) field at the two ends z = 0
and z = l which are identified. This can be done in essentially
two ways. We can ask either that the phase field is periodic, i.e.
θ(x, y, z = 0) = θ(x, y, z = l) or antiperiodic, i.e. θ(x, y, z =

0) = −θ(x, y, z = l). To achieve the former we must match
sectors S1 and S3, as shown in Fig. 3.4, which will require a twist
of the direction f , g, h = ∇θ along a suitable contour joining
r = r0, α = 0, z = 0 to r = r0, α =

4π
3 , z = l of 2

3 · 2π . To
achieve the latter, we simply match sectors of S1 and S2 which will
require an angular twist of 1

3 · 2π . Each of their negatives is also
possible by twisting in the clockwise direction. The spin invariant
is obtained by examining the twist of the direction ∇θ around any
cross-section. For the X-string, the field w(x⃗, t) can only be made
periodic in the backbone direction by twisting the backbone by an
integer multiple of 2π . The spin index again is 1

2 . Each invariant
is associated with the twist of the director field around the two
independent directions on the torus and the line integrals can be
related to the area integrals of the two independent and nontrivial
sectional Gaussian surface curvatures of the three dimensional
surface θ(x, y, z).

For the V-string, or pattern quarks, the Laplacian approximation
can be written as

θ =
2
3
Kr

3
2 sin


3α
2

−
nπz
l


(4.3)

where n is integer and we have approximated I3/2(r) by its small
argument limit. Therefore we work in the radial domain 2π(=
λ) ≪ r ≪ l.

f − ig = Kr1/2 exp i
α
2

−
nπz
l

−
π

2


(4.4)

h = −
2πn
3l

Kr3/2 cos

3α
2

−
nπz
l


. (4.5)

We note that, for r
l small, |h| ≪ |f |, |g|. Therefore the twist of the

direction (f , g, h) can be calculated from the change in ϕ where
f − ig =


f 2 + g2 exp(−iϕ),


f 2 + g2 = Kr1/2, and

ϕ = −
α

2
+

nπz
l

+
π

2
. (4.6)

Along the contour z = constant, 0 ≤ α ≤ 2π , the twist or
change in ϕ is −π . Along the contour α = α0 +

2π
3 t, z =

l
n t, r =

r0(α0), 0 ≤ t ≤ n on which θ and h are constants, the change of
ϕ, 1

2π [ϕ] is

1
2π

[ϕ] =
1
3
n. (4.7)

For θ periodic over 0 ≤ z ≤ l, n is even and its smallest value is n =

2. We call this the pattern up quark. For θ antiperiodic, we choose
n = 1. We call this the pattern down quark. The corresponding
index is 1

3 .
For X-strings, or pattern leptons, the Laplace solution is θ =

2Kr1/2 sin( α2 −
nπz
l ) for which f − ig =


f 2 + g2 exp(−iϕ) =

Kr1/2 exp i(− α
2 −

nπz
l −

π
2 ), h = −

2nKπr3/2
l cos( α2 −

nπz
l ). The twist

angle is

ϕ =
α

2
+

nπz
l

+
π

2
. (4.8)
Around the two circuits r = r0, z = constant, 0 ≤ α ≤ 2π and
r = r0, z =

l
n t, α = α0 − 2π t, 0 ≤ t ≤ n the respective twists are

π and −2πn. The choice of antiperiodic θ leads to indices ∓1. We
note that the choice θ periodic leads to indices ∓2.

For the V-string, or pattern quarks, the self dual approximation
in Sections 1–3 gives

S1 θ1(r, α, z; n) =

√
3
2

r cos

α −

2nπ
3

z
l

−
π

3


− ln


2 cosh

r
2
sin

α −

2nπ
3

z
l

−
π

3


(4.9)

S2 θ2(r, α, z; n) = −

√
3
2

r cos

α −

2nπz
3l

− π


+ ln


2 cosh

r
2
sin

α −

2nπz
3l

− π


(4.10)

S3 θ3(r, α, z; n) =

√
3
2

r cos

α −

2nπz
3l

−
5π
3


− ln


2 cosh

r
2
sin

α −

2nπz
3l

−
5π
3


. (4.11)

The sectors are rotated versions of those shown in Fig. 3.4 and
are defined by 2(n−1)

3 π < α−
2nπ
3

z
l <

2nπ
3 , n = 1−6. The solutions

are approximate, valid for 2π ≪ r ≪ l. The phase functions
θ4, θ5, θ6 in sectors 4, 5, 6 are the negatives of those in S1, S2, S3.
The z dependence of the arguments are chosen so that, under the
twist associated with integer n, the points α0 on z = 0 rotate to
α0 +

2nπ
3 on z = l. We note that

θ1(r, α, z = l; n = 2) = θ3(r, α, z = 0; n = 2) (4.12)

and

θ1(r, α, z = l; n = 1) = −θ2(r, α, z = 0; n = 1). (4.13)

In the first case, we match sectors 1 and 3. The twist along the
helical contour joining (r0, 0, 0) to (r0, 4π

3 , l) is
4π
3 . In the second

case, the twist is 2π
3 . Again the twist along a contour at constant z

is −π .
A similar three dimensional analogue to the two dimensional

solutions discussed in remark (15) of Section 5 gives twists for the
X-string of π and −2πn.

There is a connection of the ‘‘charge’’ invariants with the
Gaussian curvature of the twisting phase surface that has a
boundary which consists of C1: a helical curve joining (r = r0, α =

0, z = 0) to (r = r0, α =
4π
3 , z = l) : C2: the straight line at

α =
4π
3 , joining r = r0 to r = 0 : C3 : the backbone on which

k → 0 joining z = l to z = 0 at r = 0 : C4 : The straight
line joining r = 0, α = 0, z = 0 to r = r0, α = 0, z = 0. The
value of 1

2π


C1

k2dϕ is 2
3 . Its value on C2 and C4 is zero because on

these straight lines [ϕ] = 0. The value along the backbone is also
zero. Thus 1

2πr0
· 2

(∇f × ∇g) · n̂dS which adds the projections of

(∇f × ∇g) onto z = 0, r ≤ r0, 0 ≤ α ≤
4π
3 and onto α = 0, 0 ≤

r ≤ r0, 0 ≤ z ≤ l is 2
3 . One can calculate these integrals for the case

wherewe approximate θ by 2
3 r

3
2 sin( 3α2 −

2πz
l ). Then

1
r (frgα− fαgr)

= −
1
4r , frgz − fzgr =

π
l and 1

r (fαgz − fzgα) = 0. The integral
2

2πr0

 r0
0

 4π
3

0
1
r (frga − fαgr)rdrdα = −

1
3 whereas 2

2πr0

 r0
0

 l
0
π
l drdz

= 1. In the harmonic case, one must divide out by the radius r0 as
the wavenumber k2 does not tend to unify in the far field but to r .

Therefore the two sets of invariants, the ‘‘spins’’ −
1
2 and 1

2
and the ‘‘charges’’ ±1,± 2

3 ,±
1
3 reflect the amounts of sectional

Gaussian curvatureswhich have condensed on the loop backbones.
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On the other hand, the energy of the V string is proportional to the
mean curvature condensed along the PGBs for the V-string which
is proportional to 3 sin3 π

6 times multiplied by the product of its
cross sectional and backbone lengths L and l. The X-string energy
is proportional to l ln L (see Figs. 4.1–4.3).

5. Open challenges

There are lots of them. Most are of interest in their own right
and aim at gaining a better understanding of the defects contained
in natural patterns. Others are motivated by the possibility of
connections with the origins of subatomic particles.

1. The embedding of disclinations in physically reasonable far
fields. Even in two dimensions, this is a challenge. Our calcu-
lations in Section 5 of the energy of the concave disclination
assume that the three phase grain boundaries have infinite ex-
tent. So this brings up the question: Are disclinations finite in
size with finite energy and, if so, how do the contributions from
the phase grain boundaries (discontinuities in the gradient of
the phase field) in the case of the concave disclination and of
discontinuities in second derivative (curvature) in the case of
convex disclinations decay as r , the distance from the core, in-
creases and how do these objects meld in with physically rea-
sonable far fields? Perhaps they do not. Perhaps they are part
of a very slowly coarsening process which only ends after many
mergings and when the final defect configuration is of the size
of the system and constrained from complete elimination only
by boundary constraints. These questions become even more
difficult when we consider the V and X strings in three dimen-
sions. Can they be embedded in R(3) or do they require the no-
tion of a wrapped up dimension so that the configuration space
is not R(3) but S1 × R(2) or more simply a torus?

One can try to think of gedenken experiments. In [21], we
showed how a striped convective pattern evolves in an ellip-
tical cylinder whose sidewalls are heated. Near the boundary,
the convection rolls are parallel to the walls (their wavevec-
tor k⃗ is normal to the wall) and their wavelength is the pre-
ferred value, the eikonal construction. But the normals to an
elliptical cylinder form caustics emanating from the two foci
so that the eikonal solution leads to multivaluedness. A thin
film elastic blister would regularize this solution by introduc-
ing a wedge-like boundary roof layer between the two foci and
allowing the gradient of the height undergo a sharp disconti-
nuity (PGB) there [17]. The angle between the wavevector and
the PGB, ϕ, is zero at both foci and increases towards the cen-
ter. What we find in a convecting fluid is that, once ϕ > 43◦,
the pattern exercises its option to allow director field perturba-
tions of what was previously a vectorfield. There is a creation
of VX pairs, a nipple instability, a prediction supported by both
numerical and experimental confirmations, the former using
both the Swift–Hohenberg approximations and the full Ober-
beck–Boussinesq equations. The final pattern (presumably the
energy minimum although, for nonconvex problems, one has
no uniqueness result; in some circumstances, one can show by
finding almost coincident upper and lower bounds that an ob-
served configuration has an energy which the minimum must
have) consists of what appears to be a chain of ‘‘dislocations’’ in
which ∇θ · n̂ and θ are both zero on alternating segments on
the chain axis [25]. The number is determined by how strongly
elliptical the container is. In an experiment conducted by Ahlers
and colleagues, there is only one. It would be interesting to at-
tempt an experiment in an ellipsoidal container, axisymmetric
around its long axis, with some pattern producing system, pos-
sibly chemical in nature, which can produce three dimensional
patterns. One might conjecture that one would obtain a bound
zero charge pair of VX strings because there is no twist along
the backbones. It might be also possible to use a toroidal cylin-
der with elliptical cross section in which onemight induce a 2π
twist, a hydrogen atom like arrangement.

2. Interstring forces. Whereas much is known about the interac-
tion energies and forces between vortices (a back to back su-
perposition of two convex disclinations) and dislocations (two
concave, two convex dislocations) in vectorfield pattern form-
ing systems, and, in certain cases, between disclinations in two
dimensions, nothing is yet known about the interaction forces
between loop disclinations. Some of the difficulty is that we do
not have finite energies for individual disclinations. What one
would like to be able is to calculate the interaction free energy
between two such objects by subtracting the individual free
energies from that of the combination and calculating its depen-
dence on the parameters r , an appropriate choice of interdiscli-
nation distance, and the spin and charge indices. Onewould like
to see whether, for example, the interactive energy between
a single V-string with 2π twist (two up quarks and one down
quark) and an X string is inversely proportional to r and the
product of the signed charges.

3. Composites of pattern quarks and leptons. A related ques-
tion concerns the composition of pattern quarks and leptons.
Presumably one cannot match an individual up or down pat-
tern quark with a pattern lepton because their charges (which
are related to their topological structures) do not match. There-
fore, one might conjecture that if pattern quarks and leptons
can only appear (stably) in pairs thenwe require quark compos-
ites whose indices add to multiples of ±1, e.g. two up quarks
and a negative down quark (a pattern proton). One could also
add a zero charge configuration, e.g., integermultiples of one up
and two down quarks (a pattern neutron). Do such composites
consist of pattern up and down quarks which share the same
loop backbone (and whose topologies are clearly calculated by
the addition of indices) or can one have interlinked loops? We
should note that their cousins in excitable media, vortices with
vectorfield order parameters, tend to appear as single rather
than interlinked loops.

4. More sophisticated models. Patterns can arise as stationary
(exchange of stabilities) or as traveling standing waves (over-
stability). The latter arise when the unstressed system supports
oscillatory or wave motion. For example, the next most simple
model of atmospheric motion is the beta plane model which
adds the north–south dependence of Coriolus parameter to the
geostrophic balance. When stressed with a north–south tem-
perature gradient, the resulting vertical shear of the east–west
velocity and associated density, pressure fields can destabilize
via what is called the baroclinic instability to a traveling pat-
tern which has the character of Rossby waves, the natural os-
cillations of the unstressed system. Therefore the recipe for a
pattern forming systemwithwaves is a superposition of Hamil-
tonian and gradient flows. It would be interesting to investigate
the nature of defects in a pattern forming systemwhose Hamil-
tonian component had Lorenz symmetry added to that of trans-
lation and rotation. The system is stressed by the addition of the
gradient component.

5. Giving free rein to the imagination. Imagine that the soup
of all subatomic particles was created in a rapidly expanding
universe with only the simplest symmetries and a decreas-
ing temperature acting as stress parameter. As the expanding
cloud cools, the uniform state becomes unstable. Patterns are
seeded locally with preferred length scales but arbitrary direc-
tions. Their merging creates families of elementary defects and
their composites whose physical characteristics (mass/energy,
charge, spin) are related to the geometry of the phase surfaces
from which they are composed. The increasing complexity of
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the geometry gives rise to an increasing complexity of the na-
ture of the elementary particles.

In such a scenario, howwould the basic scales be chosen and
to what realities might they correspond? The preferred scale
of the pattern? If waves are involved perhaps a preferred fre-
quency and some relation between pattern amplitude, wave-
length and frequency? The length of strings, large compared to
the preferred wavelength but very small compared to the di-
ameter of the expanding universe? If no far field constraint ex-
ists such as a nontrivial twist index on some boundary, then all
twists would be local and the pattern would tend to coarsen
with larger and larger interdefect (particle) distances. What
would determine the coarsening rate?

But, enough of the speculation. It is time to get down to the hard
work of addressing the challenges raised in remarks 1 and 2.
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