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1. Introduction

Observe the seeds of sunflowers, bracts on pine cones, spines
on cacti, leaves on foliage plants, and analogous structures (leaf
homologues) found in pictures throughout this article. In many of
these examples, such as on the sunflower head of Fig. 1 and the
pine cone and cactus of Figs. 2(a) and (b), the leaf homologues are
arranged in spirals. Strikingly, the spiral pattern on the cactus of
Fig. 2(b) is almost identical to that on the pine cone of Fig. 2(a). In
both cases, the homologues lie at the intersections of two families
of spirals, and the numbers of spirals in these families (89 and 55
at the outer edges of the sunflower of Fig. 1, and 13 and 8 on the
pine cone and cactus of Figs. 2(a) and (b)) are successive members
of the Fibonacci sequence. In contrast, on the cactus of Fig. 2(c),
the succulent of Fig. 2(d), and many other plants, the spines or
leaf homologues are arranged in opposite pairs that alternate in
angle, the so-called decussate or 2-whorl arrangement. Three-
whorl patterns, in which triplets of homologues separated by 120°
fromeach other, and forwhich the following and preceding triplets
are rotated by 60°, are also common (see Fig. 10(a)).

The arrangement (taxis) of leaves (singular: phyllo, plural:
phylla) or their analogs on plants is referred to as phyllotaxis. Phyl-
lotaxis has intrigued natural scientists for ages, served as a tool
for identifying and classifying plants, motivated questions on opti-
mal packing, and provided challenges and clues to understanding
the biochemistry and biomechanics of plant growth. It is surpris-
ing that, despite much attention over the years, only recently have
quantitative explanations emerged for the wonderful architecture
seen near the shoot apical meristems (SAM’s) of plants. The goal
of this review is to tell the story to date and to provide substan-
tial evidence for the idea that plants and other organisms can pur-
sue optimal strategies by employing naturally occurring patterns
driven by instabilities initiated by biochemical and biomechanical
processes. Moreover, the length scales associated with the driv-
ingmechanisms are notmicroscopic and connected in any obvious
waywith genetic instructions but aremacroscopic and of the same
order as the phenomena observed.

While this article is a review, it adopts, over the telling of a
story, a point of view: That all themysteries and challenges of phyl-
lotaxis will ultimately be explained by the behaviors of instability-
generated patterns in auxin and stress fields in the neighborhood
of plant SAM’s. We provide substantial evidence that points to this
conclusion.

To this end, it is good idea to provide the reader with a roadmap
spelling outwhat it is we do in each section andwhy. The introduc-
tory Section 1.1 introduces the reader to some of the landmarks in
the history of the subject. A more extensive history of the study of
phyllotaxismay be found in [1]. This section also introduces impor-
tant terminologies used as descriptive tools such as, for example,
the notions of parastichies and the fact that the polar coordinates
of the phylla lie on cylindrical lattices. These lattices can be char-
acterized by one of two measures. The first arises from an appro-
priate and ‘obvious to the eye’ choice of basis vectors for the lattice
from which two important further quantities, the rise and diver-
gence angle, can be calculated. Due to plant growth, the rise and
divergence angle evolve, the latter often tending to the golden an-
gle in the outer reaches of themeristem. This evolution is captured
by a diagram due to Van Iterson which is central to all attempts to
Fig. 1. A seed head of Helianthus, the sunflower. Photo courtesy of John Palmer.

explain the observed phyllotactic configurations. But there is also
an equally important second set of measures, dual coordinates, as-
sociated with the normals to the preferred choice of basis vectors
for the lattice. In Section 1.2, we introduce both sets of phyllotactic
coordinates and outline why it is that the dual coordinates, which
are basically Fourier modes, aremore useful in explanations which
are based on mechanistic rather than teleological models. In
Section 1.3, we discuss the kinematics of phyllotactic pattern for-
mation, namely how the incipient phylla, called primordia, are ini-
tiated in a generative annulus in the neighborhood of the shoot
apical meristems (SAM’s) of plants. Here we learn that the radial
position R of the generative annulus changes as the plant grows.
In many cases, it increases, but in some cases, such as during the
seed formation stage of sunflowers, it decreases. The upshot is that
the nature of the pattern, whether it is has a spiral or whorl struc-
ture, may change depending on the radius of the generative annu-
lus at which primordia first form. This necessitates a discussion,
which we begin in Section 1.4, between spiral patterns with differ-
ent numbers of spirals in their spiral families or between spiral pat-
terns and whorl patterns. Sometimes the transitions are smooth;
sometimes they involve defect formation. The main ideas are dis-
cussed in Section 1.4 andwe provide conclusions about transitions
from our models in Section 3.5.

Section 2 discusses in detail the main two approaches to
date which purport to explain phyllotaxis. The first approach is
teleological in that it posits rules manifested as cellular automaton
algorithms which are based on the plant placing its phylla
according to some optimization principle. Some rules have an
observational footing. They are based on repeated and careful
experiments by the noted botanist Hofmeister, who encoded the
outcome of his observations in a set of rules, now named after him,
which we list in Section 1.1. Some readers may prefer the use of
the word ‘‘phenomenological’’ to the word ‘‘teleological’’ due to
the observationalmotivation of the rules for these discretemodels.
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Fig. 2. Spiral phyllotaxis on a pinecone in (a) and a cactus in (b). Whorled phyllotaxis on cacti in (c) and (d).
We, like D’Arcy Thompson, prefer the latter because these rules,
while consistent with observation, express the fact that primordia
are located in positions designed to achieve some desirable
outcome.We cover, in Sections 2.1 and 2.2, the original ideas of Van
Iterson and discuss how they connect with the Hofmeister rules
and themoremodern pioneeringworks of Douady andCouder, and
Atela, Golé and Hotton. The reason we spend some time including
them in the review is the remarkable result, which may have
ramifications for many biological organisms, that the teleological
and mechanistic approaches, albeit starting from very different
premises, have stunningly similar outcomes. In Section 2.3, we
describe the basis for our mathematical models which we detail in
Section 2.4. The dominant physics and chemistry operable in plant
meristems, recently reported in series of seminal experiments by
the teams of Reinhardt, Kuhlemeier, Meyerowitz and Traas, and
contained in earlier insights of Paul Green and colleagues, govern
what the mathematical models should be. The key results stem
from the observed facts that phyllotactic patterns are naturally
produced by instabilities, connected to both the distribution of
the growth hormone auxin and to the local stress–strain fields.
Moreover, we show that the partial differential equations which
naturally arise from modeling the actions of the fundamental
players in the plant’s meristem are familiar from general studies
on pattern formation. If the auxin instability dominates, then the
partial differential equation (pde) governing the auxin fluctuation
field u(x, y, t) is essentially of Swift–Hohenberg type

ut = −(∇2
+ 1)2u + µu − β∇(u∇u) − u3. (1)

The reader should think of u(x, y, t) as representing the differ-
ence between the local auxin concentration and its spatial average.
The solution u = 0 then corresponds to a state of uniform auxin
concentration in what we introduce as the generative annulus in
Section 1.3. The generative annulus, made from newly formedma-
terial, lies between the region in which a patterned state already
exists and the central region of slowly growing cells. The uniform
auxin concentration solution u = 0 is unstable andwill be invaded
by a front traveling from the patterned region. In forming the de-
veloping pattern, the quadratic term in (1) plays a central role in
choosing the pattern structure, similar to its role in planar geome-
tries,which leads to the dominance of hexagonal (honeycomb) pat-
terns in many situations. In order that the various Fourier modes
which combine to shape this structure travel synchronously, so
that patterns are locally preserved, it is important that the param-
eters are in a range where the invading front is pushed rather than
pulled, concepts that we explain in Section 3.2.

In Section 3, we analyze the patterns naturally produced by a
traveling front of this pde and show how they answer many of the
key questions and challenges which arise in modeling phyllotaxis.
In Section 3.1, we outline the main ideas behind the method
used for simulating the model pde (1), discuss what it is that we
measure and indicate how the scheme can be readily adapted to
more general surfaces of revolution. In Section 3.2, we present
the main results. Key among them are the following: (i) If one
Fourier analyzes the field u(r, θ) in angle, namely the solution of
(1) when the pattern is complete, we find that the only modes
significantly generated by nonlinear interactions are those whose
circumferential wavenumbers belong to Fibonacci sequences.
(ii) The amplitudes andwavevectors of the dominantmodes at any
generative radius R follow universal curves. (iii) The patterns are
self-similar so that the amplitudes and the squares of the radial
wavenumbers of the dominant modes are the same at R and Rφ,
where φ is the golden number. (iv) The configuration of phylla
resulting from the mechanistic models follows closely the van
Iterson diagram resulting from the discrete models.

Because the simulations lead to fields u(r, θ) which are best
understood by the behaviors of their Fourier modes, in Section 3.3
we develop a center manifold approach which recasts the pde
(1) as a set of odes for the dominant mode amplitudes. The
amplitude equations are extremely useful in helping to understand
the behaviors observed in results (i)–(iv). They are alsomuch richer
than the amplitude equations used for describing hexagonal and
roll patterns in planar geometries because the dominant modes
in the phyllotactic context change with the generative radius R. In
Section 3.2, we show how the amplitude equations reproduce the
results of direct simulations. Finally, in Section 3.5, we discuss how
transitions occur and relate our findingswith the language of phase
transitions used in condensed matter physics.

Our main conclusions from Section 3 are the following:

1. Almost all features of phyllotaxis can be reproduced by mod-
els which are based on auxin and stress–strain distributions in
the vicinity of the shoot apical meristems of plants. The mod-
els lead to partial differential equations of pattern-forming type
whose solutions consist of quasiperiodic shapes dominated by
a preferred wavenumber k0. As the patterns invade the unsta-
ble regions of uniform auxin distribution in the form of pushed
fronts, they leave behind arrays of maxima at which new phylla
are created. These arrangements in most cases consist of ei-
ther Fibonacci progressions or whorls. A Fibonacci progression
is a global pattern of spirals which smoothly evolves in
radius so that the numbers in the spiral families increase or
decrease through a Fibonacci sequence. At certain radii R, the
arrangements may be described as hexagonal tessellations; in
between these radii, they are rhombic. The patterns are robust
in the sense that they do not change qualitatively and do change
smoothly under changes of the parameters µ and β in some
open set.

2. An unexpected, but welcome albeit surprising, outcome is that
the phyllotactic arrangements agree with those arising as fixed
points fromdynamical system algorithmswhich reflect optimal
packing and least crowded space criteria. Thus the mechanistic
and teleological approaches to phyllotaxis are seen to be com-
patible. Of course, the former gives more information because
it includes field rather than isolated point behaviors. Neverthe-
less, the compatibility of the twoapproaches, one basedonplain
old biochemistry and biophysics, the other on optimal pack-
ing ideas, opens up the exciting possibility that pattern-forming
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pdes may provide an additional avenue of attack for formidable
packing challenges and also suggest that nature, in many con-
texts, may use pattern forming systems to pursue and achieve
optimal outcomes. We repeat for emphasis: The surprising fact
that themodels based onphysical and biochemicalmechanisms
produce results consistent with models based on principles of
optimal packing may, and in fact should, have broad ramifica-
tions in many natural contexts. The advantages can be cut both
ways. In some cases, it may be valuable to replace the complex-
ity of the pattern evolution governed by a pde to a more simple
set of discrete rules if one’s principal aim is to map the config-
uration of field maxima.

3. While it is gratifying that the teleological and mechanistic ap-
proaches yield consistent results, there is a distinct advantage to
the latter approach when it comes to explaining the differences
between the configurations of phylla and the surfacemorpholo-
gies of plants. Although themodelwhich treats the coupled sys-
tem (Eqs. (22) of Section 2.4) is not analyzed in this review, the
results have been previously detailed in [2]. There, we show
how it is possible that the auxin fluctuation distribution field
which determines the location of the phylla can differ from the
surface deformation field which determines surface shape. This
difference is apparent, for example, in saguaro and barrel cacti,
which are strongly ribbed. The mechanistic models also make
testable predictions. For example, we predict that the pattern
front laying down sunflower seedswill travelwith a nearly con-
stant average speedwith small variations (see Fig. 27) such that
the speed through the hexagonal regions is slightly faster than
the speed through the rhombic regions, and that the front speed
at each R is the same as that at Rφ, where φ is the golden num-
ber. This can, in principle, be experimentally checked and lead
to confidence in the model and help to estimate model param-
eters.

4. Fibonacci progressions are preferred because, as we explain in
Sections 3.3 and 3.4, (a) quadratic nonlinearities in the pat-
tern forming equations mean that new modes and shapes are
produced by the vector additions of wave vectors of the domi-
nant Fourier modes, (b) the patterns must continuously evolve
as the magnitude of the radius R of the generating annulus
where new phylla are made changes, (c) the only solutions
which can change continuously are those dominated by a de-
veloping sequence of wavevectors created by binary combi-
nations which obey the Fibonacci rule; the Fibonacci addition
gives rise to wave vectors which are drawn towards the pre-
ferredwavenumber k0 circle; all other binary combinations give
rise to wave vectors which are pushed away and the result is
their amplitudes are small compared to those of themodes cre-
ated by Fibonacci addition.

5. In Section 3.5, we show that whorls exist for finite intervals in
the generative annulus radius parameter R. For low R, these in-
tervals may overlap, as between 2 and 3 whorls, but as R in-
creases they are separate. Therefore, it is not easy for a growing
plant to follow a whorl progression. Nevertheless, decussates
or 2-whorls and 3-whorls are widely observed. We suggest the
two reasons for this are that (a) many plants have an ingrown
bias (the cotyledon) which makes the decussate state easily ac-
cessible and (b) that at the SAM’s of someplants, notably growth
tips at the ends of twigs and branches, the generative annulus
radius R remainsmore-or-less constant overmuch of the plant’s
growth. In such instances, we might expect to see decussate
structures, or (2, 3, 5) spirals, or 3-whorls repeated along the
branch.

6. Fibonacci progressions are long-lived states which arise when
pattern forming systems have preferred length scales and the
symmetries of rotation and translation but do not have the field
reversal symmetry (so that quadratic nonlinearities are impor-
tant) and where the pattern forms as a pushed front annulus by
annulus. Thus they should be observable in many contexts.
In the final section, Section 4, we summarize the main results,
list some open and exciting questions and challenges, and suggest
other contexts in which Fibonacci patterns may be important.

This review contains both a compilation of our previous works
[3,4,6,7,2,8–11] aswell as new results (e.g. the nature of transitions,
the remarkably broad self-similar properties of the field u(r, θ),
and ramifications for center manifold theory). We hope that the
reader will by the end be convinced of three things. The first is that
optimal outcomes can be achieved by following the basic mech-
anistic rules of physics and chemistry. The second is that, while
progress has been made, there are many fascinating challenges in
phyllotaxis still open for the curious mind to explore. The story
is far from over. The third is that while careful experiments are
crucial to continued progress, it does not require elaborate exper-
iments for ordinary folk to enjoy the wonderful architectures seen
near the meristems of plants. All it takes is a mountain hike or a
walk through a garden and a keen eye for observation of the plants
in nature’s finest laboratories.

1.1. History of the study of phyllotaxis

Phyllotactic patterns have practical utility to botanists: That
leaves have regular arrangements on plants was noted by
Theophrastus (371–287 BC) in his influential book Inquiry into
Plants. The encyclopedia of Pliny the Elder, entitled Natural History
and published circa 77–79 AD, categorizes plants using detailed
descriptions of their phyllotactic patterns. Phyllotactic observation
as a part of botanical classification was firmly established by the
Swiss naturalist Charles Bonnet (1720–1793) in his book sur l’Usage
des Feuilles dans les Plantes.

The patterns have also captivated natural scientists for their
simple beauty and mathematical intrigue. Leonardo da Vinci ex-
pressed fascination with phyllotactic patterns. Kepler noted a cu-
rious mathematical property of spiral phyllotactic patterns, which
the reader can discover too by counting the numbers of coun-
terclockwise (13) or clockwise (8) spirals in the spiral families of
the pine cone and cactus in Figs. 2(a) and (b) and the sunflower
of Fig. 1. The numbers of spirals in these examples, and in most
plants that exhibit spiral phyllotaxis are consecutive members of
the regular Fibonacci sequence Fn : 1, 1, 2, 3, 5, 8, 13, 21, . . .. If
the spiral counts do not belong to the regular Fibonacci se-
quence, they are most likely consecutive members of the dou-
ble Fibonacci sequence 2, 2, 4, 6, 10, 16, 42, . . . or the Lucas
sequence 1, 3, 4, 7, 11, 18, 29, . . .. According to one account [12],
of the plants with spiral phyllotaxis, 91% have counts in the regular
Fibonacci sequence, 5% in the double Fibonacci sequence, and 2% in
the Lucas sequence.

Schimper in 1830 introduced the term parastichy pair to refer
to the numbers of spirals in the clockwise and counterclockwise
spiral families of spiral phyllotaxis. Kepler’s observation in this ter-
minology is that the parastichy pair of a typical spiral phyllotactic
pattern is (Fn, Fn+1) for integers in the regular Fibonacci sequence
Fn. The observation of the Fibonacci sequence in spiral phyllotaxis
is complemented by another parameter introduced by Schimper: If
one assigns polar coordinate values (r, θ) to the center of each leaf
homologue in spiral phyllotaxis and orders the coordinate pairs in
a sequence (rn, θn) according to increasing values of the radial co-
ordinate r , then the angle between consecutively ordered angles
is constant; θn+1 − θn = 2πd (mod 2π) for some divergence an-
gle 2πd. The sequence Fn and the golden ratio φ =

1
2 (1 +

√
5)

are intimately related in that the ratios Fn+1/Fn approach φ for in-
creasing n, and for regular Fibonacci phyllotaxis, d is approximately
1
2 (3 −

√
5) = 1 − 1/φ.

The radial coordinates also obey regularity in a manner that we
describe in Section 1.2. A commonly observed notion of regularity
is that of the plastochrone ratio which is the ratio rn+1/rn for those
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c d

Fig. 3. (a) Diagram of plant meristem from Church [5]. (b) Transformation of Church’s diagram by Pennybacker [8]. (c) Illustration of the divergence angle D = 2πd.
(d) Detail of the center of the plant meristem of Church’s diagram. Hofmeister’s rule states that the next primordium will appear in the most open space, as marked by the
green dot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
plants for which this ratio is independent of n. The plastochrone
ratio applies to those plants for which primordia of equal area
are produced at shoot apical meristem, and subsequent growth
of the stem moves the developing primordia exponentially away
from the apex. In this case, primordia (developing into phylla) that
are further from the shoot apical meristem will be larger in size.
In contrast, the seeds of the sunflower head of Fig. 1 are nearly
constant in area except near the center of the seed head. The
observations of constant divergence angle and radial regularity as
described in Section 1.2 will mean that the (rn, θn) coordinates lie,
for large r , on a point lattice, namely all integer combinations of
two basis vectors. A lattice means that the points, representing the
centers of the leaf homologues, lie on straight lines in the chosen
coordinate system. Such a lattice is also called a Bravais lattice, after
Auguste and Louis Bravais, crystallographer and botanist siblings,
who represented phyllotactic patterns using a point lattice on
a cylinder and gave precise definitions to parastichy pairs, the
divergence angle, and the plastochrone ratio.

If an image of a pattern of spiral phyllotaxiswere to be projected
to the (r, θ)-plane and Fourier analyzed at each value of the
radius, then the parastichy pattern numbers at any radius would
correspond to the circumferential (θ ) wavenumbers of the two
dominant Fouriermodes at that radius. All phyllotactic coordinates
would be determined from this information. One of the main
challenges of phyllotaxis is to explain why it is that instead of the
Fourier transform being supported on the integers, it is supported
mainly on subsets which are generated by the Fibonacci rule.

The phyllotactic patterns that we have described as Bravais
lattices are the product of a process of formation of primordia,
small bumps that develop into leaves or leaf homologues at the
plant tip, and subsequent outward (in the reference frame of the
apex) movement of the developing primordia as the shoot grows.
After years of careful observation of plant apices, Hofmeister [13]
proposed in the 1800s a set of simple geometric and kinematic
rules governing this process. These rules, as quoted from the
formulation of Douady and Couder [14], read

1. The stem apex is axisymmetric.
2. The primordia form at the periphery of the apex (Region 2 in

Fig. 12), and, due to the shoot’s growth, they move away from
the center with a radial velocity V (r) which may depend on
their radial location.

3. New primordia are formed at regular times intervals (the
plastochrone time T ).

4. The incipient primordium forms in the largest available space
left by the previous ones; see Fig. 3(d).

5. Outside of a region of radius R there is no further reorganization
leading to changes in the angular position of the primordium.

Snow and Snow [15,16] extended Hofmeister’s rules to account
for primordia that form simultaneously at the same radius. Under
the Hofmeister rules, the only allowed phyllotactic configurations
would be spiral. The relaxation to the Snow and Snow criterion
allowed for whorl structures to compete with Fibonacci spiral
structures.

The Hofmeister observation that primordia appear in the most
open space available is a geometric one, but also one that has
a reasonable botanical interpretation: such a rule would seem
to lead to an optimal packing of leaves. Airy provided in 1873
an experimental apparatus that explained phyllotaxis in terms
of economy of space. In this experiment, Airy glued spheres on
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Fig. 4. Van Iterson’s interpretation of Airy’s experiments.
alternating sides of a stretched elastic band and proceeded to
relax the band. In the resulting configuration, the spheres pack
into an arrangement such that their centers geometrically lay on
a cylinder. In fact, the centers of the spheres lay on cylindrical
Fibonacci-spiral phyllotactic lattices.

Motivated in part by Airy’s work, the Dutch botanist Gerrit
van Iterson (1878–1972) developed a mathematical approach to
phyllotaxis. In his 1907 book Mathematische und mikroskopisch-
anatomische Studien ueber Blattstellungen (Mathematical and
Microscopic-Anatomical Studies of Phyllotaxis), Van Iterson rep-
resented a plant as a cylinder, and phyllotactic elements as circu-
lar disks when that cylinder is rolled onto the plane (see Fig. 4).
In Van Iterson’s approach, the problem of phyllotaxis thus became
the study of ‘‘regular arrays of circles on a cylindrical surface’’.
These regular arrays consisted of nonoverlapping packings of cir-
cles with centers positioned on a Bravais lattice, and in which each
disk is tangent to its four nearest neighbors. Varying the diameter
of the disks relative to that of the cylinder (see Fig. 5), Van Iterson
foundwhat divergence angles and parastichy pairs are possible for
a given value of this parameter, as depicted in the Van Iterson dia-
gram of Fig. 6. We will work in the paper with a parameter which
we call the rise ρ. This is the vertical distance between successive
packing disk centers and is related to the ratio of the packing disk
radius rp and the cylinder radius which is taken to be such that the
cylinder circumference is unity. For small rp, ρ scales as r2p . If the
disk circumference had been taken to be unity and the cylinder ra-
dius R been allowed to increase instead, ρ would scale, for large
R, as 1/R2. In the packing diagram Fig. 5, ρ is the vertical distance
between the centers of the disks marked 1 and 2 or between those
marked 2 and 3.

A hexagonal packing of disks only occurs at certain discrete
ratios of disk radius to cylindrical circumference; two of these
are marked on Fig. 5. At all ratios in between these values, the
geometric pattern is rhombic. The observation that one can only
achieve hexagonal packing at certain discrete ratios of disk to
cylinder radius is crucial since a hexagonal packing is optimal.
Referring to Fig. 5, at most locations, as the radius evolves between
two hexagonal states, the packing is less hexagonal and more
rhombic and thus less than optimal when seen from the planar
viewpoint. It is this feature, the fact that hexagons will not fit at
all ratios of disk radius to cylindrical circumference, that leads
to the composite hexagonal–rhombic or Fibonacci spiral patterns.
Contrary to packing an infinite two-dimensional plane, a uniform
pattern of hexagons is not preferred in the cylindrical geometry,
although, as is illustrated by Fig. 5, as the ratio decreases, the
composite pattern is a continuous transition from one hexagonal
pattern to another through rhombic structures. We note that the
Van Iterson construction will allow either the 5-disk to descend
through (2, 3) or the 4-disk to descend through (1, 3). This leads
to the diagram in Fig. 6 in which both branches from (1, 2, 3)
to (1, 3, 4) and (2, 3, 5) are equally allowed. We will find later,
however, when the algorithms become slightly more complicated,
that the former branch is less favored. Nevertheless, the Van
Fig. 5. Cylindrical lattices and their associated packings. The lattice depicted in the
top two panels is hexagonal with the parastichy numbers (m, n,m + n) equal to
(1, 2, 3) in both cases. The lattices in the middle are rhombic with (m, n) equal to
(2, 3) on the right and (1, 3) on the left. The lattices on the bottom are hexagonal
with (m, n,m + n) equal to (2, 3, 5) on the left and (1, 3, 4) on the right. Selected
lattice points have been labeled according to their axial ordering.

Iterson diagram, modified, is a central pillar in understanding
phyllotactic configurations, and wewill be returning to it time and
time again.

The notion that phyllotactic patterns, or at least those that
display Fibonacci spirals, achieve an optimal packing suggests
that such patterns may arise from minimization of some energy
function. Indeed, Levitov [17,18] showed in 1991 that phyllotactic
patterns and Fibonacci sequences can arise in layered supercon-
ductors that minimize a global interaction energy.

Energy minimization also plays a central role in an ingenious
experimental device built by Douady and Couder [19,14] in 1992.
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Fig. 6. The Van Iterson diagram of rhombic cylindrical lattices, in terms of their rise
ρ and divergence angle 2πd. The lattices shown in Fig. 5 are marked.

In Douady and Couder’s experiments, a small dome in the center
of a plate represents the plant apex. The plate is placed in a vertical
magnetic field that is stronger at the edges of the plate than
in the middle, and ferromagnetic drops (representing primordia)
are periodically dropped onto the center of the central dome.
The drops fall to the bottom of the central dome and then move
radially outward, following the gradient of increasing magnetic
strength. The magnetic field is chosen so that the velocity V (r) is
an exponentially increasing function of the radius. After choosing
a radial direction in which to fall from the top of the central dome,
the drops do not change their angular coordinate. How the drops
initially choose their angular coordinate is of interest, and here the
central point is that the drops form repelling magnetic dipoles.
A drop that falls on the central dome moves to the position on
the boundary of the dome as determined by the repulsions of the
drops that recently formed and are moving away from the center,
and the experimental result is that there is a constant divergence
angle between the angular coordinates of successively-dropped
drops. Denoting the radius of the central dome by L, the initial
speed of the drops after falling to the boundary of the dome by
V0 = V (L), and the time period in which drops are dropped
onto the central dome by T , the plastochrone ratio of the resulting
pattern is G .

=
V0T
L . G is a parameter chosen by the experimenter.

As Douady and Couder decreased G, the resulting divergence angle
approaches the golden angle, and the pattern appears as one with
a Fibonacci parastichy pair. The suggestion of this experiment is
that simple dynamical rules as proposed by Hofmeister are at
the center of the phyllotactic process. In subsequent numerical
simulations, Douady and Couder [20,21], following a modification
ofHofmeister’s rules proposed by Snowand Snow [15,16], replaced
the T -periodic formation of primordia with a new parameter—
the space needed for a new primordium to form. The parameter
G =

V0T
L was replaced by a parameter Γ =

d0
L , where d0 is the

diameter of a newly formed primordium; Douady and Couder refer
to Γ as Van Iterson’s parameter. It is an analog of the rise ρ that
we use in this paper. This approach allowed for the formation of
whorled as well as spiral patterns. (See Fig. 7.)

As demonstrated by the experiments and related numerical
simulations of Douady and Couder, simple dynamical rules may
reproduce many phyllotactic patterns. In Section 2, we describe a
much simpler system designed by Atela, Golé, and Hotton [22,23]
which is also based on the ideas of Hofmeister and Douady and
Couder. These results are not, however, connected to biochemical
or biomechanical mechanisms or parameters.

1.2. The phyllotactic lattice and dual lattice

The three left illustrations of Fig. 5 picture the packing forma-
tions along the (1, 2, 3) and (2, 3, 5) branches of the Van Iterson
diagram. The domain is a cylinder of circumference 2πR. The upper
left panel shows a hexagonal lattice with disk 0 touching disks 1,
2, and 3. The middle left panel shows a rhombic packing with disk
0 touching disks 2 and 3 but not disk 1. A lattice is obtained if we
replace the disks by their centers, as shown in Fig. 8 for the upper-
andmiddle-left panels of Fig. 5. The vertical distance between suc-
cessively numbered points we define to be λ = 2πRρ, where ρ is
the rise in the van Iterson diagram (see Fig. 6). In Section 1.1, we
defined the plastochrone ratio for those plants for which the ra-
tio rn+1/rn of radial coordinates is constant. For such plants, if one
interprets the vertical axis of Fig. 8 as s = ln(r), then the plas-
tochrone ratio is the vertical distance λ = 2πRρ between succes-
sively numbered points. The circumferential distance σ between
two points is 2πRd, where 2πd is the divergence angle. Thus, if
s = r , an increase in R as from the top to the bottom panel of
Fig. 8 will result in a constant primordium area (which may be in-
terpreted as the area of a Voronoi cell in a Voronoi tessellation cor-
responding to the lattice) only if ρ scales like 1/R2, or equivalently
λ scales like 1/R. It is this choice of s = r and scaling of ρ that lead
to phyllotactic configurations of constant primordium area in the
disk. The sunflower seed head of Fig. 1 is a good example of such a
planform, except near the center where the seeds are smaller.

The coordinates (s, σ ) of the points marked 0, 1, 2, 3 in Fig. 8
are respectivelyω0 = (0, 0),ω1 = 2πR(ρ, d),ω2 = 2πR(2ρ, 2d−

1), ω3 = 2πR(3ρ, 3d − 1). One can readily see that all points
0, 1, 2, 3, 4, 5, 6, 7, 8, . . . lie on a straight line in the extended
picture or on the cylinder when the lines σ = ±πR are identified.
Any position ωj, may be written as an integer linear combination
of the basis vectors ω1 and u0 = (0, 2πR). For example, ω2 =

2ω1 − u0, ω3 = 3ω1 − u0, ω4 = 4ω1 − 2u0, . . ..
If one looks at the middle left panel of Fig. 5 or the analogous

lattice in the bottom panel of Fig. 8, we observe two things. Firstly,
the most natural basis is the one for which the lengths ωj are
shortest, here ω2 and ω3. Secondly, the lengths |ω2| and |ω3| are
equal and the positions of ω2 and ω3 are opposed—that is, they
lie on opposite sides of the vertical line drawn through 0. Both of
Fig. 7. Douady and Couder’s ferromagnetic drops on a plate produce phyllotactic patterns.
Source: The figure is taken from [19] with permission.
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Fig. 8. Phyllotactic lattices represented in the (s, θ) plane, where s is a function of the radial coordinate r in the disk geometry. Important examples are s = r (the standard
choice in this paper) and s = ln(r) (resulting in phyllotactic patterns which display the constant plastochrone ratio). The lattices are cylindrical lattices in that they are
periodic in the coordinate σ with period 2πR. λ = 2πRρ is the vertical distance between successively numbered points. Top panel: a hexagonal phyllotactic lattice; the
vectors ω1, ω2, and ω3 are of equal length. Bottom panel: a rhombic lattice at a larger value of R; the vectors ω2, and ω3 are of equal length but of shorter length than ω1 .
these properties, nearest neighbors equidistant and opposed are
also properties of the fixed-point lattices generated by the discrete
algorithms of Atela, Golé, andHotton aswell as Douady and Couder
which place each new point in a configuration according to some
‘‘most open space’’ principle. The equidistant property of the two
nearest neighbors

ωm = 2πR(mρ,md − q), ωn = 2πR(nρ, nd − p), (2)

where p and q are integers chosen so that 0 ≤ md− q, nd− p < 1
(most often given by q = 2m − n, p = n − m, the two previous
integers in the Fibonacci sequence) gives us the branch of the Van
Iterson diagram joining the hexagonal configurations n − m, m, n
tom, n,m+n for allm, n in the coordinates ρ, d. The locus of these
points is a circle

ρ2
+


d −

pn − qm
n2 − m2

2

=
(pn − qm)2

(n2 − m2)2
+

q2 − p2

n2 − m2
(3)

whose center is ρ = 0, d =
pn−qm
n2−m2 → 1 − 1/φ = 1/φ2 as

m, n → ∞, lim n
m = φ. The divergence angle converges to the

golden divergence angle 2πd = 2π(1 − 1/φ).
We have alluded to two sets of explanations for phyllotactic

behaviors. One posits a set of rules and uses discrete algorithms
or minimum energy principles to construct point configurations
which are the suggested locations of emerging phylla. The second
is mechanistic and involves understanding the behavior of certain
fields, such as the concentration of the plant hormone auxin or the
stress field in the plant’s tunica. For the remainder of this section,
we take s = r; analogous expressions result from replacing r by
functions s(r). These fields w(r, θ) will be quasiperiodic functions
of the position coordinates r, θ on the plant surface near its SAM
and can be represented as linear combinations of Fourier modes

m am(r)ei(φm(r)+mθ)
+ c.c., where the sum is over the positive
integers m. The local radial wavenumber is the derivative lm =

φ′
m(r). In many cases, it will turn out that the circumferential

wavenumbersm for which the real-valuedmode amplitudes am(r)
are, at any given radius r , dominant, are subsets of the integers
{mj}

N
j=1 belonging to Fibonacci sequences. This, together with the

assumption that the local radial wavenumber varies slowly with
r , allows us to approximate the local field w(r, θ) (we use w for a
general field such as auxin concentration or stress, and reserve u
to connote auxin concentration fluctuation) as the combination

w(r, θ) =

N
j=1

aj cos(ljr + mjθ − φj). (4)

The radial and circumferential dependence of the phases can be
approximated as ljr − mjθ − φj being constant. The sum (4) may
be written as

w(r, θ) =


aj cos


ljr +

mj

r
σ(r) − φj


, (5)

where σ(r) = rθ . In contrast of the wavevectors (lj,mj) of (4), the
components of the wavevectors (lj,mj/r) of (5) have the same di-
mensions (of inverse length). Therefore, we shall henceforth write
the wavevector as (lj,mj/r) and refer to (lj,mj) as the wavenum-
ber pair. The total wavenumber, referred to in the introduction, is
l2j + m2

j /r
2.

The maxima (or minima) of fields (4) are point configurations
which are defined by lattices constructed by the intersection of
lines of constant phase ljr + mjθ − φj = 2πpj, pj an integer,
corresponding to those integers pj for which the amplitudes aj are
dominant. They turn out to be lattices in (r, θ)-coordinates. These
lines of constant phase are precisely the lines defining the lattice
discussed in the disk packing of the cylinder. The middle left panel
in Fig. 5 illustrates a lattice for which we can use the basis ω2, ω3.
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a b c

Fig. 9. Scanning electron microscope images of shoot apical meristems (SAM’s): (a) A sunflower inflorescence meristem. (b, c) Cactus vegetative meristems.
a b c

Fig. 10. What a cactus with an alternating 3-whorl (g = 3, d =
1
6 ) pattern looks like (a) from the top, (b) from the side, and (c) in a cross-sectional cut exposing the corpus

that lies beneath the tunica.
But we can also use a basis of lines; namely, we can describe the
lattice not in terms of the positions ωj of the lattice points, but by
the normals of the line joining ω0 to each ωj or the wavenumber
pair (lj,mj). This basis is much more useful when we analyze the
second class of explanations based on physical and biochemical
mechanisms. The second basis is, of course, completely equivalent
to the first and is called the dual basis. At the radius r = R, the
lattice has parastichies m, n with basis vectors (2) The dual basis,
suitably normed, is

km =
1
R


1
ρ

(q − md),m


, kn =
1
R


1
ρ

(p − nd), n


. (6)

The radial wavenumber is lm =
1
Rρ (q−md). We use these relations

in Section 3 to compare the results of simulations of the pde (1)
to the Van Iterson diagram. For now, we note that, since |ωm| =

|ωn|, the dominant wavevectors km and kn also have equal lengths,
namely


l2m + m2/R2 and


l2n + n2/R2. In Section 3, we shall also

see that, just as d and ρ follow the branches in the Van Iterson
diagram, so also will the dominant wave vectors follow universal
paths in (l,m/R)-space.

In [9,11], we give a detailed derivation of the expressions for
the lattice basis vectors (2) and the dual basis vectors (6) in terms
of the phyllotactic parameters. The derivation in these references
includes more general lattices for which more than one point may
appear at each radius.

1.3. Kinematics of phyllotactic pattern formation

New material added at regions of active cell growth and divi-
sion calledmeristems lead to growth of a shoot or root or formation
of flowers. A meristem at the tip (apex) of a plant shoot where new
leaves or flowers form is called a shoot apicalmeristem (SAM). Those
SAMs that lead to flowers are called floral meristems (or inflores-
cencemeristemson the sunflower, since the capitulum is actually an
inflorescence composed of many flowers). Meristems at root tips
are called root meristems. Relevant for phyllotaxis are shoot api-
cal meristems, including floral meristems and inflorescencemeris-
tems. Fig. 9 shows the inflorescence meristem of a sunflower and
shoot apical meristems of cacti.

The SAM at the tip of a cactus is illustrated in Fig. 10. The outer
layer of the plant, the tunica, is stiffer than the inner layers, the
corpus. Both the tunica and the corpus grow during plant growth,
but growth occurs differently in different regions of the growth
tip. Hernández, et al. [24] provide a description of the growth
behavior of epidermal cells in the flower of Anagallis. Fig. 11 shows
electron microscope images of the forming flowers on which
individual cells are outlined. The growth of the outlined cells was
evaluated via a procedure developed by Goodall and Green [25].
Fig. 11 shows outlines of cells on the same developing flower, with
Fig. 11(b) recorded at a slightly later time than Fig. 11(a). Each cell is
viewed as a polygon that changes shape and size slightly between
recordings. Themajor directions of growth and the growth in these
directions aremeasured and recorded as a ‘‘rate cross’’ placed in the
middle of each polygon in the figures; the same cross is placed in
the middle of the corresponding cells in the two figures. A longer
line in a cross denotes a larger growth in the line’s direction; a circle
denotes a cell that has not really grown. Notice that there is little
growth in the middle of the developing flower, and more, largely
radial, growth at the outer edges.

These and similar studies [26] lead to thinking of the SAM as
having three zones as depicted in the schematic representation of
Fig. 12. The SAM consists of Regions 1, 2, and 4 in the diagram.
The tunica region of the SAM (Regions 1 and 2) is distinguished
from the corpus (Region 4) in that tunica cells divide primarily in
a plane perpendicular to the plant, whereas corpus cells divide in
any direction [24,27]. The tunica Regions 1 and 2 are distinguished
from each other in that cells of Region 1 grow slowly and divide
infrequently, whereas cells of Region 2 grow relatively quickly and
divide more frequently.



M.F. Pennybacker et al. / Physica D 306 (2015) 48–81 57
Fig. 11. Growth behavior of cells in the tunica.
Source: From Hernández, et al. [24] with permission.
Fig. 12. A schematic of the SAM, showing the annular generative region of active
primordium generation (Region 2) between a less active region at the center of the
SAM (Region 1) and a region of cell differentiation of nonewprimordiumgeneration
(Region 3). We denote the average radius of the generative region by R.

It is in the Region 2 that phylla form as bumps (or localized
regions of oriented cell division; see Section 2.3) called primordia;
thus, we will call Region 2 the generative region. After their
formation, these primordia develop further in shape so that they
become, for example, leaves or florets; that is, they become phylla.
As the plant grows, the newly formed phylla move out into what
we label as Region 3. In Region 3, the phylla mature and move out
radially but do not change their angular positions.Meanwhile, new
material emanating from the inner part of the SAM becomes the
new generative annulus, the new Region 2, and the new region for
primordium formation.

The average radius R of the annular generative region may
change over time. In the case of the seedhead of the sunflower,
R decreases as the front, which is the generative annulus for the
emerging seeds or florets, propagates from the outside to the
inside. For cacti or pinecones, R increases as the plant tip increases
in width. In either case, as R changes, the phyllotactic pattern that
forms changes as well. The pattern undergoes transitions.

The reason that the pattern has to change when the radius
of the generative annulus changes is that the average spacing of
primordia is an intrinsically chosen length depending on plant
characteristics. It is the preferred wavelength in our mechanistic
models. Therefore, as R changes, the number of bumps which will
fit around the annulus must change as well.

1.4. Phyllotactic transitions

Bifurcations (phase changes) induced by parameter changes
in pattern-forming systems can be of either discontinuous or
continuous nature. First-order (Type I) phase changes are typical.
In this case, the patternmakes a discontinuous jump fromone state
to another as some stress parameter (e.g. the vertical temperature
gradient in a horizontal layer of convecting fluid, the applied
stress to a beam, the generative radius R in the present context)
increases. Less common are second-order (Type II) phase changes,
in which the pattern changes continuously with the parameter.
Plants exhibit both Type I and Type II phase transitions as the
parameter R varies. Type I transitions are typically associated with
whorl patterns, whereas Type II transitions occur in spiral patterns.

To illustrate a Type II transition, we depict in Fig. 13 a central
result of this review, a numerical simulation of (1) on a disk that
models the formation of a sunflower seedhead. This and similar
simulations are explained in detail in Section 3, but we show the
result here to illustrate the nature of a Type II transition. The initial
condition for the simulation is an induced pattern only at the outer
boundary of the disk. This induced pattern models the result of
the phyllotactic pattern that has already been established in the
leaves surrounding the inflorescence meristem and is a Fibonacci-
spiral patternwith parastichy pair (34, 55). The pattern propagates
inwards towards the center of the disk, and the result at a time for
which the front has propagated nearly to the center of the disk is
shown in Fig. 13.

Although there are no defects, the pattern does change with
decreasing radius r . Inspect the regions labeled as regions A, B, and
C, which respectively have mean radial coordinates r = 75/φ, r =

75/
√

φ, and r = 75, where φ is the golden number. One notes that
the lattice is nearly hexagonal in regions A and C, but is rhombic
in region B. The hexagonal and rhombic structures become more
apparent upon transforming the three regions as in panels A, B, and
C of Fig. 13. Denoting the mean radius of a region by r̂ , the vertical
axis in the transformed panels is r − r̂ , and the horizontal axis is θ .
Counting the numbers of counterclockwise and clockwise spirals,
the parastichy pair of the pattern is observed to be (34, 55) in the
annular region including region C, whereas the parastichy pair is
(21, 34) in the annular region that includes region A.

The sequence illustrated in Fig. 13 achieves a transition between
parastichy pairs and from hexagons to squares back to hexagons,
continuously without the introduction of defects. This is thus an
example of a Type II transition. The functions u(r, θ) plotted in
Fig. 13 are the results of numerical simulations, and in Section 3we
find the decomposition into Fourier modes, so that, as described in
Section 1.2,

u(r, θ) =


aj cos(ljr + mjθ − φj). (7)

As the pattern front propagates to the center of the disk, the
radius at which the pattern is being formed decreases. That this
is a Type II transition is evident in that the amplitudes aj in (7)
are continuous functions of the radius r . In the simulation, the
pattern is locally a hexagonal lattice at r = 75, and the three
largest amplitudes are those of three modes with wavevectors
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Fig. 13. Simulation of (1) showing a phyllotactic pattern that has propagated as a
front from the outer edge towards the center of a disk, a model of pattern formation
on a sunflower inflorescence meristem. The simulation is described in detail in
Section 3. Cutouts of the pattern centered at A r = 75/φ, B r = 75/

√
φ, and C

r = 75, where φ is the golden number, transformed as described in the text, appear
as panels A–C.

Fig. 14. Transverse sections of a shoot apical meristem undergoing a Type (I,0)
transition, from Church [5].

k21, k34, k55 of equal length. A hexagonal lattice also occurs at
r = 75/φ, and at this radius, the three largest amplitudes are those
of the three modes with wavevectors k13, k21, k34. The pattern
has transitioned in dominant wavevectors (those with the largest
corresponding amplitudes) from r = 75 to r = 75/φ. However,
the circumferential wavenumbers of two of the modes with the
largest amplitudes are the same at these values of r , and the radial
wavenumbers of thesemodes change continuouslywith r .Wenote
this by classifying this as a (II,2) transition—a transition of Type II
under which two of the dominant wavevectors are preserved.

The (II,2) transition is one example of an array of transitions
that are observed in plants. In general, we classify phyllotactic
transitions by two indices, the first of which is I or II and denotes
whether the transition is of Type I or II. For the second index, we
note that, as illustrated in the discussion of Fig. 13 (and described in
more detail in [10]), the three Fouriermodes of the patternwith the
largest amplitudes have corresponding wavevectors km, kn, km+n
satisfying km + kn = km+n. We refer to the circumferential
wavenumbers corresponding to these three dominant amplitudes
as the parastichy triple (m, n,m + n). We could introduce the
second index in one of two ways. The first way (perhaps we
might refer to this as the botanist’s definition) is the number
of circumferential wavenumbers shared by the before and after
states. But, there is a possible subtle point. Inmaking the definition
this way, we would be assuming that the corresponding radial
wavenumbers change continuously. Sometimes, as we show in
Fig. 38 of Section 3.5, the radial wavenumber of one of the
shared indices may change sign. Thus, we have a preference for
a revised definition which uses the second index to connote the
number of shared wavenumber pairs, namely shared radial and
circumferential wave numbers.

We conclude by illustrating examples of Type I (discontinuous)
transitions. In contrast to the Type II transitions typical of
sunflowers, Type I transitions are common in whorl phyllotaxis in
which a group of g phylla form at the same radius r of the apex. The
transitionmay occur directly, so that awhorl with parastichy triple
(m, n,m + n) = (g, g, 2g) transitions to a whorl with parastichy
triple (m, n,m+n) = (g +1, g +1, 2g +2) [28]. Such a transition
preserves none of the numbers in the parastichy triple, so we refer
to it as a Type (I,0) transition. Fig. 14 shows transverse sections of
a shoot apical meristem undergoing a Type (I,0) transition.

Alternatively, an increase in whorl number may occur through
two stepsmediated by spiral phyllotaxis: the parastichy undergoes
the transitions (m,m, 2m) → (m,m + 1, 2m + 1) → (m +

1,m+1, 2m+2). Since one parastichy number is preserved in each
transition, we refer to this as a Type (I,1) transition. An example of
a Type (I,1) transition in an Argentinian saguaro is shown in Fig. 15.

A Type I transitionmay preserve two of the parastichy numbers
in a parastichy triple. The sequence in Fig. 16 shows stages in
a transition from a (3, 5, 8) pattern to a (5, 8, 13) pattern. This
contrasts with the continuous Type (II,2) transitions in that the
transition is mediated by defects. We refer to such a transition as a
transition of Type (I,2).

2. Explanations for phyllotactic patterns

2.1. Categories of explanations

There are two categories of explanations for phyllotaxis. The
first we call teleological. It has the form ‘‘X is so in order that
Y holds’’; e.g., Tigers have stripes in order to achieve better
camouflage. Such explanations are manifested in rules which
express the idea that each new primordium is initially placed
according to a least crowded, or optimal packing criterion, which
would presumably give it the best access to light and nutrients.
a b c

Fig. 15. A Type (I,1) transition from dominant circumferential wavenumbers (5, 5, 10) to (5, 6, 11) to (6, 6, 12) in an Argentinian saguaro. Notice the defect in panel (c).



M.F. Pennybacker et al. / Physica D 306 (2015) 48–81 59
Fig. 16. A (I,2) transition. This cactus transitions from 8 ridges (left panel) to 13 ridges (right panel).
Now, the presence of stripes may indeed give the species of
tiger which develops them a competitive advantage over rivals
on evolutionary time scales, but that is not directly why they
come to be. Tiger stripes arise because of competition between
morphogens in the skin, which in some circumstances lead to
the preference of one morphogen over another in neighboring
regions. Likewise, the epidermal ridges on the tips of our fingers,
on palms, and on soles, while giving fingers the advantage of
better feel, are there because, very early on in the life of the fetus,
shrinking volar pads give rise to compressive stresses andwrinking
in the enveloping epidermal layer [29]. Plants do not have on-
board computers tomake such decisions on the positioning of their
phylla. So, how is it that the plants achieve such outcomes?

To answer this question, we turn to the second category of
explanations, the ‘‘hows’’, the mechanistic and self-organizational.
Instead of positing a set of rules, we seek to understand the physics,
mechanics, and biochemistry of the plant’s tunica and corpus in
the neighborhood of the shoot apical meristem (SAM) and the
effects which result from biochemically and mechanically induced
instabilities in that vicinity. In these explanations, the incipient
phylla or primorida are sited at the maxima of certain fields, either
those of the growth hormone auxin or of stress fields, and their
positioning is determined by the configurations of field maxima of
patterns generated by these instabilities.

Here is one of the remarkable conclusions of our recent work:
It turns out that the configurations and outcomes achieved by
both categories of explanations are the same. The outcome of the
mechanistic approach is richer. It potentially gives us information
about fields and addresses the connections between phyllotactic
configurations and surface morphologies. But, the configuration of
initiating sites turns out to be the same. This remarkable finding
leads to an extraordinarily exciting possibility: that naturemay use
instability-generated patterns to produce optimal strategies in a
variety of organisms.

It is worth ending this subsection with words illustrating the
prescience of two great men with regard to the conclusion stated
above. D’Arcy Thompson was a mathematician, classicist, and
zoologist and pioneer in promoting the role of mechanism and self
organization in nature. Rudyard Kipling was a poet and masterful
story tellerwith vivid imagination. Bothmenhad Irish connections.

But the use of the teleological principle is but one way, not the
whole or the only way, by which we may seek to learn how things
came to be, and to take their places in the harmonious complexity
of the world. To seek not for the ends but for the antecedents is the
way of the physicist, who finds ‘causes’ in what he has learned to
recognize as fundamental properties, or inseparable concomitants,
or unchanging laws, or matter and of energy. In Aristotle’s parable,
the builders have laid one stone upon another. It is as amechanism,
or a mechanical construction, that the physicist looks upon the
world; and Democritis, first of physicists and one of the greats of
theGreeks, chose to refer all natural phenomena to themechanisms
and set the final cause aside.
Still, all the while, like warp and woof, mechanics and teleology
are interwoven together, and we must not cleave to the one nor
despise the other; for their union is rooted in the very untrue of
totality. We may grow shy or weary of looking to a final cause for
an explanation of our phenomena; but after we have accounted
for these on the plainest principles of mechanical causation, it may
be useful and appropriate to see how the final cause would tally
with the other, and lead towards the same conclusions. In our
own day, the philosopher neither minimizes nor unduly magnifies
the mechanical aspect of the Cosmos; nor need the naturalist
either exaggerate or belittle the mechanical phenomenon which
are profoundly associated with Life, and inseparable from our
understanding of Growth and Form.

D’Arcy Thompson, On Growth and Form

For the Colonel’s lady an’ Judy O’Grady
Are sisters under their skins!
Rudyard Kipling, The Ladies

2.2. Teleological explanations

We divide the teleological explanation of phyllotaxis again into
two categories: static models and dynamic models. In each cat-
egory, phylla are represented as points on a cylinder or a disk.
Static models consider the plant only after it is fully grown and
predict the selected phyllotactic arrangement by optimizing a lat-
tice of phylla with respect to some quantity, such as packing effi-
ciency, contact pressure or entropy. Dynamic models capture the
time evolution of the arrangement by specifying some rule for lay-
ing down phylla individually so as to locally optimize a similar
quantity. Arrangements predicted by static models often manifest
as long-time behavior of dynamic models in which the repeated
application of a discrete rule leads to a fixed point configuration
predicted by the static model. However, dynamic models tend to
consider primarily the relaxation to these fixed points and only
briefly consider how the pattern of points laid down changes con-
tinuously as some key parameter changes slowly in space–time.

The purpose of this section is to outline some of the key ideas in
the static and dynamic models, to recount some of the history and
to discuss their predictions. The discussion here is an extension (it
now contains the argument as to why parts of certain branches in
the Van Iterson diagram are not accessed) of that originally given
in [8].

2.2.1. Static models
One of the first mathematical approaches to the problem of

phyllotaxis was due to Van Iterson [30].We have already discussed
some of his main ideas. Here we revisit and expand on that
discussion. In particular,wewill focus on the keydifference in Fig. 5
between the sequence of packings where disk 5 descends between
disks 2 and 3 and that sequence where disk 4 descends between
disks 1 and 3. The difference is key to understanding the fact that,
in the dynamic models we discuss in the next subsection, certain
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segments of the branches in the Van Iterson diagram have gaps.
We will also reconsider the diagram from the point of view of the
dual, or wavevector, coordinates, and thereby forge a connection
with the results that emerge from the mechanistic explanations.

Recall that Van Iterson’s idea was that leaves on a stem could
be approximated by identical circular disks on the surface of a
cylinder, with no overlapping, so that their centers form a regular
lattice. The density of a particular lattice may be quantified by the
packing efficiency η, defined to be the proportion of the surface of
the cylinder covered by disks with the maximum possible radius.
The lattice selected by the plant would be the one which gives
the most efficient packing. He also observed that we need only to
consider simple lattices, in which no two points lie at the same
axial position. A cylindrical lattice that is not simple may be split
into an integer number of identical lattices that are simple.

By 1911, it had been known for over a century that a close
hexagonal packing is densest among regular arrangements on
the plane, but Van Iterson encountered the following problem:
simple hexagonal lattices are not always possible on the cylinder.
Illustrating this fact is the middle left panel in Fig. 5. If we take
the vector separating the points labeled 0 and 1, it is not difficult
to see that the entire lattice is generated by integer multiples of
this vector, wrapping around the cylinder as needed. This implies
that each simple lattice must have a single generative spiral
running through every lattice point, with consecutive lattice points
separated by a constant axial distance ρ and angle 2πd. Choosing
either of these quantities arbitrarily, in general, results in a lattice
that is not hexagonal. In fact, there are only countably many ρ
and 2πd that yield hexagonal lattices. Furthermore, if we index
the points consecutively along the generative spiral of a simple
hexagonal lattice, for instance, the indices of the nearest neighbors
must be related as (m, n,m + n) with gcd(m, n) = 1. We choose
m < n by convention. The two lattices on the top and bottom left
of Fig. 5 are illustrations of simple hexagonal lattices. Notice that
the hexagonal lattice is not perfectly aligned with the axis of the
cylinder. The top left figure has a right-tilted hexagon. The bottom-
left hexagon is left-tilted.

We define the term n-parastichy to be the family of spirals
winding through every nth point in a lattice. For instance, in either
lattice of Fig. 5, the 2-parastichy consists of a spiral through the
centers of disks 0 and 2 and another parallel spiral through the
centers of disks 1, 3, and 5. It is possible to draw an n-parastichy
for any n by connecting lattice points whose indices differ by n. On
the other hand, there are only two or three parastichies that are
most visible. These are the ones formed by connecting each point
with its nearest neighbors. As we have noted, it is customary to
refer to a lattice by its two most visible parastichies, given by the
two nearest neighbors or each point. In the top left lattice of Fig. 5,
themost visible parastichies are exactly the neighbors 1, 2 and 3, so
we may refer to this as a (1, 2), (1, 3), (2, 3), or (1, 2, 3) lattice. In
general, when the lattice is not hexagonal, the parastichy numbers
of the lattice will be uniquely defined.

Of course, our goal is to understand the variety of patterns ob-
served on plants. The true value of ρ is related to the growth rate
of the plant and the time between the formation of new primordia,
both of which vary between different plant species, different spec-
imens of the same plant species, and even over the lifetime of a sin-
gle specimen. It is certainly not restricted to values that guarantee
the existence of a hexagonal lattice, so we must investigate how
to maintain a dense packing between hexagonal states. Consider
the situation illustrated in Fig. 5. If we think of the transition from
one hexagonal packing to the next as an axial compression, result-
ing from a decrease of ρ, then we can imagine the (m, n) = (1, 2)
to (m, n) = (2, 3) transition as the disk centered at point 5 slip-
ping between disks 2 and 3 to touch disk 0. We could also imagine
disk 4 slipping between disks 1 and 3 to form (m, n) = (1, 3) il-
lustrated by the right panels in Fig. 5. These correspond to tran-
sitions in parastichy numbers (1, 2) → (2, 3) → (3, 5) and
(1, 2) → (1, 3) → (3, 4) respectively. In general, Van Iterson,
who was much influenced by ideas of Schwendener [31], showed
that any (m, n) hexagonal lattice can compress symmetrically to
either (m,m + n) or (n,m + n) and that during the transition
the densest lattice is rhombic, in that the two nearest neighbors
remain equidistant. The set of all possible rhombic cylindrical lat-
tices is illustrated in Fig. 6. Each bifurcation point in this tree di-
agram corresponds to a hexagonal lattice, for which each point
is preceded by three equidistant nearest neighbors, and the two
branches in decreasing ρ correspond to the two transition possi-
bilities described above. Each segment connecting the bifurcation
points corresponds to a continuumof rhombic lattices, each having
the same parastichy numbers. Note that the choice of divergence
angle 2πd for a fixed rise ρ is not unique. Different Fibonacci-like
sequences lead to different divergence angles, with different angu-
lar differences 2πd between successive lattice points.

We note that in both cases, the 123 → 235 and 123 → 134
transitions, the lattices remain rhombic. Namely, since in the first
transition, disks 0 and 2 and disks 0 and 3 remain in contact, the
distances from 0 to 2 (0 to 3), which we denote |ω2| (respectively
|ω3|), remain equal. Indeed, ifω2,ω3, andω5 are the vectors joining
the centers of disk 0 to the centers of disks 2, 3, and 5, then ω2 +

ω3 = ω5. The corresponding relation in the dual wavevector space,
where k2 =


l2,

m2
R


, k3 =


l3,

m3
R


, and k5 =


l5,

m5
R


, are the

perpendicular directions to the lines ω2, ω3, ω5 if k2 + k3 = k5. As
either R, the radius of the cylinder, increases, or r , the disk radius,
decreases, the legs formed by ω2, ω3 spread, and center of disk 5
is drawn in until all four disks 0, 2, 3, 5 touch. The equidistance
condition |ω2| = |ω3| means that also, throughout the transitions,
|k2| = |k3|. By inspection, one can see that, for the top left panel,
k1 (the wave vector perpendicular to ω1, the vector joining the
centers of disk 0 and disk 1), k2 and k3 are equal, and k1 and k3 have
negative values of l1 and l3, whereas l2 is positive. The wave vector
k3, the resolvent of k1 and k2 (k1 + k2 = k3), has equal length.
As R increases (r decreases), k2 and k3 are equal in length, their
radial components become more positive (respectively negative),
and k5 = k2 + k3 gets drawn towards the circle |k2| = |k3| =

l22 +
m2

2
R2

= l23 +
m2

3
R2

= constant until the bottom left panel is
reached. Note that the new hexagon has a left tilt, whereas the
starting hexagon had a right tilt.

To see the motion of the wavevectors, look at Fig. 26, which is
the result of direct simulation on a disk of radius R ≈ 233. It shows
the (5, 8, 13) to (8, 13, 21) transition between R ≈ 13 and 21 but
applies equallywell to how the dual coordinates in the staticmodel
varywith the riseρ. The parameter R is then inversely proportional
to ρ. Note as R increases, both the wavevectors k8 and k13 move
along the critical circle |k8| = |k13| = constant, the former down
and right, the latter down and left. The resolvent k21 = k8 + k13
is thereby drawn in. On the other hand, the wavevector created
by the irregular Fibonacci addition, k5 + k13 gets pushed away
from the critical circle. The vector k5 = k13 − k8, which played
a central role for smaller values of R, gets pushed away from the
critical circle. As we shall see later, the critical circle represents the
optimal choice of wavevector length to minimize a certain energy
functional which arises in the biochemically driven model which
describes the onset of phyllotaxis.

The situation in the (1, 2, 3) to (1, 3, 4) transition is signifi-
cantly different. In this case, the vectors ω1 and ω3 of the paras-
tichies both point to the right. Their corresponding wavevectors
k1 and k3 point left, namely their radial wavenumbers l1 and l3 are
both negative. In the transition, as R decreases (or r decreases), disk
3 must move left and cross the vertical line through 0. The corre-
sponding wave vector has to move from the left to the right side of
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the circle |k1| = |k3| = constant. In other words, for a certain in-
terval of R (or r), disks 1 and 3 are not opposed, namely they are not
on the opposite sides of the vertical line through the center of disk
0. Once that value of R at which the center of disk 3 moves to the
left of this vertical line, the vertices ω1 and ω3 are opposed (point
to the right and left of the vertical line). Once this happens, the
wavevectors k1 and k3 are also opposed and the addition k1 + k3,
as R increases, draws k4 out of the circle |k1| = |k3| and forms a
right-tilting hexagon 134. The Fibonacci scenario can follow if in
the next R interval, the 7 gets drawn between the 3 and the 4 un-
til the hexagon (3, 4, 7) is formed. On the other hand, the 5 being
drawn between the 1 and the 4 will leave the 1 and the 4 not op-
posed for a small interval.

Now this is the connection with the dynamical approach. All
the algorithms derived from the Hofmeister rule place the nearest
phyllo, here 0, between the two nearest and equidistant ones. In
other words, the vectors 0 to m and 0 to n, where m and n are
parastichies, are equal in length and point to opposite sides of the
vertical line through 0. Therefore, their corresponding Van Iterson
diagrams will have gaps (no solution exists) in the non-Fibonacci
additionm, n,m + n to n,m + n, 2m + n branch. There will be no
gaps in them, n,m + n to n,m + n,m + 2n branch.

In Fig. 36, we display the gap in the (5, 8, 13)-to-(8, 13, 21)
transition. On the Fibonacci branch, namely the one which starts
with a (5, 8, 13) hexagon and ends with a (8, 13, 21) hexagon, the
path is continuous. But, the irregular branchonwhich the (5, 8, 13)
goes to a (5, 13, 18), there is no solution over a significant gap.

2.2.2. Dynamic models
A major criticism of the static models of phyllotaxis is that the

plant does not spring fully formed from the earth, but instead
grows bit-by-bit from the shoot apical meristem (SAM). The SAM
is already present at the tip of the plant embryo, which is con-
tainedwithin the seed and hasmany rapidly dividing cells. Primor-
dia initiate at the edge of the meristem, and as the plant grows,
the meristemmoves upward and leaves behind previously formed
phylla. The botanist Wilhelm Hofmeister published one of the ear-
liest studies of meristems [13] and, from his careful observations,
proposed the rules which we have listed in Section 1.1. From these
rules, and modifications thereof of Snow and Snow [15,16] so as to
allow for whorls as well as Fibonacci spirals, Douady and Couder
carried out a series of numerical simulations reported in [14,20,21].

More recently, a much simpler discrete dynamical system with
similar outcomeswas proposed by Atela, Golé, and Hotton in order
to put the Hofmeister rules in a more geometrical framework [22].
As in the static models, the surface of the stem may be approxi-
mated by a cylinder. The phase space for the dynamical system is
the set of sequences of points {zm = (zm, θm) | m ∈ N} on the
cylinder, where zm = m · ρ for a fixed positive value of the rise
ρ. The points in any sequence represent the positions of primordia
on the cylinder, each primordium residing at a unique level zm. The
primordiumat zm maybe thought of as themth oldest primordium.
The dynamical system, defined by its action on the elements of a
sequence, takes (zm, θm) → (zm+1, θm). That is, each step moves
every primordium up one level while having no effect on its angu-
lar coordinate. To complete the definition of themap, however, we
need to determine the angular coordinate of the point z0 = (0, θ0).
The idea is that θ0 should be chosen so that z0 appears in the ‘‘least
crowded spot’’. The crowdedness of a spot can be quantified by
the distance to the nearest primordium, so let d(zm, zn) be the Eu-
clidean distance on the cylinder between points zm and zn. The dis-
tance from a new primordium with angular coordinate θ0 to its
nearest neighbor is given by

D(θ0) = min
m>0

d(z0, zm).
Hofmeister’s least crowded spot is given by the maximum of D
over all angular coordinates θ0. The earlier works by Douady and
Couder [14,20,21] and Levitov [17,18] instead assigned to each pri-
mordium an inhibitory potential, and the least crowded spot was
determined by minimizing the net potential over θ0. These models
yield identical results for a potential of the form d−s in the limit
s → ∞.

A main result of [22] is that, neglecting arbitrary rotation, sim-
ple lattices are asymptotically stable fixed points of this dynami-
cal system. Two criteria are primarily responsible for the selection
of fixed point lattices. Due to the fact that d is locally convex, the
location of each new primordium is equidistant from two exist-
ing primordia. As a result, the fixed-point lattice is rhombic. Ad-
ditionally, the location of each new primordium has an angular
coordinate between the two nearest primordia. One says therefore
that the lattice is opposed. It is therefore rhombic, opposed, simple
lattices that are stable fixed points of the dynamical system. The
rhombic condition implies a fixed point diagram identical to the
optimal packing results of Van Iterson, and the opposedness con-
dition breaks the symmetry of the bifurcation points as in the case
of Levitov. In other words, the (n,m + n) branch in the Van Iter-
son diagram of Fig. 6 is preferred over the (m,m+ n) branch. For a
given value of ρ, the fixed point could lie on one of many branches
of the Van Iterson diagram, but once on a branch it remains there
so long as ρ varies adiabatically. So, in most cases, the long-time
behavior of this model will result in lattice structures (m, n) that
fall along the sequence of successive Fibonacci numbers.

These dynamical algorithms demonstrate that a simple princi-
ple based on Hofmeister’s rule can generate phyllotactic patterns.
Indeed, Hotton, et al. [32] have directly compared the results of
the discrete dynamical system of Atela, Golé and Hotton to pri-
mordia formation on floral meristms of a sunflower (Helianthus
annuus) and shown that there is excellent agreement. Dynamical
algorithms have a weakness, however, in that they are not well
connected to the chemical or physical mechanisms that are in-
volved in patterning.

2.3. Biochemical and biophysical mechanisms

As described in Section 1.3, formation of phyllotactic patterns
occurs at the plant tip, called the shoot apical meristem (SAM).
Leaves first appear as bulges called primordia on the surface of
the SAM (the tunica), in an annular region known as the genera-
tive region surrounding the central tip of the SAM. Our goal of un-
derstanding phyllotactic patterns therefore rests on understanding
the mechanisms behind the formation of primordia in the genera-
tive region.

As the first application of his theory of the chemical basis for
morphogenesis, Alan Turingwrote a beautifulmonograph on phyl-
lotaxis [33] in which he proposed reaction–diffusion equations for
the formation of the patterns. Turing’s work is significant not only
in that it was an early proposal of a model for phyllotaxis based on
proposed botanical mechanisms, but also in that he introduced in
his analysis Fourier wavevector duals to the phyllotactic lattices. In
the present work, we make heavy use of this approach. However,
morphogens that would correspond to those in Turing’s model
have not been identified in plants. Although the mechanisms for
primordium formation are still not fully understood, the past
decade has yielded major experimental advances which point to
a rich interaction of biochemical and biomechanical mechanisms.

The cells of primordia grow more quickly than surrounding
cells [34]. The basic building block for understanding primordium
formation is therefore an understanding of the integrated bio-
chemical and physical mechanisms of growth of individual cells
that make up the SAM. A plant cell is a pressure vessel [35]. The
plant cellwall is amatrix of stiff cellulosemicrofibrils held together
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by proteins and polysaccharides. Upon the loosening of this matrix
by activators such as expansion, the turgor pressure drives expan-
sion of the cell wall. The relation of growth to turgor pressure for a
single cell is given by the Lockhart model [36]: The expansion rate
R of a cell wall is proportional to the turgor pressure P when this
pressure is above a certain threshold value Y ; R = m(P−Y ). Chem-
icals that change the parameters m, Y , or P therefore can give rise
to growth. On the other hand, plant cells are tightly bound to each
other, so growth may also be influenced by global stresses in the
SAM. This sets up a situation in which both biochemical processes
that modify cell wall properties, as well as mechanical stresses re-
sulting from turgor pressure and incompatible growth (such as one
region growing more quickly than a neighboring region) have the
potential to be involved in primordium formation.

The combined turgor pressure of the individual cells that make
up the SAMmake the SAM itself a pressure vessel. In fact, the group
of Kuhlemeier [37] has found that the rheology of the cells in the
central region of the SAM (the very apex of the plant shoot tip)
differs from that the cells in the surrounding generative region
where primordia form. At the standard turgor pressure for plant
cells, the composition of the cell walls in the central region make
this material a strain-stiffening material, so that although the cells
of the central region expand more than those of the cells in the
generative region under small strain, under larger strains the cells
of the generative region expand significantly more, potentially to
the extent necessary for primordium formation.

A variety of chemicals that loosen the cell wall and therefore
change the parametersm and Y and allow for growth are activated
by the growth hormone auxin [38,37,39]. Indeed, studies find
that auxin is more concentrated at primordia than in surrounding
tissue [40] and show that application of auxin to shootsmay induce
organ formation [37,39,41]. What leads to an inhomogeneous
auxin distribution that results in localized primordium formation?
Experiments and models by the groups of Kuhlemeier and
Meyerowitz implicate auxin transport proteins called PIN1 [42,39].
In addition to normal diffusion, auxin redistribution may occur
through active transport by these proteins. The orientation of PIN1
proteins in a plasmamembrane just inside the cell wall determines
the direction of transport. The key idea of Kuhlemeier is that
a feedback mechanism between auxin concentration and PIN1
orientation results in PIN1 orientation towards cells with a higher
concentration of auxin. If this effect is stronger than diffusion,
a slight perturbation of a homogeneous auxin concentration is
unstable as regions of lower auxin concentration become further
depleted of auxin as PIN1 proteins transport the growth hormone
to regions of higher concentration.

In the picture thus far, the role of mechanical stresses in pri-
mordium formation has been that of a passive response to changes
in cell wall composition caused by inhomogeneous auxin concen-
tration. In a myriad of ways in animal cells (e.g. [43]), stresses have
been shown or posited to play amore active role in plantmeristem
growth. Stress-based mechanisms may (i) interact with the auxin
redistributionmechanism through PIN1 orientation, (ii) determine
anisotropy in cell growth by affecting the orientation of cellulose
microfibrils in the cell walls, and (iii) directly impact primordium
bulge formation through buckling of the tunica.

The feedback mechanism between auxin concentration and
PIN1 orientation was not understood in the original proposals of
Kuhlemeier and Meyerowitz, whose models simply posited that
the cells have some mechanism for detecting the auxin gradient.
Working with Arabidopsis, the group of Meyerowitz has, however,
shown that mechanical stresses can be a signaling mechanism for
PIN1 reorientation [44]. The idea is as follows: Suppose that two
cells that share a cell wall have differing auxin concentrations. The
cell with the higher auxin concentration expands at a larger rate
than the cell with the lower auxin concentration. The resulting
difference in tension on either side of the cell wall serves as a signal
to reorient the PIN1 proteins in the plasmamembrane so that they
transport auxin to the cell with higher auxin concentration. This
mechanism potentially also allows for the global stress state of the
SAM resulting from growth and SAM geometry to also impact PIN1
orientation.

Mechanical stresses have also been shown to play a role in
determining the degree of anisotropy in cell growth in the SAM.
The cellulose microfibrils in the cell wall are laid down by micro-
tubules. As microtubules orient parallel to the main stress direc-
tion, cellulose microfibrils end up being oriented in the direction
of largest stress at the time of cell wall formation. This allows the
cell to resist that stress, but also results in the cells’ growing in the
direction perpendicular to the main stress. Kwiatkowski and Du-
mais have shown that cells in the generative region, and partic-
ularly around primordia, do exhibit anisotropic growth [34]. Later
work ofHamant, et al. showed thatmicrotubules in plant cells align
along principal stress directions [45].

Experiments of Paul Green preceding those of Kuhlemeier
and Meyerowitz suggested a more direct role for mechanical
stresses [46]. A review article of Dumais [47] offers further analysis
of the potential role of mechanics in pattern formation in plants.
Given the right SAM geometry, the combined effect of the turgor
pressure and growth of the individual cells may result in a com-
pressive stress in the generative region, as Green showed occurs in
the sunflower floral meristem. Green suggested that primordia re-
sult from the buckling of the tunica under this compressive stress.
Experiments in which a sunflower floral meristem was placed in a
clamp, thus inducing a compressive stress as the meristem grew,
did indeed result in bulges forming parallel to the clamp [48].

The experiments of Meyerowitz and Kuhlemeier have been pri-
marily with Arabidopsis and tomato plants, whereas Green also
worked with the sunflower. Furthermore, certain phyllotactic pat-
terns not commonly observed on any of these plants are ob-
served in cacti. Although the current dominant thought is that the
Kuhlemeier–Meyerowitz instability is responsible for primordium
formation, it is possible that differentmechanisms dominate in dif-
ferent species. As we discuss in [7], understanding and measuring
the time scales involved in the various processes may help in dis-
tinguishing between the various mechanisms.

In previous work, we formulated a mathematical model based
on themechanisms proposed by Paul Green [10,11]. Subsequently,
by taking a continuum limit of the discrete cell-based auxin-PIN1
model of Jönsson, et al., we formed a pde for this biochemical
mechanism and showed that this pde has a similar form to that of
the earlier stress-based model [2]. As the auxin-PIN1 mechanism
relies on stresses in either a passive or active role, we also formu-
lated a combined model with feedback between the two mecha-
nisms (although the feedback mechanism that we incorporated is
different from the more recent experimental suggestion that
mechanical stresses are involved in PIN1 reorientation). This
combined model allows for the instability to arise from either
mechanism alone or a combination of the two mechanisms.

Comparing the results of the analysis of our combined model
with phyllotactic patterns, one outcome is particularly relevant to
the question of if a combination of interacting mechanisms may
be at play: Although studies of phyllotaxis have typically focused
on the positions of primordia, Williams [49] points out that plants
with the same primordial positions can have patterns dominated
by different parastichy spiral numbers due to the shape of the pri-
mordia; see Fig. 2. Similarly, cacti exhibit various degrees of ribbed-
ness for the same underlying phyllotactic pattern. We have thus
aimed to understand what we have called phyllotactic planforms
rather than simply the positions of primordia and phylla. A simple
model based on only one mechanism produces a simple variety of
phyllotactic planforms, and fails to achieve the sequence of plan-
forms with the same underlying phyllotactic lattice as shown in
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Fig. 2. In the case in which the natural wavelength of the two insta-
bilities differs slightly, the model predicts a variety of phyllotactic
planforms for the same phyllotactic lattice.

2.4. Mathematical models

In a series of papers, we analyzed an extension of a pdemodel of
Green, Steele, and Rennich [50] based onGreen’s proposal for a bio-
physical origin [10,11] and later coupled this model to the auxin-
PIN1 mechanism [2,51]. In the coupled model, the pde governing
the auxin concentration was derived via a continuum approxima-
tion of a discrete-cell model for the auxin-PIN1 mechanism devel-
oped by Jönsson, et al. [42]. Here, we review these models and a
more recent discrete-cell model of Heisler, et al. [44] in which me-
chanical stresses play a role in determining PIN1 orientation and
therefore the auxin field.

In [10,11], we analyze a pde model for Green’s mechanical hy-
pothesis. We model the generative region at a plant apex (Fig. 12)
as a thin, curved, compressed shell (the plant’s outer skin, its
tunica) attached to an elastic foundation (the plant’s inner corpus of
cells) and study how the shell buckles under the influences of com-
pressive stresses that arise from growth. The elastic energy that is
minimized by this buckling is a functional E(w, Σij) of the shell
deformation w and an in-plane stress tensor Σij. We employ the
Föppl–von Kármán–Donnell (FvKD) equations, which are the Eu-
ler–Lagrange equations for the energy E(w, Σij) and show how a
variety of patterns is possible, depending on the anisotropies in the
systems and the geometry of the pre-buckling surface. This analy-
sis, however, assumes a uniform pre-buckling stress state and does
not take into account the role of auxin suggested by more recent
experiments.

In [2], we augment our model to a set of equations for the sur-
face deformationw, the Airy potential F (a potential for the stresses
Σij) and a growth function g related to auxin concentration. The
FvKD equations

ζmwt + ∆2w + P∆w + κw + γw3
+ C∆F − [F , w] = 0, (8a)

∆2F + ∆g − C∆w +
1
2
[w, w] = 0, (8b)

are completed with an equation for the growth function g de-
scribed below. In (8), P is a uniform stress induced by differen-
tial growth, C is the Gaussian curvature of the middle surface of
the original, unbuckled tunica shell, ∆ is the Laplacian ∂2

∂x2
+

∂2

∂y2
,

and the bracket is defined by [F , w] = Fxxwyy + Fyywxx − 2Fxywxy
(subscripts denote derivatives). The first equation is the force-
equilibrium equation of an overdamped shell model as we have
neglected a second-order time derivative of w, and the second
equation is a compatibility equation expressing Gauss’s Theorema
Egregium. Indeed, in FvKD theory, stresses are linearly related to
strains (changes that buckling induces on the metric of the shell’s
middle surface) so that (8b) relates a potential for changes in the
metric (∆2F + ∆g) to change in Gaussian curvature (−C∆w +
1
2 [w, w]).

To obtain a pde governing the growth function g , we derived
a continuum approximation of a discrete-cell model of Jönsson,
et al. [42] for primordium formation based on the hypothesis of
auxin transport by PIN1 proteins. Similar models were developed
by Smith, et al. [52] and Barbier de Reuille, et al. [53]. Here, we
review a system of ordinary differential equations proposed by
Jönsson, et al. [42] and a modification of this model by Heisler,
et al. [44] which included stress-induced PIN1 orientation. In the
model of [42], a planar generative region (representing Region 2 of
Fig. 12) in the tunica is taken to be made up of a network of cells,
which we picture as a simplified hexagonal lattice in Fig. 17. The
Fig. 17. Schematic diagram of the cell network. A cell i has auxin concentration ai ,
PIN1 concentration Pi in its interior, and PIN1 concentration Pij on the wall shared
with cell j.

auxin concentration ai in cell i is governed by the following system
of ordinary differential equations:

dai
dt

= ca − daai +

k∈Ni

D(ak − ai) +


k∈Ni

(Pkih(ak) − Pikh(ai)) , (9)

where the summations are taken over the set Ni of cells that
share a wall with cell i. In the system (9), the term ca rep-
resents the constant production of auxin, and the term −daai
represents auxin degradation. The term


k∈Ni

D(ak − ai) repre-
sents normal diffusion with diffusion coefficient D. The final term,

k∈Ni
(Pkih(ak) − Pikh(ai)), is the so-called PIN1 up-regularization

term, since the protein PIN1 in the plasma membrane can polar-
ize so that auxin may be transported from cells with lower to cells
with higher auxin concentrations, a reverse diffusion. For any (i, k),
Pik is the PIN1 concentration near the cell wall of cell i that is ad-
jacent to cell k. The terms Pkih(ak) give the rate of auxin flux into
the cell due to up-regularization, and the terms Pikh(ai) give the
corresponding rate of auxin flow out of the cell i. In [42], h(ai) is
taken to be h(ai) = ai, whereas in [44], h(ai) is taken to have the
Michaelis–Menten form h(ai) = ai/(κ + ai).

In order to close the system (9), a relation between the con-
centrations Pij of PIN1 on the plasma membranes and the auxin
concentrations ai is required. In a process called PIN1 cycling, PIN1
proteinmolecules cycle between being bound to the plasmamem-
brane or being in the interior of the cell. Consider two neighboring
cells, cell i and cell j, with a concentration of PIN1 interior to the cell
and PIN1 on each plasma membrane. Denoting the interior PIN1
concentration by Pi and the PIN1 concentration in cell i adjacent to
cell j by Pij, the time responses of Pij and Pi are taken to be

dPij
dt

= f (ai, aj)Pi − k2Pij, (10a)

dPi
dt

=


k∈Ni

(k2Pik − f (ai, ak)Pi) . (10b)

The key property of the function f (ai, aj) is that it be an increas-
ing function of aj, so that a higher concentration of auxin in the
neighboring cell j will cause an increase in the growth rate of
Pij through the term f (ai, aj)Pi. Simultaneously, an internalization
process −k2Pij takes PIN1 back to the cell interior with rate con-
stant k2. Note that (10a) and (10b) together imply that the total
PIN1 concentration in cell i, P = Pi +


k∈Ni

Pik is constant, which
we assume to be the same in all cells.

The models of Jönsson, et al. [42] and Heisler, et al. [44] differ
in the choice of the function f (ai, aj). In [42], the authors assume a
linear model, namely

f (ai, aj) = f (aj) = k1aj.
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Later evidence of the effect of mechanical stress on PIN1 cycling
[45,44] led Hamant et al. in [44] to write f (ai, aj) = f (sij(ai, aj)) as
a function of the stress sij in the wall of cell i adjacent to cell j. This
stress, in turn, is a function sij(ai, aj) of the auxin concentrations in
the cells i and j since the auxin concentrations affect the stiffness
of the cell walls. In particular, sij is taken to have the Hookean form

sij(ai, aj) = E(ai)ϵij(ai, aj), (11)

where the elastic coefficient is a decreasing function of ai;

E(ai) = Emin +
(Emax − Emin)km3

ami + km3
, (12)

wherem is a small integer. The strain ϵij depends on the force T/A0
exerted by internal turgor pressure T and the stiffnesses of the two
sides of the cell walls;

ϵij =
T/A0

E(ai) + E(aj)
. (13)

Relations (11) and (13) yield

sij =
T/A0

1 +
E(aj)
E(ai)

. (14)

Finally, Heisler, et al. [44] take f (sij(ai, aj)) to be an integer
power of sij;

f (sij(ai, aj)) = snij. (15)

In simulations, n is taken to be 2. Since E(aj) is a decreasing
function of aj, f (sij(ai, aj)) is an increasing function of the auxin
concentration aj in the cell j neighboring cell i. According to
(10a), an increase in aj leads to an increase in the rate at which
PIN1 incorporates into the wall of cell i adjacent to cell j, and
consequently, according to the system (9), an increase in the rate at
which auxin is transported by these proteins from cell i to cell j. The
net result is that an increase in aj results in an increased transport
of auxin from cell i to cell j, acting like reverse diffusion.

Eqs. (9) and (10) form a closed system for the variables ai, Pi and
Pij. A simplificationmay bemade by assuming, consistentwith data
given in Table S2 of Jönnson, et al. [42], that the PIN1 relaxation
time k−1

2 is much smaller than the auxin concentration relaxation
time d−1 and that the PIN1 concentration Pij responds adiabatically
to changes in ai. Eq. (10) then implies that

Pij =
f (ai, aj)

k2
Pi,

which together with the observation that P = Pi +


k∈Ni
Pik is

constant implies that

Pij = P
f (ai, aj)

k2 +

k∈Ni

f (ai, ak)
,

an expression for the PIN1 concentrations Pij in terms of the auxin
concentrations. Substituting this expression back into (9) gives a
closed system of equations for the concentrations ai:
dai
dt

= ca − daai + D

k∈Ni

(ak − ai)

+ P

k∈Ni

h(ak)
f (ak, ai)

k2 +

j∈Ni

f (ak, aj)
− h(ai)

f (ai, ak)
k2 +


j∈Ni

f (ai, aj)

 . (16)

In [2], we take advantage of the fact that the auxin concentra-
tion fluctuations found in [42] occur overmany cell diameters. This
allows us to recast the discrete system (16) of [42] in a continuum
pde approximation by replacing the set of concentrations ai by a
continuous field a(x, y, t). In [2], we derive the continuum approx-
imation using a square lattice of cells, but the hexagonal lattice that
we use here results in more rotational symmetry in the resulting
system of pde’s. If (i1, i2) are the coordinates of the center of cell
i, so that ai = a(i1, i2, t), we write a(x = i1h0, y = i2h0, t) =

a(i1, i2, t), where h0 is the cell diameter (that is, the distance from
the center of a hexagonal cell to the nearest side). For a hexagonal
lattice, the difference term D


k∈Ni

(ak −ai), for example, becomes

Da


i1 + h0

1
2
, i2 + h0

√
3
2


+ a


i1 − h0

1
2
, i2 + h0

√
3
2



+ a


i1 + h0

1
2
, i2 − h0

√
3
2


+ a


i1 − h0

1
2
, i2 − h0

√
3
2


+ a(i1 + h0, i2) + a(i1 − h0, i2) − 6a(i1, i2). (17)

Expressed as a Taylor series up to fourth order, this is

3
h2
0

2!
∇

2a + 9
h4
0

4!
∇

4a. (18)

The hexagonal lattice allows us preserve rotational symmetry up
to O(h4

0). A square lattice would only preserve this invariance to
O(h2

0). To expand the terms related to PIN1 in (16), it is convenient
to introduce the fractional PIN1 concentration field G(x, y, t),
where

G(x, y, t) = G(i1h0, i2h0; j1h0, j2h0; t) =
f (ai, aj)

k2 +

k∈Ni

f (ai, ak)
.

Summingupover the six cells adjacent to the ith cell, labeled (i1, i2)
and expanding to fourth order gives

Ph2
0∇


a2∇


G
a


+ P

h4
0

12


a∇4G − G∇

4a

. (19)

The fact that the first term in (19) is gradient so that the balance
between the time derivative of a(x, y, t) and this quadratic term
is conservative is a reflection of the fact that, in the absence of
the production and degradation terms in (7), the discrete model
conserves


ai. To O(h2

0), the first term in (9) becomes a Laplacian
because it involves nearest neighbor interactions; the second term
involves next to nearest neighbor interactions and thus leads to a
single gradient.

Next, we expand about the spatially uniform constant state
a0 =

ca
da

by writing

a(x, y, t) = a0 (1 + f0g(x, y, t)) , (20)

where f0 is a coefficient of expansion, and the field g is a measure
of auxin fluctuation. We emphasize that, in this analysis, we are
dealing with fluctuations in the auxin concentration which are
small with respect to the overall auxin concentration level. While
the local auxin concentration field a(x, y, t) is never negative,
negative values of g(x, y, t) are possible and just mean that there
is an auxin depletion at that point.

Substituting (18)–(20) into (16) and expanding in powers of f0g
gives

ζggt + Dg∆
2g + H∆g + dg + δg3

+ κ1∇(g∇g)

+ κ2∇(∇g∇2g) = 0, (21)

where H ∼ h2
0(T − Dg) measures the strength of auxin transport

(T ) versus diffusion (Dg ). Eq. (21) has a form that describes pattern
formation in many systems. In fact, it closely mimics the stress-
equilibrium equation (8a), the differences lying in the nonlinear
terms and the interpretation of the parameters in the linear terms.
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In (21), we have neglected cubic terms that include gradients of
g as modeling them with g3 makes no qualitative difference. We
will see in Section 3 that retaining gradient terms in the quadratic
coefficients is important, as otherwise it is difficult to achieve
‘‘pushed’’ fronts.

The final set of model equations that we derive in [2] consists
of the FvKD system (8) together with (21):

ζmwt + ∆2w + P∆w + κw + γw3
+ C∆F − [F , w] = 0, (22a)

∆2F + ∆g − C∆w +
1
2
[w, w] = 0, (22b)

ζggt + Dg∆
2g + H∆g + dg + δg3

+ κ1∇(g∇g)

+ κ2∇(∇g∇2g) − b∆F = 0, (22c)

where Eq. (22c) contains an added term −b∆F . It says that an
increase in the trace of the stress matrix ∆F , a measure of how
cells may be pulled apart, provides an additional contribution to
the growth rate g .

Either (22a) and (22b) or (22c) may produce an instability of
the homogeneous state to a pattern. If both the elastic instabilities
of (22a) and (22b) and the auxin instability of (22c) are active,
the possibly different natural wavelengths of the patterns that
would result from either instability alone allow for differences in
phyllotactic configurations (the underlying lattice) and the surface
deformation. The result is phyllotactic planforms in which the
phylla are diamonds rather than squares. In [2] we analyze a
variety of scenarios inwhich the elastic and auxin instabilitiesmay
cooperate or compete.

For the remainder of this review, however, we concentrate of
the case for which the auxin instability and therefore the auxin
field dominates. This arises when the differential growth induced
compressive stresses at the generating annulus are strongly
subcritical so that, for all intents and purposes, the Airy potential
F and the corresponding surface normal deformation field w of
the tunica are slaved to the auxin fluctuation induced strain field
g . If, in addition, we assume that κ2k20 is small compared to κ1,
where k0 is the preferred wavenumber of the auxin instability, we
can adiabatically eliminate the w, F fields and deal solely with the
equation for the g field. A little rescaling puts this into the canonical
form

ut = −(∇2
+ 1)2u + µu − β∇(u∇u) − u3. (23)

Because previous work [2] indicates that, except for the case
when the two instabilities coexist, there is not much qualitative
difference in the outcomes, it is (23) which we analyze in depth in
Section 3. The reason for this choice is that it is essential that we
conduct careful simulations over large regions and long times in
order to verify that the patterns suggested by asymptotic methods
described in Section 3.3 are in fact realized. The conservation
nature of the PIN1 term in (7) means that the linear reverse
diffusion and quadratic terms enter as divergences. The results we
show in the next section are relatively robust over an open set of
the coefficients µ, β , or indeed over changes in the equation itself
as long as the quadratic terms enterwith derivatives. If onewere to
include a quadratic term (and nowhere in the model derivation is
there any reason to do so), say proportional to u2, then (23) would
have additional spatially constant solutions which would compete
with hexagonal configurations.

3. Analysis and simulations

The goal of this section is to gain as much understanding as
possible from themodel we have formulated in Section 2.4. To this
end, we will use the reduction (23). The geometrical picture we
have in mind is motivated by the seed formation in a sunflower
(see Fig. 9(a)). The pattern is initiated at some outer boundary
by the floret configuration that has recently been made there.
It propagates inward. In the language of Section 1.3, the outer
boundary of the region of already developing florets is Region
3. The inner region of slowly growing cells is Region 1. At the
boundary, the generative annulus, Region 2, consisting of faster
growing cells, forms with uniform auxin concentration and, as
explained in Section 2.3, the rheology of the cells in this generative
annulus differs from that of the cells in Region 1. The uniform auxin
concentration in this newly formed annulus corresponds to the
solution u = 0 of (23) and is unstable. A new pattern will form
in this annulus, and its structure will be influenced by the pattern
that already exists on its outer boundary. The process repeats. New
auxin field maxima are thus created annulus-by-annulus along
a circular front until all of Region 1 has been converted first to
Region 2 and then to the patterned Region 3. It is relatively easy
to modify the model to handle other similar scenarios such as
an outward propagating pattern with or without underlying plant
growth which would be captured by the addition of an advection
term in (23).

We use two investigative tools, direct numerical simulation and
analysis based on the ideas of center manifold theory. Each has
its strengths and weaknesses, but understanding gained from one
informs the other.

In Section 3.1, we outline themethod thatwe use for simulating
(23), define the information that we extract from the completed
solution u(r, θ), and indicate how the method can be easily
adapted for use not only on disks, but for any surface of revolution.
For reasons thatwe explain both in Sections 3.1 and 3.3, it turns out
to be useful to introduce a companion equation to (23) which, near
onset, namely for smallµ, has virtually the same dynamics, but is a
gradient flow. In Section 3.2, we present the main outcomes of our
simulations. In the order that they are presented, the key results
are the following: (i) Eq. (23) and its companion gradient flow
lead to sunflower patterns which are not only visually identical
but which, under Fourier analysis, have the same properties. (ii) At
each radius r , the field u(r, θ) is dominated by Fourier amplitudes
Am(r) corresponding to either three modes with wavevectors
km = (lm,m/r), kn = (ln, n/r), km+n = km + kn, or four modes
kn−km, km, kn, km+n consisting of two overlapping triads. (iii) The
set {m} of dominant modes is a subset of the integers defined by
the Fibonacci rule. (iv) The radial interval 8 < r < 233 is split
up into intervals Rj, Rj+1 = Rjφ, where φ is the golden number.
Let Rm, Rn be such successive radii. At Rm and Rn, the pattern
is hexagonal, dominated by three modes, kn−m, km, kn at Rm and
km, kn, km+n at Rn, with equal amplitudes, andwavenumbers equal
to a preferred wavenumber k0. Between Rm and Rn, the modes
with wavevectors kn−m and km+n have smaller amplitudes and
wavenumbers far from k0. (v) The total pattern is self-similar. The
amplitudes and wavevectors of both the active Fibonacci modes
(and, it turns out, of all other passive integer modes) in any one
interval can be mapped into those in the neighboring interval by
An(rφ) = Am(r), ln(rφ) = −lm(r), where m and n are successive
Fibonacci numbers. Asm and n increase, n/m approaches φ. In the
regions in which they are dominant, all of the wavevectors paths
{lm(r),m/r}m lie on top of each other. (vi) The reasons that the
dominantmodes in each interval are selected via the Fibonacci rule
become clearwhen one sees how thewavevectors kn−m = kn−km,
km, kn, km+n = km + kn generated by Fibonacci addition and
the wavevectors of all other nonlinearly generated modes such as
k2n−m = kn−m + kn move as functions of r . The wavenumbers
of the former all approach, for some value of r , the preferred
wavenumber k0. The latter never do.

Because our understanding of the patterns is greatly facili-
tated by a Fourier analysis, it is natural to introduce, as we do in
Section 3.3, a center manifold approach familiar from traditional
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means of pattern analysis. Indeed, inmanyof our earlierworks, this
was the primary investigative tool [10,11]. The idea is to replace the
pde (23) (or its gradient flow companion) with a set of amplitude
equations for the amplitudes Am of the Fouriermodes. Near the on-
set of instability, one can identify a set of shapes and configurations
to which the uniform solution, here u = 0, is most unstable. In
systems of large aspect ratio (systems for which the domain size is
much larger than the length scales involved in the most unstable
modes) with rotational and translational invariance, the unstable
shapes are Fourier modes eik·x, where the wavenumber k = |k| is
close to some preferred value kL (for (23), kL = 1) determined by
linear stability analysis. For µ > 0, we would designate all modes
whose wavevectors k have wavenumbers equal to or close to kL as
part of an active set A and designate all others as part of the passive
set. We indicate in Section 3.3 what the resulting equations for the
amplitudes of the active modes would be if the geometry is planar
and the orientation of the planform is determined by someexternal
bias (such as boundary conditions). The quadratic terms in (23) and
its companion gradient flow preferentially choose hexagon shapes
because the quadratic interaction of two modes eikj·x, |kj| = kL,
j = 1, 2 can give rise to a thirdmode eik3·x withk1+k2+k3 = 0 and
|k3| = kL if k1 and k2 are 120° apart. In such cases, it turns out that
the coupling coefficient τ(k1, k2, k3)measuring the strength of the
quadratic interaction is symmetric in all indices so that the result-
ing amplitude equations for the amplitudes A1, A2, A3 are gradient
even if the original pde is not gradient. A prime example of this
is convection patterns. The governing Oberbeck–Boussinesq equa-
tions are not gradient, but, near onset, for large Prandtl numbers,
the amplitude equations are. In other words, in planar geometries
with hexagonal patterns, the amplitude equations for (23) and its
gradient flow companion are both the same and are gradient. Con-
sequently, there is a natural free energy, E(A1, A2, A3), and thewin-
ning configurations are those that minimize E.

But, phyllotactic patterns in disk geometries which are laid
down annulus-by-annulus do not quite conform to that prescrip-
tion. The main reason for this is that, as the pattern advances from
annulus of one radius to another, the active modes change. So, the
object that we define in Section 3.1 as the center manifold also
evolves. Moreover, whereas at all the radii Rj at which hexagonal
patterns dominate, the resulting amplitude equations are gradient,
in between these radii they are not.We have therefore to try to un-
derstand why it is that the whole pattern does indeed behave as if
it is nearly gradient. This we do both in Section 3.3, where we de-
rive the appropriate set of amplitude equations, and in Section 3.4,
where we show that the results obtained from an amplitude equa-
tion analysis are completely consistent with those that we obtain
from simulations.

But, while the amplitude equations can give the right answers,
the simulations are absolutely necessary to delineate the circum-
stance for which the continuum of solutions parameterized by the
generative radius R is actually realized. Bias (Koiter coined the
phrase geometric imperfection, in mathematics it became known
as imperfect bifurcation) plays an important role. The new pattern
at R is heavily influenced by the existing pattern at the neighbor-
ing annulus R + dR. In gradient systems, the energy minimum of
the latter lies in the basin of attraction of the energy minimum of
the former so it is natural for the solution to follow the continuum.
But the energy landscape also has other minima (see Result 6, Sec-
tion 3.2 and Result 4, Section 3.4) which may be accessed if per-
turbations are large enough. Moreover, as we show in Section 3.3,
there are other modes which may not have been included in an
amplitude equation analysis which can become linearly unstable.
If their growth times are sufficiently fast, they too can interrupt
the continuum of amplitude equations solutions. Thus, we need
the simulations to be sure that the amplitude equations do indeed
describe the evolving patterns.
We also raise the more general question, using Fibonacci pat-
terns as the example, of the need to adapt center manifold anal-
yses to cover those situations for which the center manifold itself
changes slowly. In this regard,we present a novel and exciting con-
jecture as to how to view the center manifold.

3.1. Simulations: What we do, what we measure

The choice of geometry and boundary conditions for our simu-
lation of (23) is motivated by the seed formation stage of the sun-
flower (Fig. 9(a)). As we have recounted, sunflowers are formed in
two stages. In the first stage, flowers are initiated at the generative
annulus, which increases in radius. As a result, the older flowers
with the lowest parastichy numbers are on the outside. The newly
formed higher parastichy numbers are on the inside. At a certain
point, however, the center region consisting ofmushyundifferenti-
ated cells undergoes a phase transition and, from the outside in, the
seeds or florets are laid down by a front which moves inward. The
parastichy numbers decrease with decreasing radius. Because this
process occurs rapidly, on a time scale of days, the pattern which
is laid down at a certain radius remains at that radius. The di-
ameter of the plant at this stage is on the order of millimeters.
Subsequent growth to the state we picture as a fully developed
sunflower with a size of 10–15 cm takes place over many weeks.
Thus at the seed-making stage, the optimal packing propertywhich
the pattern manifests when first laid down remains visible.

To simulate this situation, we initiate a hexagonal pattern at a
radius of approximately 233 units with dominant parastichy num-
bers (89, 144) and allow it to invade the interior of the disk, on
which the initial state is u = 0. To show that it is the Fibonacci rule
rather than the actual starting numbers which influence the paras-
tichy number progression, we run concurrently a computation
with starting parastichy numbers (76, 123) beginning at a radius of
199 units. Such an arrangement would arise if the starting paras-
tichies at the flower-making stage were (1, 3) rather than (1, 2).
The starting pattern is determined fromahexagonal (89, 144, 233)
shape as calculated from the amplitude equations (which we dis-
cuss in Section 3.3). The front is allowed to evolve by the pde (23)
on a cylinder with the outer radius until it reaches a steady state.
The amplitude equation analysis is so accurate that the hexagonal
pattern hardly changes at all. The idea behind the choice of initial
conditions is that the seed pattern is most heavily influenced by
the flower patternmost recently laid downbefore the seed-making
phase begins.

We then propagate the solution inwards until it reaches a radius
of approximately 13 units. The evolving front chooses its own
speed. It also appears to choose a wavenumber k0 which is close
to the wavenumber k = 1 chosen by a linear stability analysis of
the u = 0 solution in (23). As the pattern behind the front evolves,
we observe that it has the following character. At a countable set
of radii {233, 144, 89, . . .}, it is hexagonal. Between these radii, it
is basically rhombic. For an open set of parameters in the (µ, β)-
plane, the front is also pushed.Wewill havemore to say about this
later.

Once the pattern has reached the inner radius, the total pattern
in the disk reaches a steady state. We analyze it by writing

u(r, θ) =


m

am(r) exp

i

φm(r) + mθ


+ (∗) (24)

over non-negative integers {m} where am(r) and φm(r) are real.
The sequence {am} is the sequence of amplitudes. The radial
derivatives of the real phase ℓm = φ′

m(r) give us the local radial
wavenumbers. From the wavenumber pairs (ℓm,m), (ℓn, n) with
the largest amplitudes at any radius r , namely the parastichies,
we can determine the local rise and divergence angle from the
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Fig. 18. Pseudocolor plots of u(x, t) on the section r < 89 of a pattern initiated at r = 233 with parastichy numbers (89, 144) computed using the model (27) with γ = 0
on the left and γ = 1 on the right.
formulae

2πd = 2π
ℓmp − ℓnq
ℓmn − ℓnm

(25)

ρ =
1
r

qn − pm
ℓmn − ℓnm

(26)

(see [3] for derivation). Because m, n are coprime, we can always
find a p and a q such that qn − pm = ±1. We make the unique
choice of p and q which guarantees the angle 2πd is between 0
and 2π . At radii where the pattern is hexagonal, there will be three
dominant modes with wave vectors km, kn, and km+n = km + kn.
Any pair of the threewave vectorsmay be used to calculate d andρ.

Solving (23) numerically is challenging, especially since our
computation will cover an area containing on the order of 104

maxima of the field u. The plant’s choice of geometry makes it
difficult to use a spectral or pseudo-spectral method, and so we
must fall back on finite difference methods to approximate the
spatial derivatives. On the other hand, this leads to significant
stiffness in the difference operators since the pde is fourth-order in
space. Furthermore, the spatial derivatives in the nonlinear terms
make it difficult to obtain stability even with modest time-steps.
In order to address these difficulties, we try to reorganize (23) into
a form which is as close to a gradient flow as possible. We rewrite
(23) as
∂u
∂t

=

µ − (∇2

+ 1)2

u −

β

3


1 +

γ

2

 
2u∇2u + |∇u|2


−

βγ

2
|∇u|2 − u3. (27)

Taking γ = 1, we obtain the original equation. Taking γ = 0, we
obtain the gradient flow

∂u
∂t

=

µ − (∇2

+ 1)2

u −

β

3


2u∇2u + |∇u|2


− u3

= −
δE
δu

. (28)

E =

 
−

1
2
µu2

+
1
2


(∇2

+ 1)u
2

−
β

3
u|∇u|2 +

1
4
u4


. (29)

Our simulations of (23) will take advantage of this decomposition
by using the gradient part of (27) with γ = 1 to obtain our first ap-
proximation to the solution u and then adopting an iterative proce-
dure to calculate the correction due to the remainder −β|∇u|2. It
turns out that there is very little difference in the solutions of (23)
and (27), a result wewill illustrate by the first graphs in the follow-
ing Section 3.2. For reasons that we explain later, for small values
of µ, namely near the onset of instability of the unstable solution
u = 0, (23) behaves very much as if it were a gradient flow. We
now describe how we solve (27).
First, in a manner similar to [54], we construct a discrete
approximation to the energy (29) using quadrature for the
integration and finite differences for the derivatives. By taking a
difference of sums andmanipulating the resulting expressionusing
summation by parts, we can transform this approximation into
a form reminiscent of a variational derivative. In this way, we
determine a discrete variational derivative of the energy, whichwe
can use as an approximation for the gradient term in our numerical
method. The benefit of this approach is that the numerical method
inherits any continuous variational properties of the pde, in
particular, that the solution is bounded a priori by norms of the
initial condition. Thuswe can explicitly avoid numerical instability.
More details are contained in [8]. Having taken a time step of the
gradient part of (27) with γ = 1, we can implicitly compute the
correction to the step using the term −(β/2) |∇u|2 if necessary.

It is also possible to extend the whole calculation to arbitrary
axisymmetric surfaces, which we exploit in later sections. This
captures the fact that the radius of the generative annulus may
change arbitrarily during the growth of the plant, and the radius
in part determines the pattern being laid down. Any axisymmetric
surface can be described as a surface of revolution, which can
in turn be describe by its cross-section. Let z be the arc length
axially along the cross-section and r(z) be the distance to the axis
of the surface. Also, let θ be the angle about the axis. This is a
convenient choice of coordinates since the line element becomes
ds2 = dz2 + r2(z) dθ2, which gives the gradient

∇ =


∂

∂z
,

1
r(z)

∂

∂θ


,

and the Laplacian

∇
2

=
∂2

∂z2
+

r ′(z)
r(z)

∂

∂z
+

1
r2(z)

∂2

∂θ2
.

In the case r(z) = ±z, these give the corresponding operators on
the disk in polar coordinates. For instance, we use r(z) = 233 − z
to compute on the disk illustrated in Fig. 18. In the case r(z) = r0,
for some constant r0 > 0, these give the corresponding operators
on the cylinder of radius r0. In the case r ′(z) = c , for 0 < c < 1, the
surface forms part of a cone. We use such a surface in Section 3.5
to simulate a slowly varying radius of the generative annulus.
Fortunately, it is straightforward tomodify our numericalmethods
to compute solutions of (23) for arbitrary r(z).

In addition, for solutions to both (23) and (27), wemeasure ϵ(r),
η(r) and ν(r), the local energy, local packing density and front
speed respectively, which all change with r . The front speed ν is
the instantaneous front speed at a particular radius. To find this
speed, we locate the front by computing the mean of u2 around
the circumference. This gives a function of r which has a near-
constant positive value in the patterned region and is zero in the



68 M.F. Pennybacker et al. / Physica D 306 (2015) 48–81
Fig. 19. The invariant amplitude curve for amplitudes amj withmj from the regular Fibonacci sequence startingwith (1, 2). The horizontal scaling emphasizes the self-similar
property amj (r) = amj+1 (ϕr). From a solution of (27) with γ = 0 on the left and γ = 1 on the right.
Fig. 20. Inside, the locus of wavevectors for modes with amplitude greater than 10% of themaximum value. Outside, the locus of wavevectors for irregular Fibonacci modes.
The dashed semicircle indicates the preferred wavenumber k0 . From a solution of (27) with γ = 0 on the left and γ = 1 on the right.
unpatterned region. By finding the location of the half-maximum
value, it is possible to locate the front. The velocity is then
calculated using a finite difference applied to the position. The local
energy ϵ is the energy density of the local lattice, computed using
a discrete approximation to (29). The local packing efficiency η is
the largest fraction of the local cylinder, representing the pattern
in a narrow annulus at radius r , that can be covered by identical
circles centered at maxima of the local lattice. This quantity is
proportional to 1/|km×kn|, wherem, n are the parastichy numbers
at that radius. A complete derivation can be found in [3].

Finally, in order to determine what kind of fixed point the
apparently stationary pattern of the pde (27) is, we continue the
calculation for up to five times the time it takes the front to go
from the outer to the inner radius. Because the pattern is so large at
this stage compared with the local wavelength, the geometry will
look locally planar, and for planes the energyminimizing planform
is hexagonal. On a very long time scale, defects begin to appear
which we see by temporary but dramatic sudden decreases in the
free energy. These defects are part of an effort to reorganize the
pattern into hexagonal patches each with their local orientations.
Thus we conclude that Fibonacci patterns are not global attractors
but are actually saddle points with strongly attracting stable
manifolds and weakly repelling unstable ones. They are long-lived
and therefore potentially observable in many contexts.

3.2. The results of the simulations: Fibonacci patterns

We now present our findings from direct numerical simulation
of our model (27) in the cases γ = 0 and γ = 1, which wewill call
gradient and nongradient, respectively.

Result 1. Figs. 18–20. A remarkable outcome, which is not at
all clear a priori, is that the pattern laid down by the front is
nearly identical for the gradient and the nongradient cases. In
Fig. 18, we present the results of two simulations on the disc r <
233 initiated at the boundary r = 233 with a pattern having
parastichy numbers (89, 144). The two simulations are nearly
indistinguishable qualitatively. The similarity, however, does not
stop there.

In Fig. 19, we present amplitude data gathered from both these
simulations. In addition to being again visually indistinguishable,
quantitatively we observe the following. By scaling the radius as
r/ϕi, where i is the index of the circumferential wavenumbermi in
the regular Fibonacci sequence and ϕ = (1 +

√
5)/2 is the golden

ratio, we find that both the gradient and nongradient cases exhibit
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Fig. 21. A pseudocolor plot of u(x, t) on the section r < 89 of a pattern initiated
at r = 233 with parastichy numbers (89, 144) computed using the nongradient
model (23).

the same self-similar property ami(r) = ami+1(rϕ). Furthermore,
in Fig. 20, we present the trajectories of wavevectors for the active
set of modes. Not only are they nearly identical in both cases, they
also exhibit a self-similar property in that each of the active modes
follows the same path. The points at which the wavevectors cross
the k0 (dashed) circle correspond to hexagonal configurations. We
return to these properties in more detail later.

These findings establish, if not a formal equivalence, at least
an empirical equivalence between the gradient and nongradient
forms of (27).

Result 2. Figs. 21–23. In Fig. 22, we show that the dominant am-
plitudes over the range 13 < r < 89 for the first two simulations
belong to those modes generated by quadratic nonlinear interac-
tions, starting from the initial parastichy wavevectors (k89, k144)
and (k76, k133) respectively, which follow from the Fibonacci rule
k144 − k89 = k55 and thereafter k34, k21, k13 (resp. k47, k29, k18).
The amplitudes of modes generated by other binary combinations
(e.g. k29 = k8 + k21, k42 = 2k21) are much smaller. In Fig. 23,
we plot the amplitude of each mode generated by the Fibonacci
rule as a function of r . To illustrate the self-similar property, we
plot amj as a function of r/ϕj. All amplitudes lie on the same curve.
Moreover, the amplitudes of all the modes generated by the Fi-
bonacci rule of the second simulation, a123, a76, a47, a29, a18, a11,
a7, a4, a3, a1 lie on the same curve except it is phase shifted by a
calculable amount. If (m1,m2) and (n1, n2), here (1, 2) and (1, 3),
are the first two members in two different Fibonacci sequences,
it is easy to show [27] that the ratio of corresponding numbers
nj/mj tends to ϕmn =

n1+ϕn2
m1+ϕm2

which here is 1+3ϕ
1+2ϕ ≈ 1.4. Thus

amj(r/ϕ
j) = anj(rϕmn/ϕ

j).
What is very clear from this analysis is that the Fibonacci rule

dominates the dynamics of mode selection in the evolution of
solutions of (27).

Result 3. Fig. 24. In Fig. 24 we show the paths of the radial
wavenumbers by graphing∓ℓmj+1(r), ±ℓmj(r) in the∓ℓmj+1 , ±ℓmj
plane. All radial wavenumbers follow the same path. They each
have the self-similar property that −ℓmj+1(rϕ) = ℓmj(r).

Result 4. Fig. 25. By using the transformations (25) and (26) to
convert the wavevectors with locally dominant amplitudes into
the local rise anddivergence angle coordinates,weplot for both the
(1, 2) and (1, 3) initiated Fibonacci sequences the corresponding
curves overlaid on the appropriate section of Fig. 6. We note that
we obtain nearly identical results in the gradient case and the
nongradient case.

Result 5. Fig. 26. Why Fibonacci? We begin with Fig. 26
which plots the motion in the (ℓ,m/r)-plane of the wavevectors
of the dominant modes corresponding to the Fibonacci branch
Fig. 22. The maximum values of the amplitude of all integer modes 8 ≤ m ≤

89, with a subset of circumferential wavenumbers indicated. The top figure
corresponds to the (1, 2) sunflower and the bottom to the (1, 3) sunflower.

Fig. 23. The invariant amplitude curve for amplitudes amj with mj from the
Fibonacci-like sequences starting with (1, 2) and (1, 3). The horizontal scaling
emphasizes the self-similar property amj (r) = amj + 1(ϕr).

joining the hexagons (5, 8, 13) and (8, 13, 21) in the gradient
case. The wavenumber locus ℓ2

+ m2/r2 = k20 is drawn with
a dashed semicircle. The preferred wavenumber k0 is close to,
but a nonlinear correction of, the linear preferred wavenumber
unity. A formula is given in Section 3.3. At r = 11.820, the
wavevectors lie on the circle and are separated by 60° angles.
Clearly the resolvent k5 + k8 = k13 lies on |k13| = k0. As
r increases, the wavevectors k13 and k8, the parastichies in the
rhombic region, continue to lie on the circle but move down, to
the left and right respectively. The wavevector k5 arising from
the binary composition k5 = k13 − k8 is pushed away from
the preferred circle and its amplitude diminishes. The irregular
Fibonacci addition k5 + k13 = k18, not shown here, can be seen
by observation to be very far from the preferred circle because the
angle between the k5 and k13 legs decreases and the length of k5
increases. But the Fibonacci addition wavevector, k21, k8 + k13 =

k21, is drawn in towards the circle. Its amplitude increases. When
we reach r = 19.105 = 11.820ϕ, the k21 mode has reached the
circle and again the three modes k8, k13 and k21 have length k0
and are 60° apart in angle, a new hexagonal configuration. One can
see that the ‘‘opposed’’ property is very important. When alternate
wavevectors have radial wavenumberswith opposite signs (ℓ5, ℓ13
are negative, ℓ8 positive), then, as r increases, the legs of sequential
wavevectors (here k8 and k13) open, drawing in their resolvent
k21 = k8 + k13 towards the preferred circle whereas the resolvent
corresponding to the irregular addition of every other mode (here
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Fig. 24. The invariant curve in the (ℓm, ℓn) wavevector space with m and n consecutive members of the appropriate Fibonacci-like sequence. The data have been reflected
so that they all lie in the same quadrant. The shaded lines are the locus of rhombic lattices with the preferred wavelength along any single branch of the Van Iterson diagram.
From a solution of (27) with γ = 0 on the left and γ = 1 on the right.
Fig. 25. The rise ρ and divergence angle 2πd given by the local lattice structure at each radius on the (1, 2) sunflower, left, and (1, 3) sunflower, right. The shaded lines
correspond exactly to Fig. 6, with selected parastichy pairs indicated. Inset is detail of the data for small ρ.
k18 = k5 + k13) gets pushed further away. We obtain nearly
identical results in the gradient case and the nongradient case.

Result 6. One may think of the simulation of the solution
starting with the parastichy numbers (1, 3) at the inner boundary
as being analogous to the irregular Fibonacci addition branch
of the simulation beginning with (1, 2). If we begin from the
(1, 2, 3)hexagonal configuration, the continuumof energyminima
will follow branches joining successive triads in the regular
Fibonacci sequence 1, 2, 3, 5, 8, 13, . . .. On the other hand, for a
radius value slightly greater than the radius value at which the
1, 2, 3 hexagon dominates, a new continuous locus of minima
1, 3, 4, 7, 11, 18, 29, . . . will emerge. They will arise initially from
the irregular Fibonacci addition 1+3 = 4but thereafter thepattern
will follow a continuous path determined by regular Fibonacci
addition.

Result 7. Figs. 27–29.The local front speed ν(r), packing
efficiency η(r), and energy ϵ(r) are drawn as a function of r . Each
satisfies the log periodic property that ν(rϕ) = ν(r),η(rϕ) = η(r),
ϵ(rϕ) = ϵ(r). The front speed is maximum at the hexagon regions
and minimum in the rhombic regions. In contrast, the annular
energy ϵ(r) is minimum in the hexagonal region and maximum
in the rhombic regions. The packing efficiency η(r), as one might
expect from the result on planes, is maximum in the hexagonal
region and minimum in the rhombic region.

Result 8. Fig. 30. In Fig. 30, we plot contours of the front
speed ν as a function of the model parameters, µ the amount
by which reverse diffusion in the auxin model overcomes regular
diffusion and β essentially measuring a product of PIN1 transport
and average auxin concentration. The front speed is measured
by initiating a (1, 2, 3) hexagonal pattern on a cylinder which
has a radius for which this pattern fits, taking into account the
nonlinear correction to the energetically preferred wavenumber
k0. The front is allowed to propagate under (23) for 2000 timeunits,
and the average front speed is computed. From the contour plot, it
is straightforward to determine the values ofµ andβ forwhich the
front is pushed or pulled. For pulled fronts, the speed should not
depend on the nonlinear coupling β , as pulled fronts are organized
by conditions ahead of the front where the field amplitudes are
small. We observe this in the figure for µ > 0.1 since the contour
lines are vertical. In this region, we observe that ν ∝

√
µ. For

smaller values ofµ, the lines are vertical for smallβ , but eventually,
as β increases, the contour lines deviate. This indicates that the
nonlinearity is influencing the speed and other characteristics of
the pattern, which are determined by conditions behind the front.
Such fronts are pushed. Only in the pushed region can the three
modes of the hexagonal region (or in the case of the rhombic
region, combinations of sequential triads of modes) propagate in
synchrony, a phase locking induced by nonlinear coupling.

For a discussion of front propagation in patterns, we refer the
reader to the review article of van Sarloos [55] and references
therein. Here we briefly indicate why it is that we must be in the
pushed front regime. Pulled fronts have the property that their
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Fig. 26. The wavevectors associated with active modes at four different radii. The upper-left figure illustrates a (8, 13, 21) hexagonal pattern, and the lower-right figure
illustrates the (5, 8, 13) hexagonal pattern following the Fibonacci transition.
Fig. 27. The front speed ν for the (1, 2) and (1, 3) sunflowers. Note that the
horizontal axis has a logarithmic scale.

speeds are proportional to


µl2, where l is the radialwavenumber.
Thus, in the pulled front regime of the µ, β plane, the different
modes in the pattern will propagate at different speeds. Indeed,
in the pulled front region, we can clearly see this mode separation
in simulations. However, in the pushed front regime, the different
modes participating in the Fibonacci pattern synchronize and
travel together.

Result 9. Fig. 31. In the gradient case, Fibonacci patterns can
be thought of as long lived saddle points of (27) with strongly
attracting stable manifolds and weakly repelling unstable ones.
The reason is that on large disks, the local geometry looks planar
and the rhombic regions cannot be held in place by their hexagonal
neighbors but slowly develop defects in order to realize locally
hexagonal patches. To investigate this behavior and in particular
the time scales of the various dynamical behaviors we excise the
34 < r < 55 annulus and study its dissipation rate

−
dE
dt

= −


δE

δu
∂u
∂t

=

 
δE

δu

2

,

Fig. 28. The local packing efficiency ν for the (1, 2) and (1, 3) sunflowers. Note that
the horizontal axis has a logarithmic scale.

for 1000 time units over this annulus. The features of Fig. 31 that
we note are that the dissipation rate is large for approximately 100
units, thereafter followedby a sharpdecrease to a level of one thou-
sand times less at which level it stays almost constant for a further
600 time units, after which there are a few rapid spikes across each
of which the energy drops by a series of discrete events. Specifi-
cally, for t < 50, the pushed front is propagating through the an-
nular domain, so the energy gradient is large and is concentrated
about the transition region. Note that the dissipation rate fluctu-
ates due to the difference in energy between hexagonal and rhom-
bic regions; the maximum occurs when the front is propagating
through the most hexagonal region. Once the front has left the do-
main, the dissipation rate falls by more than three orders of mag-
nitude. For 50 < t < 300, the dynamics are dominated by a very
weakly unstable trajectory that does not change the overall plan-
form. For t > 300, global reorganization of the planform begins to
occur. Rhombic regions develop into hexagonal patches separated
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Fig. 29. The local energy ϵ for the (1, 2) and (1, 3) sunflowers. Note that the
horizontal axis has a logarithmic scale.

Fig. 30. A contour plot of the average front speed of a (1, 2, 3) hexagonal pattern
on a cylinder which has its radius adjusted according to the nonlinear correction of
the energetically preferredwavenumber. On the right half of the plot, it is clear that
the front is pulled, since the speed does not depend significantly on β . On the left
of the dashed line, the front is pushed, and on the right of the dashed line, the front
is pulled.

by phase grain boundaries. The reorganization also opens up gaps
in the planform which eventually become defects after the forma-
tion of a new maximum. These events appear as sharp peaks in
the dissipation rate starting at t ≈ 700. The role of defects is to
convert the rhombic regions into local hexagonal patches with dif-
ferent orientations separated by line and point defects. Subsequent
coarsening of these patches occurs on very, very long time scales.

We make two observations regarding these results. First, the
time scale of global reorganization is much longer than the time
that it takes for the pattern to be fully laid down by the front.
The Fibonacci pattern is therefore a saddle point in the energy
landscape more closely resembling a canyon. The front provides
a mechanism for the system to rapidly reduce its energy, with the
price being a bias imposed by the pattern already laid down in the
vicinity of the transition region. Second, it is not unreasonable to
expect that there is a change in the mechanism of morphogenesis
once a primordium has been initiated. In particular, there may
be a way for young primordia to fix their position on the plant.
Our results indicate that this process would not need to occur
immediately after formation. It would only need to be faster
than the global reorganization time scale in order to preserve the
planform.
Fig. 31. The long-time dissipation rate on the annulus 34 < r < 55. The initially
large value is due to the propagation of the pattern-forming front into the annulus,
and the later peaks are due to the formation of defects.

3.3. Derivation of the amplitude or order parameter equations

Recall thatµ in (23), when the original equationswere rescaled,
is the amount by which reverse diffusion of the auxin fluctuation
field u(r, θ, t) overcomes normal diffusion. Forµ < 0, the solution
u = 0 is linearly (not necessarily nonlinearly) stable. For µ > 0,
certain shapes and configurations

H±

m (kmr)eimθ (30)

will grow in time. Here H±
m (kmr) is a solution of the Hankel

equation y′′
+

1
x y

′
−

m2

x2
y = −y , x = kmr . The growth rate σm

is given by

σm = µ − (k2m − 1)2. (31)

The parameter km arises from the action of the Laplacian ∇
2

on H±(kmr)eimθ to give −k2mH
±
m (kmr)eimθ . It is what we call the

wavenumber. For k2m = 1, we see the shapes (30) begin to grow
exponentially. They will then interact with each other via the
nonlinear terms, both quadratic and cubic, in (23) and certain
combinations of the modes will outcompete others. The winner of
this competition will be the chosen planform.

We start with an appropriate and soon-to-be-defined linear
combination of the modes (30). We call this u0. Then we expand
the full solution u(r, θ, t) as an asymptotic expansion

u(r, θ, t) = u0(r, θ, t) + u1(r, θ, t) + · · · (32)

in such a way that the ratio of u1 to u0 remains (uniformly in r, t)
small as the size of the parameter µ becomes small. The iterates in
(32), u1, . . . , will satisfy equations of the form

(∇2
+ 1)2u1 = RHS (33)

where the RHS of (33) will contain all terms generated by the
nonlinear interactions of the shapes {H±

m (kmr)eimθ
}m (we call these

modes) contained in u0. In most cases, the solution of (33) will be
bounded; namely for most combinations of quadratic and cubic
products of themodes in u0, thewavenumbers ofmodes generated
in this way will not be close to unity. However, in some cases,
namelywhen thewavenumbers of terms arising on the RHS of (33)
are close to unity, the corresponding solution u1 will have a small
or zero denominator because the operator ∇

2
+ 1 will be small.

It is unacceptable to leave these in u1 because then the validity
of the asymptotic expansion (32) is compromised. We remove
these terms by allowing the amplitudes whichmultiply the modes
contained in u0 to be slowly varying in time and choose that time
variation so that we eliminate all terms in u1 which have small or
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zero denominators. This choice leads towhatwe call the amplitude
equations.

The first task and the first choice we have to make is to
decide which modes to include in u0(r, θ, t). To make things
slightly easier, with almost no compromise of accuracy, we will
approximate H±

m (kmr) by its asymptotic shape exp ± i


ℓmdr
where ℓ2

m = k2m −
m2

r2
. This is valid when bothm and r are large and

of the same order, and the radius r of the disk is large compared
with the pattern wavenumber. In this approximation, ∂2

∂r2
u0 ≫

1
r

∂u0
∂r , the Laplacian ∇

2 is ∂2

∂r2
+

1
r2

∂2

∂θ2
and the wavenumber

k2m = ℓ2
m +

m2

r2
. Then,

u0(r, θ, t) =


m∈S

Am(r) exp

i


ℓm(r)dr + imθ


+ (∗) (34)

where we will allow ℓm(r) = ±

k2m − m2/r2 to have either sign.

We suppress the t dependence in writing (34). The set S will con-
tain all modes with wavevector km = (ℓm = ±


k2m − m2/r2, m

r )
whose wavenumber km is close to unity because it is these modes
(see (30)) whichwill either grow, remain neutral or be veryweakly
damped in the linear approximation. They therefore live long
enough to interact nonlinearly. It will turn out that the preferred
mode wavenumber k0 is slightly different to unity because of a
nonlinear correction. Therefore the set S contains all those modes
whosewavenumbers km arewithin a certain distance of k0, namely
all those wavevectors which lie in the annulus

k0 − K < |km| < k0 + K (35)

at any radius r that the pattern occupies.
Our results are independent of the choice of K for sufficiently

large K . Because we numerically solve the amplitude equations, in
practice we take K large and include in S many more modes than
is necessary. The set of amplitudes Am contained in S are called
order parameters. They are the amplitudes of what are called the
activemodes, namely the setA of thosemodeswhich dominate the
pattern field at some r .

The second task is to examine the terms produced by quadratic
and cubic products of the active modes. Let us first look at the
quadratic product of twomodes in u0, whichwewrite as shorthand
eikr ·x and eiks·x where kj · x stands for


ℓjdr + mjθ , j = r, s. The

product will give the term ei(kr+ks)·x. For most binary pairings of
modes kj which belong to A and whose wavenumbers lie close
to k0, the vector sum resolvent kr + ks will have a wavenumber
far different from k0. Therefore when we solve (∇2

+ 1)2u1 =

ei(kr+ks)·x, the denominator of the solution is not small. Such amode
(call its amplitude Ar,s) will depend algebraically on the product
ArAs and will be small in amplitude. We include all such modes
in what we call the passive set P. The amplitudes of all modes
in the passive set are simple algebraic functions of the modes in
the active set given by the graph P = P(A), called the center
manifold. The phase point representing the state of the system,
coordinatized by the amplitudes of all modes, very quickly relaxes
onto the center manifold P = P(A). Once on the center manifold,
the phase point relaxes slowly towards any fixed points or, in some
cases, other attractors on this manifold. The slow motion on the
centermanifold is given by the amplitude equationswhichwenow
derive.

For pairings where the resolvent wavevector kr +ks lies within
the annulus (35), the denominator in u1 can be small and the result
is that the asymptotic expansion (32) is no longer valid.We remove
these terms by including that combination kr + ks in u0 (let us
call it km) and allowing its corresponding amplitude to be a slowly
varying function of time. This adds to the RHS of (33) an extra term
−

∂
∂t Amei(kr+ks)·x = −

∂Am
∂t eikm·x, andwe choose ∂Am

∂t to eliminate the
small denominator (secular) term in u1.
For example, if we choose the two modes Areikr ·x, Aseiks·x and
compute −β∇(u0∇u0) where km = kr + ks, we will obtain
βk2mArAseikm·x. From the cubic product, we will obtain the coeffi-
cient of eikm·x to be 3Am(|Am|

2
+ 2


r≠m |Ar |

2). Then the choice of
∂Am
∂t is

∂Am

∂t
= (µ − (k2m − 1)2)Am +


km=kr+ks

τ−mrsArAs

− 3Am


|Am|

2
+ 2


|Ar |

2


(36)

where τ−mrs = βk2m. The first sum is taken over all r, s modes for
which kr + ks = km. The second sum is over all active modes ex-
cept for km. The (k2m − 1)2 linear term arises from the fact that
(∇2

+ 1)2 u0 will have a small contribution. Eq. (36), one for each
km in S, are the amplitude equations. If all wavevectors km in the
active set were nearly equal, τ−mrs would be symmetric over all in-
dices −m, r, s. Then, (36) could be written as a gradient flow

∂Am

∂t
= −

∂E
∂A∗

m
, (37)

where

E = −


(µ − (k2m − 1)2)AmA∗

m −


m,r,s

(τ−mrsA∗

mArAs

+ τm−r−sAmA∗

s A
∗

s ) +
3
2


m

A∗

mA
∗2
m + 4


r≠m

AmA∗

mArA∗

s


. (38)

But, in our case, things are not that simple. In a planar geome-
try,where the activemodes havewavevectorskm close to unity and
independent of spatial coordinates, the quadratic coupling coeffi-
cients τ−mrs, namely βk2m, would be all nearly equal, and the ampli-
tude equations for (23), near onset, would be all nearly equal even
though the pde (23) is not. For us here, however, the mode with
wavevector km will only have wavenumber close to k0 or unity in
a certain range of radius, namely that interval in r where m is one
of the parastichies. Consider the interval Rm < r < Rn = Rmφ,
where the modes with wavevectors kn−m, km, kn have almost
equal wavenumbers and amplitudes at Rm, and the pattern is
hexagonal, and themodes withwavevectors km, kn, km+n have the
same property at Rn and again the pattern is hexagonal. At r =

Rm, Rn, the amplitude equations for the active modes are gradient.
For values in between, they are not because, as r moves betweenRm

and Rn, the wavenumber kn−m (km+n) goes from k0 (
√
3k0) to

√
3k0

(k0). Moreover, in the next interval Rn = Rmφ to Rm+n = Rnφ, the
wavevector kn−m will havemoved away from the circle |k| = k0 al-
together, and the quartet km, kn, km+n, km+2n will be the next set of
most active modes. Therefore for phyllotactic patterns, and indeed
for any similar system where the basic geometry is, or is similar
to, a disk on which the pattern forms annulus-by-annulus, the set
of active modes is not fixed, but rather changes with radius. The
active modes, to borrow a line from Shakespeare, have their ex-
its and their entrances. They are active at some range of r values,
but passive (namely, their amplitudes are determined by algebraic
dependences on the current active modes) at all others. What we
have already seen, however, from our simulation results in Sec-
tion 3.2, is that all modes with wavevectors km which are active
at some stage have subscript integers determined by the Fibonacci
rule. Modes with wavevectors such as k2m+n = km + km+n which
are generated by the quadratic nonlinear terms not consistentwith
the Fibonacci rule are always passive and never active.

In phyllotactic geometries, where there are at most three ac-
tivemodes at each r in the interhexagon range, the centermanifold
P(A) is the surface in the space coordinated by all amplitudes for
which the passive amplitudes are expressed as algebraic functions
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of the amplitudes which happen to be active in that range. Because
of the self-similar properties of the developing pattern, the graph
P = P(A) in one range is equivalent, under the self-similar prop-
erty enjoyed by the sets {Am, lm}, to its counterpart in the neigh-
boring range. Instead of the center manifold’s being constant, it is
constant up to some scaling equivalence.

We conclude this section with a discussion of four significant
issues: (i) Why it is, even though τ−mrs is not symmetric in all
indices at each r , that the overall pattern behaves as if (36) is,
to a good approximation a gradient flow; (ii) How the preferred
wavenumber k0, which is close to unity,might be chosen precisely;
(iii) How modes not generated by the Fibonacci rule can arise as
instabilities and interrupt the development of a Fibonacci pattern;
(iv) The role of whorls and their interactions with Fibonacci
patterns.

In Section 3.1, we introduced Eq. (28) which we designated
as companion to (23) and which was gradient with a free energy
given by (29). It originated by writing the quadratic nonlinearity
−β∇(u∇u) in (23) as

−β∇(u∇u) = −
β

3
(2u∇2u + (∇u)2) −

β

3
(u∇2u + 2(∇u)2). (39)

The first term is gradient with energy given by (38) with γ = 0
and with coupling coefficient τ−mrs =

2β
3 (kr · ks − km · ks −

km · kr) which is symmetric under the interchange of any of the
indices −m, r, s. At values of r where the pattern is hexagonal, it
is equal to βk20. The second term has quadratic coefficient β

3 (k2r +

k2s + kr · ks), km = kr + ks. It is not symmetric, but is zero at
hexagonal radii. However, the simulations in Section 3.2 display
very little difference between the patterns produced by (23) and its
companion gradient flow (28).Why is it that in the rhombic regions
in between the hexagonal radii, the difference does not seem to
matter? Consider a value of r in themiddle of the interval (Rm, Rn).
The two wavenumbers kn−m and km+n are now far from the
preferred values k0 although the parastichy numbers remain close
(see Fig. 20). Therefore, the coefficients of the linear terms in the
amplitude equations for An−m and Am+n are large, and the resulting
small amplitudes An−mAm+n are given, to a good approximation,
by a small coefficient times the product A∗

mAn, respectively AmAn.
Resubstituting these expressions into the equations for parastichy
amplitudes Am, An leads to equations which contain only linear
and cubic terms. The quadratic terms have been eliminated. The
equations are again gradient, with free energy E(Am, An; km, kn)
containing only quadratic and quartic terms. This argument is,
however, only an indicator as to why the gradient character of (23)
obtains. It does not addresswhat happens for r approaching Rm, Rn,
where kn−m and km+n are close to k0, although we know that at Rm
and Rn, the amplitude equations are gradient.

We now address question (ii). What chooses the preferred
wavenumber? For the companion gradient flow (28), with free
energy E given by (29), the answer is straightforward. We sim-
ply minimize E with respect to both amplitudes {Am} and the two
wavenumbers km =


l2m + m2/r2, kn =


l2n + n2/r2, whose

wavevectors km, kn generate all modes arising from nonlinear in-
teractions. In Fig. 20, we show the path of the parastichy wavevec-
tors in (l,m/r)-space. In the interval (Rm, Rm+n), the universal
path has three intersections with |k| = k0 which correspond to
those values of r at which the pattern is dominated by hexagons
with wavevectors (kn−m, km, kn), (km, kn, km+n), and (kn, km+n,
km+2n). Using Mathematica, the value of k0 is found to be

270−β2+β
√

β2(9−8µ)+540µ
270−4β2 . For values of r in between Rm, Rn and

Rn, Rm+n, the energetically chosen wavenumber kp(r) for the
parastichy modes km, kn and kn, km+n respectively, is close to, but
slightly less than k0, and closer to unity, the linear value.
For the nongradient system, the amplitude equations for
(23), there is no obvious preferred wavenumber selection rule.
Experience with other pattern-forming systems teaches us that
the wavenumbers selected by curved rolls kc , by stationary
dislocations kd, by boundaries kb, are all equal for gradient flows
(and equal to k0) but not equal for nongradient flows. Near onset,
they are close to the linear preferred wavenumber. What we have
done, therefore, is to choose the wavenumber kp(r) determined
by the companion gradient flow (28) to (23) as the preferred
wavenumber when solving the stationary amplitude equations of
(23) for the amplitudes {Am}. Our guess is that the selection is
made by a condition connected with the front propagation whose
velocity ν depends on this choice. Note that we have shown that
the velocity ν(r) does changewith r . It is slightly faster at hexagons
(where the preferred wavenumber is k0) than it is in the rhombic
regions (where kp(r) is close to, but slightly less than, k0).

We next address question (iii) as to how modes not generated
by the Fibonacci addition rule can arise via instabilities and
interrupt Fibonacci patterns. Let us take a concrete example which
we illustrate again in Section 3.5 using direct simulation.We follow
the evolution of the Fibonacci pattern from a hexagonal structure
with parastichies 3, 5, 8, k3 + k5 = k8 to a hexagonal structure
2, 3, 5, k2 + k3 = k5. The role of the common circumferential
wavenumber 3 is key. We ask: Given that we can also have the
quadratic interaction k3 + k′

3 = k6, when is it possible for the
modes 3′ and 6 to emerge from an instability. Here, we denote by 3′

a secondmodewith the circumferentialwavenumber 3 but a radial
wavenumber of opposite sign. Consider the amplitude equations
for A′

3 and A6.

dA′

3

dt
= σ ′

3A
′

3 + 3β(k′

3)
2A6A∗

3

dA6

dt
= σ6A6 + 3β(k6)2A3A′

3

where we have included the cubic terms in σ ′

3 and σ6; namelyσ ′

3 = σ ′

3 − (|A2|
2
+|A3|

2
+|A5|

2
+|A8|

2). We check the growth rate
of A′

3, A6 by writing
d
dt

−σ ′

3


d
dt

−σ6


A6 = 9β2(k′

3)
2(k6)2|A3|

2A6.

The growth rate σ of A6 is given by

(σ −σ ′

3)(σ −σ6) = 9β2(k′

3)
2(k6)2|A3|

2

and can be positive. The question is then if this growth rate σ is
large enough so that the instability can grow in the time it takes for
the front leaving the pattern 3, 5, 8 to reach the pattern 2, 3, 5. Let
r0 be the radius at which the 2, 3, 5 pattern is exactly hexagonal.
Then r0ϕ, ϕ =

√
5+1
2 , is the radius at which the pattern 3, 5, 8

is exactly hexagonal. Let the average front speed be c. Then the
transition time is c

r0(ϕ−1) . If this is small compared to 1/σ , then
the Fibonacci pattern will continue uninterrupted. If it is large or
comparable, then the Fibonacci pattern will be interrupted and a
whole new set of modes will enter the dynamics.

We illustrate both scenarios in Section 3.5 where we mimic
the transition by the length of the intermediate region between
two cylinder of radii r0ϕ and r0. For quick transitions, the pattern
remains Fibonacci. For slow ones, it does not.

Such instabilities are analogous to the Eckhaus and zig-zag in-
stabilities of roll patterns in planar geometries. For example, the
zig-zag instability occurs when the wavenumber k0 − κ of a roll
pattern is less than the preferred wavenumber k0. It is unstable to
modes with wavevectors k± = (k0 − κ, ±


2k0κ − κ2), each of

whose wavenumbers is k0 via the cubic interaction k+ + k− =

2(k0 − κ, 0). The coupled equations for the respective amplitudes
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A+ and A− will contain terms proportional to A∗
−
A2
0 and A∗

+
A2
0 re-

spectively. A+ and A− will grow exponentially if κ > 0. For the
analogous instability in hexagonal patterns, the quadratic interac-
tions play a similar role.

Finally, we address question (iv), namely the role of whorls and
their interactions with Fibonacci patterns. In the development of
our amplitude analysis in this review, we have not included whorl
solutions. Anm whorl will have the modal representation

Re

A+ exp


i


ℓ(r) + imθ


+ A− exp

−i


ℓ(r) + imθ


+ A0 exp(2imθ)


namely the superposition of identical spirals with opposite chiral-
ities and a purely circumferential mode. When they are included,
what we find is:

(a) For the intervals in r for which they exist, they give rise to the
lowest of all possible energy minima (see [11]).

(b) Outside these intervals, they either fail to exist or destabilize
to a mode with circumferential wavenumbersm,m+ 1, 2m+

1 which breaks the chiral symmetry. In some instances, the
transition can be directly to thewhorlm+1,m+1, 2m+2.We
will include examples of these transitions in direct simulation
case studies given in Section 3.5. In particular, we note these
are plants which interpolate their phyllotactic configuration
between whorl and Fibonacci patterns.

(c) While Fibonacci patterns can exist at all values of the gener-
ative annulus radius, whorls only exist in finite ranges. When
the radius is fairly small, 3 < r < 8, the ranges of existence
tend to overlap so that whorl-to-whorl transitions can happen
although they often do so via an intermediate spiral pattern
(See case study 4 and Fig. 40(b) in Section 3.5).

(d) 2-Whorls can initiate many plant patterns because of a built
in bias (cotyledon) in the meristem structure. A transition
to a (2, 3, 5) Fibonacci pattern then gives the sequence 1, 2,
3, 5, 8, . . . an advantage over other sequences generated by the
Fibonacci rule.

(e) Observations of leaf structures growing on the twigs of bushes
and trees most often demonstrate low parastichy spiral pat-
terns or low level 2 and 3 whorls. Since the parastichy number
is principally determined by the radius of the generative an-
nulus on which the phyllum is first formed, this means that in
these situations the radius of the generative annulus remains
more or less constant even though the plant itself continues to
grow.

3.4. Results from the amplitude equation analysis

The striking feature of the results presented in this section is
that they match precisely the results obtained from the simulation
of the full pde when those patterns are Fourier analyzed. Namely,
when the pattern is a Fibonacci progression, a smooth continuum
of hexagonswith circumferential wavenumbers (n−m,m, n)with
equal amplitudes An−m, Am, An and wavenumbers kn−m, km, kn, to
hexagons with circumferential wavenumbers m, n,m + n and
amplitudesAm, An, Am+n, connected by regions of rhombic patterns
in which there is a smooth transition between circumferential
wavenumbers n − m,m, n and m, n, n + m with Am+n decreasing
and An−m increasing as r decreases from n to m, the amplitude
equations give the same results as the pde simulation. In our
calculations of solutions of the amplitude equations, we start at the
outer boundary r ≃ 233 = 89 + 144 and end at r ≃ 5 = 2 + 3.

The amplitude analysis not only complements the simulations
but adds additional understanding in three main aspects. First,
the Fourier coordinates are best adapted for understanding
phyllotactic patterns using the language of centermanifold theory.
Second, as we have said, this center manifold theory has new
features very different from its manifestation in planar patterns.
The amplitude equation approach suggests a new and exciting
idea about the nature of that manifold. Third, in the gradient case,
it reveals the presence of other free energy minima which have
relevance for understanding the role of other branches in the Van
Iterson diagram.

Weworkwith the sets of amplitude equations obtained for (27)
with bothγ = 0 andγ = 1.We solve the former set byminimizing
the free energy E obtained from (27) with γ = 0 and written
in (38) as a function of all the amplitudes {Am} and two radial
wavenumbers. Recall the wavevectors of all participating modes
are generated by starting with two (e.g. the dominant parastichies
at either the outer or inner boundary) and taking all binary integer
combinations. For example, if we start with k3 = (ℓ3, 3/r) and
k5 = (ℓ5, 5/r), this set is {ik3 + jk5} where i and j are integers.
We minimize E with respect to all amplitudes as well as ℓ3 and ℓ5
(or any other pair of quadratically generated radial wavenumbers).
Given ℓ3, ℓ5 and therefore all other radial wavenumbers ℓm
(and therefore their corresponding wavenumbers km) minimizing
E with respect to the amplitudes is equivalent to solving the
stationary amplitude equations for (27) in the case γ = 0 given by
(36). The amplitude equations for the nongradient case γ = 1 are
gradient only at that discrete set of radiiwhere hexagons dominate.
At other values of r , they are not. Therefore, since we do not have a
free energy tominimize,wemust have some otherway of selecting
the preferred wavenumber km(r) in the nongradient case. In all
likelihood it is selected by the properties of the front which ties
the unstable u = 0 state to the patterned state in its wake. Lloyd,
et al. [56] have studied stationary fronts which separate hexagonal
and uniform states at the Maxwell point µ(β) < 0, but we do
not know of any work which calculates the pushed front velocity
as a function of the preferred wavenumber in the wake pattern
or selects the wavenumbers in the case where µ > 0 or even
in cases where µ < 0 when one state invades the other. What
we do therefore is follow the results suggested by our simulations
which show that the preferred wavenumbers of (27) in both the
gradient and nongradient cases are the same at all r (see Fig. 20)
and choose, when solving the stationary amplitude equation (36),
thewavenumbers km(r) given by the gradient flow. It is known that
gradient flows select that wavenumber which is the same as that
selected by other mechanisms.

In both cases, we end up with solutions {Am(r), ℓm(r), km(r) =
ℓ2
m + m2/r2}m for all m participating modes. Since we solve

the amplitude equation (36) and find the energy minima (38)
numerically, we choose the K in (35) to be large and include many
moremodes in the calculation than is necessary.Most of themodes
are passive at all radii and, because theirwavenumbers are far from
thepreferredwavenumber, their amplitudeswill be very small.We
express our findings in a series of results.

Result 1. We plot in Fig. 32 the invariant amplitude curves
for those modes in the Fibonacci progression which are active
for some radius r between 8 and 233. The results for the ampli-
tude equations for both the gradient and nongradient flows are al-
most identical. At r ≈ 233, the three amplitudes A233, A144, A89
sit in left-to-right order on top of the amplitude invariant curve
shown in Fig. 32. As r decreases, first the amplitude A233 slides
down the left part of the curve while A55 climbs up the right
side. At r ≈ 144, A144, A89, A55 occupy the same positions that
A233, A144, A89 did at r ≈ 233. The leftward march of the ampli-
tudes A233, A144, A89, A55, A34, A21, A13, A8, A5 continues as the ra-
dius decreases all the way to r ≈ 8. We note that at every r , the
property Am(r) = An(rϕ) holds, wherem < n are successivemem-
bers of a Fibonacci sequence and ϕ is the golden number.



76 M.F. Pennybacker et al. / Physica D 306 (2015) 48–81
Fig. 32. An invariant curve for the energy minimizing amplitudes Amj with
{mj} = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233}. This has been computed by
minimizing the energy over all amplitudes and wavenumbers on the locus of
minima corresponding to the regular Fibonacci progression. The horizontal scaling
emphasizes the self-similar property Amj (r) = Amj+1 (ϕr).

Result 2. When the maximum amplitudes of the modes which
are sometimes active or always passive in the interval 8 < r <
89 are plotted, we obtain exactly the same results as shown in
Fig. 22. In all cases, they toohave self-similar behavior;Acurrent(r) =

Anext(rϕ). For example, in the interval Rm, Rn, both Am+2n(r) =

A2m+3n(rϕ) and A2m+n(r) = Am+3n(rϕ).
Result 3. The invariant radial wavenumber curve and the plot of

the solution path in the (∓ℓmj+1, ±ℓmj)-plane are shown in Figs. 33
and 34. The wavevectors follow the same paths as calculated
directly from simulations and which have already been shown in
Fig. 20. Again we have self-similarity; ℓm(r) = −ℓn(rϕ).

These are remarkable results. All amplitudes and radial
wavenumbers, not just the ones which are active at some r , but
also those which are never active at any r , satisfy the self-similar
properties. They are found to hold in the simulations of the full pde
with initial data for initial data that have two dominant integer
circumferential wavenumbers and are analytic consequences of
the amplitude equations and, in the gradient case, corresponding
free energy. For any two generating circumferential wavenumbers
m, n, the set of allowed circumferential wavenumbers are all those
generated by im + jn, i, j any integers which, if m, n are coprime,
is the set of all integers. What is remarkable is that there is little
a priori reason to believe that solutions of the pde with these,
admittedly special, initiating states should display all of these self
similar properties. No obvious scaling of the pde leads to such a
conclusion.

Result 4. Just as in the direct simulations, illustrated in Fig. 25,
the amplitude energy minima form a continuous locus as r is
varied. If we start with a configuration having circumferential
wavenumbers in the regular Fibonacci sequence, this locus will
pass through all other circumferential wavenumbers in the se-
quence. For example, if we were to plot the locus of minima cor-
responding to the choice of wavevectors shown in Fig. 26 between
r = 11.8 and r = 19.1 in the (ℓ5, −ℓ8) plane, the energy mini-
mizing locus would lie below the line ℓ5 + ℓ8 = 0 and cover the
whole range (11.8, 19.1). On the other hand, there is also another
locus of energy minima which lies above the diagonal ℓ8 + ℓ5 = 0
and starts at an r value in between these two radii. On this branch,
the ℓ13 has the opposite sign, the wavevector k13 lies to the right
of the vertical line through ℓ = 0 and now the quadratic inter-
action k5 + k13 draws the wavevector k18 towards the preferred
wavenumber circle and the interaction between k8 and k13 pushes
the resolvent k21 away. This gives rise to the beginning of a new
continuous locus, k5, k13, k18, k31 and so on. Of course, in order to
Fig. 33. An invariant curve for the energy minimizing wavenumbers ℓmj with
{mj} = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233}. This has been computed by
minimizing the energy over all amplitudes and wavenumbers on the locus of
minima corresponding to the regular Fibonacci progression. The horizontal scaling
emphasizes the self-similar property ℓmj (r) = −ℓmj+1 (ϕr).

Fig. 34. An invariant curve for the energy minimizing wavenumbers ℓmj with
{mj} = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233}. This has been computed by
minimizing the energy over all amplitudes and wavenumbers on the locus of
minima corresponding to the regular Fibonacci progression.

switch from one branch to another requires a large perturbation:
one that takes the k13 mode from tilting left as it does in Fig. 26
to tilting right. The new set of solutions are marked by green on
Fig. 36. In both Figs. 35 and 36 the results are again overlaid on the
Van Iterson diagram of Fig. 6.

Result 5. By inspection, the set of amplitude equations for the
nongradient case with the radial wavenumbers chosen to match
those of the gradient case or the free energy E of the gradient
case are invariant under the self-similar transformations Am(r) →

An(rϕ), ℓm(r) → −ℓn(rϕ),m → n ≈ mϕ. For large enough m, n
the last is valid to very good approximation.

Result 6. What is the nature of the center manifold for
patterns following Fibonacci progressions? We have discussed
that, since the active mode set changes with radius, the graph
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Fig. 35. The divergence angle 2πd and internodal spacing ρ given by the
wavevectors corresponding to the locus of energy minima of the amplitude
equations along the main Fibonacci branches. Selected branches have been labeled
with their parastichy numbers.

Fig. 36. Again, the divergence angle 2πd and internodal spacing ρ given by
the wavevectors corresponding to the locus of energy minima of the amplitude
equations along the main Fibonacci branches. We also show an irregular Fibonacci
branch, a new energy minimum corresponding to the selection of parastichy
numbers (5, 13) rather than (8, 13) appearing at the end of the irregular locus.
While ρ decreases monotonically as r increases on both branches, values of r do
not correspond to the same value of ρ between branches.

of the amplitudes of the passive modes P(A) expressed as a
function of the amplitudes of the currently activemodes A changes
with the generative annulus radius r . But the self-similarity
property now gives us a way of defining a center manifold.
Consider the center manifold in the interval Rm, Rn including and
between two hexagon configurations in which the active mode
amplitudes are An−m, Am, An and Am+n. It is the graph P(m, n) =

P(An−m, Am, An, Am+n) expressing all other amplitudes as algebraic
functions of the active four. The center manifold graph in the
neighboring intervalwill be the same and gotten by simply shifting
the amplitudes along the Fibonacci sequence. Therefore we can
define the centermanifold of the Fibonacci pattern to be that family
of center manifolds P(m, n) = P(An−m, Am, An, Am+n) obtained
by mapping one (Rm, Rn) interval to another. In the amplitude
coordinate space, it will simply look like a rotation of the same
surface.

3.5. Transitions and whorls

To this point, we have concentrated on Fibonacci progressions,
showing both that they are associated with a locus of energy
minima which is continuous in the generating radius parameter
and that, at least in the disk geometry, they are the solution
Fig. 37. The pattern laid down by a front propagating on a frustrum, which has
been cut and unrolled, starting at r ≈ 7.5262 and decreasing to r ≈ 4.6866 along a
distance of 110 space units. It has been initiated as a (3, 5, 8) hexagonal pattern and
ends as a (2, 3, 5) hexagonal pattern. This is an example of a type (II,2) transition.

of the model which is realized when the generating radius is
decreasing. In this section, we want to explore both transitions
and the role of whorls. As we have already confessed, we do
not at the moment have a definitive and complete understanding
of all possible transitions and whether they are smooth or
discontinuous, nor do we have a clear picture of the interplay and
possible transition betweenwhorl structures and Fibonacci spirals.
We have instead rules of thumb which we now illustrate with a
set of five case studies. Each study will provide an example of the
transition types that are defined in detail and illustrated in the
appendix. As described in Section 1.4, we characterize transitions
by two indices: The first indicates if the transition is of Type I
(discontinuous) or Type II (continuous). The second counts the
number of wavevectors in the field u that are preserved in the
transition. In each case, the transition parameter corresponds to
the radius r of the generating annulus and transitions occur as this
parameter is increased or decreased. Studies are carried out along
a frustrum, joining two cylinders of different radii in order that the
initial and final states can be seen to be stable.

1. We first illustrate a (II,2) transition, which we means that the
transition is smooth and that the initial and final states share
two wavevectors. The case study chosen and the result shown
in Fig. 37 addresses what happens when we decrease r so
that the hexagonal state with circumferential wavenumbers
(3, 5, 8), subsequently referred to as the (3, 5, 8) state, makes
a transition to the (2, 3, 5) state. The taper is sufficiently fast
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Fig. 38. The pattern laid down by a front propagating on a frustrum, which has
been cut and unrolled, starting at r ≈ 4.6866 and increasing to r ≈ 7.5262 along
a distance of 110 space units. It has been initiated as a (2, 3, 5) hexagonal pattern
and ends as a (3, 5, 8) hexagonal pattern, although it shares none of its wavevectors
with the initial pattern. This is an example of a type (I,0) transition.

so that instabilities described in case 3 below do not have time
to manifest. We note the following: The transition is smooth
in that the dominant wave vectors which are normal to the
lines of constant phase change continuously. In particular, the
transition reveals that the phase contours simply bend.

2. We now repeat the experiment in reverse order, namely we
start with the (2, 3, 5) state and, using the exact same taper,
make the transition to the (3, 5, 8) state. This is illustrated in
Fig. 38. The transition is (I,0) since the chirality of the pattern
changes. It is not reversible. What happens is that in order for
the five maximum phase contours to make the change to eight,
dislocations which introduce new lines of maximum constant
phase are created. Because of the appearance of dislocations to
facilitate the transition, the transition is discontinuous although
that conclusion, the fact that dislocations rather than bending
phase contours are required to achieve the transition and that
the Fibonacci progression is uninterrupted, might be viewed by
colleagues of a practical bent as being somewhat semantic.

3. The rate of the taper matters. We now illustrate what happens
when the time taken for the front to travel between two
hexagonal states of a Fibonacci progression (see the discussion
in Section 3.3) is both less than and greater than the growth
time for potential instabilities. In Fig. 37, we have shown
the smooth (II,2) transition between the (3, 5, 8) and (2, 3, 5)
states when the taper is fast. In Fig. 39, we show what
Fig. 39. The pattern laid down by a front propagating on a frustrum, which has
been cut and unrolled, starting at r ≈ 7.5262 and decreasing to r ≈ 4.6866 along a
distance of 200 space units. It has been initiated as a (3, 5, 8) hexagonal pattern and
ends as a (3, 3, 6) hexagonal pattern. This is an example of a type (I,1) transition.

happens when the taper is too slow. Additional modes with the
circumferential wavenumbers 3 and 6 have been excited. This
is an example of a (I,1) transition.

4. In the final two case studies, we set up the simulations dif-
ferently in order to understand the behavior of the wavevec-
tors before and after the transition. What we have done is to
initialize a pattern, in this case a (1, 2, 3) hexagonal pattern,
on a cylinder with a radius just above its stability boundary.
Since the growth of the instability is slow compared to the
front speed, the (1, 2, 3) pattern propagates along the cylin-
der for some time before the transition occurs. We can then
isolate the location of the transition and study its properties.
Fig. 40(a) illustrates this (1, 2, 3) pattern undergoing a transi-
tion to a (2, 2, 4) whorl pattern through the insertion of one
dislocation. This is a (I,1) transition. In Figs. 41(a) and (b) we ob-
serve thewavevectors corresponding to the activemodes of the
pattern before and after the transition respectively. Notice that
the wavevector with circumferential wavenumber 2 remains
unchanged. Also note that the wavevector with circumferential
wavenumber 5 is initially far inside the energetically preferred
wavelength. Thus, this is similar to Eckhaus instabilities which



M.F. Pennybacker et al. / Physica D 306 (2015) 48–81 79
(a) A transition from a
(1, 2, 3) spiral
planform at the
bottom to a (2, 2, 4)
whorl planform at the
top. This cylinder has
r ≈ 3.54.

(b) A transition from a (2, 2, 4)
whorl planform at the bottom
to a (3, 3, 6) whorl planform at
the top. Note the intermediate
(2, 3, 5) spiral planform. This
cylin- der has r ≈ 5.13.

Fig. 40. Illustrated here are two Type I, or discontinuous, transitions.
occur in pattern-forming which still poses sign reversal sym-
metry.

5. Our final case study is an example of a (I,0) transition from the
whorl state (g, g, 2g) to (g + 1, g + 1, 2g + 2). In Fig. 40(b), we
have g = 2, and the transition occurs through two dislocations
in rapid succession. Figs. 42(a) and (b) illustrates the initial and
final wavevectors along with the intermediate spiral state. The
first dislocation takes the (2, 2, 4) pattern to a (2, 3, 5) pattern
with the m = 5 mode having radial (axial) wavenumber 0.
This pattern is strongly unstable for our isotropic model, so it
undergoes another dislocation taking the pattern to a (3, 3, 6)
whorl planform.

4. Conclusions

The main goal of this review has been to make the case that
mechanistic-based models informed by plants’ biochemical and
mechanical properties near their shoot apical meristems are con-
sistent with, and richer than, models based on teleological ap-
proaches. But the story is far from over, and much remains to
be done in particular in the experimental domain. In ongoing
research, many of the modern pioneers (such as Meyerowitz,
Kuhlemeier, Jönsson, and Dumais) are gaining more and more
understanding of such behaviors as the interplay between local
stress/strain fields and cell-to-cell auxin transport. Their results
should inspire theoreticians to build even better models. At the
same time, the theoretical results given in this review should in-
spire focused experiments. We have particularly in mind our pre-
dictions on the front propagation characteristics of the sunflower.
The finding that there is variation in velocity between regions dom-
inated by hexagons and those dominated by rhombi should be
testable and measurable.

Another intriguing question is the universality of Fibonacci
patterns. The model equation (23) and variants thereof can arise
in many pattern-forming systems. There may be many contexts
in which patterns are formed annulus-by-annulus leading to
competition between the hexagonal planform preferred in planar
geometries in systems with broken up–down symmetry (reflected
in the quadratic term in (23)) and rhombic and striped planforms.

We end this review with some questions which were stimu-
lated by our studies but which may have broader ramifications.

1. Can we use pattern forming pde’s to study optimal packing
challenges? Why, at all, should there be a connection? What
hidden properties does a pattern forming pde have which gives
rise to optimal packing of its configuration of maxima? What
other examples (e.g. the eye of the fruit fly [57]) might there be
where this connection may be exploited?
(a) The active wavevectors of the (1, 2, 3) spiral plan- form. We denote
these k2, k3 , and k5 from left to right.

(b) The active wavevectors of the (2, 2, 4) whorl plan- form. We denote
these k−

2 , k4 , and k+

2 from left to right.

Fig. 41. Shown above are the active wavevectors before and after the transition illustrated in Fig. 40(a). There are two important features to note: (1) It is clear that k2 = k−

2 .
Them = 2 wavevector remains unchanged through the transition. (2) There is a four-mode resonance k3 + k+

2 = k1 + k4 .
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(a) The active wavevectors before and after the first intermediate
transition from a (2, 2, 4) whorl planform to a (2, 3, 5) spiral planform.
The rightmost wavevector is shared between the two planforms.

(b) The active wavevectors before and after the second intermediate
transition from a (2, 3, 5) spiral planform to a (3, 3, 6) whorl planform.
The leftmost wavevector is shared between the two planforms.

Fig. 42. Shown above are the active wavevectors before and after each intermediate transition illustrated in Figure 40(b). Overall, the transition begins with a (2, 2, 4)whorl
planform and ends with a (3, 3, 6) whorl planform.
2. It turns out that near the onset of the instabilitywhich gives rise
to the pattern, the flow is effectively gradient.What connection,
if any, does the effective free energy for the pde have with
the energy minimizing functionals used in the teleological
approaches?

3. How universal are Fibonacci patterns?
4. How can one tell a priori if a given pdewill have solutionswhich

are dominated by structures with self similar properties?
5. The teleological approach is based on the premise that, however

a plantmight achieve the outcome, the positioning of the phylla
are such that each might enjoy maximum access to light and
nutrients. But, one might also argue for another possibility:
Sex and beauty! Just as our human eye is attracted to the
pleasing architecture of flowers on a meristem, so too might
the eyes of those insects which pollenate plants be attracted
to this architecture because the pattern textures they see
resonate with those natural patterns which arise because of the
architecture of their brains. We know, for example, that the
human brain stores a library of favored patterns. Experiments
on folk undergoing hallucinogenic experiences confirm this.
Why should not the architecture of plants which have survived
evolutionary battles be chosen so as to attract pollenators?

6. In what other contexts may evolving pattern fronts and
Fibonacci sequences be important? Examples may include fruit
fly eyes [57], generation of cryptographically strong codes [58],
objective structures in materials [59], and the design of solar
panels [60].
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