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Summary. The Cross-Newell phase diffusion equation,τ(|Ek|)2T = −∇ · (B(|Ek|) ·Ek), Ek = ∇2, and its regularization describes natural patterns and defects far from onset
in large aspect ratio systems with rotational symmetry. In this paper we construct explicit
solutions of the unregularized equation and suggest candidates for its weak solutions.
We confirm these ideas by examining a fourth-order regularized equation in the limit of
infinite aspect ratio. The stationary solutions of this equation include the minimizers of
a free energy, and we show these minimizers are remarkably well-approximated by a
second-order “self-dual” equation.

Moreover, the self-dual solutions give upper bounds for the free energy which imply
the existence of weak limits for the asymptotic minimizers. In certain cases, some recent
results of Jin and Kohn [28] combined with these upper bounds enable us to demonstrate
that the energy of the asymptotic minimizers converges to that of the self-dual solutions
in a viscosity limit.

1. Introduction

The mathematical models discussed in this paper are motivated by physical systems,
far from equilibrium, which spontaneously form patterns. When stressed beyond some
threshold, the continuous translational symmetry of a spatially extended system breaks
and a pattern forms; the continuous symmetry becomes a discrete symmetry. For example,
in the formation of striped planar patterns in two dimensions, the continuous symmetry
is locally preserved in one direction while in the perpendicular direction it reduces to
a discrete periodic symmetry. Convection patterns in ordinary fluids and liquid crystals
[11], [18], [29], [34], [45] and optical patterns in Raman and Maxwell-Bloch laser
systems [27], [36] are just some of the striking examples of pattern formation.

Defects are also a universal feature of these systems. These are points and curves
(points, curves, and surfaces in three dimensions) where the regularity of the pattern, seen
as a macroscopic object, breaks down. Just as the planforms (stripes, squares, hexagons)
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Fig. 1. Convection rolls from a Rayleigh-B´enard experiment
[8].

observed in two-dimensional patterns are universal for a wide class of systems sharing
certain symmetries, so too is the set of defects universal. A major goal of this work is
to identify and classify the types of pattern defects that occur in systems with rotational
symmetry.

Much of the intuition and terminology used to describe pattern formation has grown
out of the vast physical literature concerning Rayleigh-B´enard convection [49], [12]. In a
laboratory setting, convection is studied by trapping a fluid between two horizontal plates
with a small separation between them and then heating the fluid from below. There is a
parameterR, the Rayleigh number, which is proportional to the temperature difference
between the bottom and top plates. ForR< Rc, a critical value, heat is conducted but the
fluid does not move. However, whenR crosses this threshold, the fluid is set in motion
and a pattern of “convection rolls” emerges.

The primary instability in convection was explained by Rayleigh using the Boussi-
nesq approximation [15]. This analytical model consists of the Navier-Stokes equation
to describe the fluid velocity coupled to a scalar diffusion equation which describes the
evolution of the temperature. Near threshold, solutions of these equations predominantly
have the form of almost straight parallel roll patterns. The behavior of these solutions can
be well modeled by traditional amplitude equations [47], [56], [18], [45]. In this case,
because both the amplitude and the phase are active order parameters when sufficiently
close to threshold, these patterns display only restricted types of defects called dislo-
cations and amplitude grain boundaries. In their vicinity, the amplitude of the velocity
field envelope nearly vanishes.

Far from threshold, one discovers a much richer variety of defects [4], [53], [52]. For
example, Figure 1 shows a result from a recent series of convection experiments [8] in
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which high pressureCO2-gas was used rather than more common fluids such as water
and helium. This apparatus has the advantage that the height of the convection cell can
be made very small so that a large aspect ratio (length to height ratio of the apparatus)
can be obtained. The figure illustrates one of the types of defects that appear far from
threshold and in which the amplitude of the field is not nearly vanishing. At the core
of the figure there is a defect which is known as aconvex disclination. (There are also
dislocations in the outer regions of the figure.)

Mathematical models of pattern behavior far from threshold are equations derived for
a phase order parameter which locally organizes the pattern. These equations are derived
from solvability conditions associated with translational invariance. The purpose of this
paper is to begin to explore such a model—the “Cross-Newell phase diffusion equation”
(CN) [51]. First, we show through explicit analytical construction of approximate weak
solutions to CN, that the level sets of these solutions and their singularities can provide
good qualitative agreement between experimentally and numerically observed patterns
and their defects. Second, we characterize the generic defects of solutions to CN so that
they can be compared with observed defect types. Finally, we will consider a natural
regularization of CN (RCN) which is variational. We show that the energy of its mini-
mizers, appropriately scaled, tends asymptotically to the energy of our weak solutions
as the regularization is removed.

From the mathematical point of view, CN is challenging. It formally supports singular
and multivalued stationary solutions. One can try to select a single valued weak solution
of this equation as a singular limit of solutions to the regularization, RCN. This is
analogous to what one does in studying singular (zero viscosity) limits of Burgers’
equation in order to describe shock formation. Consideration of the relation between
limit solutions of RCN and those of CN provides a canonical model of a singular limit
for an elliptic variational problem producing weak solutions with defects along one-
dimensional curves. These problems are interesting because they are on the border of
what can currently be understood analytically, as will be explained in Section 4. We
remark that RCN has arisen independently in contexts other than pattern formation, such
as thin film blisters [50], crumpled elastic sheets [54], [41], and liquid crystals [39].

The outline of this paper is as follows. In Section 2 we present background on the
Cross-Newell equation and its regularization, including a derivation of the CN equation,
a discussion of its physical interpretation, and a concise analysis of the type of the CN
equation and how it can change. In particular, Section 2.3 unites and provides complete
details of these latter results which we have cited elsewhere [51], [44], [9], including a
description of the characteristics of the stationary Cross-Newell equation and their com-
patibility with standard descriptions of the linear stability of the microscopic equations
(such as the Busse balloon). Section 2 continues with a discussion of singularities of CN
and their topology. Finally the regularized equation (RCN) is introduced and shown to
be variational.

In Section 3 we find exact solutions of the stationary CN equation via the Legendre
transform leading to a hodograph equation. This produces a separable linear equation
which we solve and analyze. The solutions constructed in this way are multivalued
and their branch points represent caustic singularities. This application of the Legendre
transform allows one to construct a complete solution of the CN equation in terms of
multivalued analytic functions. To make contact with the original physical problem, we
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discuss the jump conditions that a weak solution which patches together the different
branches of a multivalued solution must satisfy. While we are not able to construct
such general weak solutions that satisfy specified boundary conditions, we can produce
solutions that satisfy the jump conditions (asymptotically) in the physically relevant case
where the wavenumber is close to its preferred value on both sides of the shock.

In Sections 4 and 5 we turn our attention to the regularized Cross-Newell equation.
The results of this section can be read independently of Section 3. In Section 4 the ansatz
of self-dual reduction, an equipartition assumption, is used to reduce the fourth-order
RCN equation to a second-order equation that we refer to as the self-dual equation. We
show that a solution of the self-dual equation will be a solution of the RCN equation
if the graph of the solution, viewed as a nonparametric surface, has zero Gaussian
curvature. Numerical evidence [9] strongly suggests that the Gaussian curvature is zero
almost everywhere. In an appropriate limit the self-dual equations can be transformed
into a Helmholtz equation. The explicit solutions of this equation are analyzed in the
vanishing viscosity limit. The resulting defects of these solutions are classified. Finally,
in Section 5, we use the fact that stationary RCN is variational to analyze the minimizers
of the associated free energy and their viscosity limits. In certain cases related to the self-
dual solutions discussed in Section 4, we are able to describe the leading order asymptotic
behavior of these minimizers. In particular upper bounds on the free energy are found.
Thanks to some recent work of Jin and Kohn [28], in some of these cases we can also get
good lower bounds on the free energy. In these same cases the upper and lower bounds
can be evaluated on self-dual solutions and shown to be equal asymptotically.

2. Background

2.1. Formal Derivation of the Cross-Newell Equation

We believe that the regularized phase diffusion equation (RCN), which is the macroscopic
equation to be discussed here, has validity in describing a wide variety of physical pattern-
forming systems and in particular those which are close to gradient systems such as the
case of high Prandtl number convection. However, to be explicit, we will restrict our
consideration to the context of the Swift-Hohenberg (SH) equation,

wt = −(1+1)2w + Rw − w3, (1)

a well studied phenomenological model for Rayleigh-B´enard convection at high Prandtl
number. The scalar independent variablew: R2→ R represents the passively advected
temperature scalar of the Boussinesq equations. Up to translation, the pattern is given
by the level linesw = c0 for a fixed valuec0.

Equation (1) is a gradient flowwt = − δE
δw

where

E = 1

2

∫
Ä

(
((1+1)w)2− Rw2+ 1

2
w4

)
dx dy, (2)

andÄ is a region in the physical plane. Equation (1) admits a family of stationary
“straight” roll solutionsw0 = f (θ) where f is aneven, 2π -periodic function ofθ [16]:

w0 = a1(k) cos(θ)+ a2(k) cos(2θ)+ · · · + an(k) cos(nθ)+ · · · , (3)
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with θ = Ek · Ex andk = |Ek|. Recursion formulae for thean are given in [16]; these also
depend onR but this dependence is suppressed here. This family is parametrized by the
wavevectorsEk ∈ R2.

For equations such as (1), a general description of the stable stationary solutions
beyond a fixed “planform” (straight rolls, squares, hexagons) does not yet exist. One can,
however, appeal to an asymptotic method, modulation theory [59], to describe patterns
that are locally of the form of stationary straight roll solutions but vary slowly over large
distances. One thinks of the small parameterε as being, in this context, the inverse of
the aspect ratio mentioned above (the ratio of the plate separation to the diameter of
the apparatus). When defects are present the appropriate definition ofε needs to be the
inverse of the mean distance between defects. For the SH model this amounts to saying
that there are many (O(ε−1)) rolls in the regionÄ with sparse defects. One also wants
these solutions to look locally like the straight roll solutions (3). So, formally, we seek
solutions of the formw = wε(2/ε) whose argument depends only on the macroscopic
or “slow scale”( EX, T) = (ε Ex, ε2t); i.e.,2 = 2( EX, T). The microscopic or “fast” scale
of the solution is expressed through the periodic functionwε being scaled by 1/ε. The
organizing idea here is that thisw should, locally in space (i.e., in a region the diameter of
a few roll widths) and time, “look like” a stationary solution (3), but only approximately.
The modulation is represented as a slow variation of wavevectorEk which parameterizes
the family (3). Thus, one thinks ofwε(2/ε) as having the form of (3) but with2 and the
Fourier coefficientsan(k) modulated (through the modulation ofEk). While on the local
scaleEk is constant, on the macroscopic scale it varies:Ek = Ek( EX, T).

To make these ideas into a formally self-consistent perturbation scheme, one defines
the wavevector by

Ek = ∇EX2.

Thus instead of definingθ in terms ofEk (asθ = Ek · EX), we defineEk in terms of the slowly
varying2. The fast dependence inwε is then represented by those expressions which
depend on the fast phaseθ = ε−12. We also mention that the choice of a parabolic
scaling for time is essentially dictated by the fact that the background solutions (3) are
stationary. If the background solutions were traveling waves, the analysis we are about
to describe would require two slow time scales,T1 = εt ; T2 = ε2t , whereT1 is related
to the modulation of the background frequency [33], [35], [37].

Next, one wants to evaluate the SH equation (1) on the modulated form of (3) which
we represent as

wε( EX, T) = w0+ εw1+ ε2w2+ · · · .
Based on this ansatz and formal application of the chain rule, one can represent the space
and time derivatives ofwε as

∂t = ε22T∂2 + ε2∂T

= ε2T∂θ + ε2∂T ,

∇Ex = ε∇ EX2∂2 + ε∇ EX
= Ek∂θ + ε∇ EX.
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Using these representations one easily finds that the fourth-order operator in SH expands
as

(1+1)2 = L0+ εL1∂θ + ε2L2+ ε3L3∂θ + ε4L4,

whereL0 = (1+k2∂2
θ )

2,L1 = (1+k2∂2
θ )D1+D1(1+k2∂2

θ )with D1 = 2Ek ·∇+ (∇ · Ek),
and so on.

Evaluating SH onwε , one finds at leading order that

(L0− R)w0+ w3
0 = 0.

This is precisely the equation satisfied by the straight roll solutions of [16]. If one takes
w0 here to be one of the solutions (3), then this is consistent with the ansatz thatwε

should locally “look like” a straight roll solution. However, althoughw0 here has the
form of (3), it should not be thought of as one of these solutions since it will depend
on the slow variableEX throughk in the Fourier coefficients. This dependence can be
accessed through the first correction which satisfies

(L0− R+ 3w2
0)w1 = −∂θw02T − L1(∂θw0).

The null space ofL0 − R + 3w2
0 acting on 2π -periodic functions ofθ contains the

marginal mode∂θw0. Thus there is a formal solvability condition forwε to maintain the
form of a 2π -periodic function ofθ :

〈∂θw0|∂θw0〉2T + 〈∂θw0|L1∂θw0〉 = 0,

where〈a|b〉 = 1/2π
∫ 2π

0 ab dθ .

SettingEk = kk̂, wherek̂ denotes the unit vector in the directionEk, expanding and
performing the averages in the above solvability condition, one arrives at the Cross-
Newell phase diffusion equation which has the form

2T − kD⊥(k)∇ · k̂− D||(k)k̂ · ∇k = 0. (4)

One refers toD⊥(k) andD||(k) as the (resp.) perpendicular and parallel diffusion coef-
ficients of the system. These will be explicitly given in Section 2.2. For full details of
the above modulational analysis see [51].

2.2. Physical Interpretation of the Cross-Newell Equation

The representation (4) is what gave rise to the terminologyphase diffusion. In the vicinity
of straight, parallel, equally spaced rolls with common wavevectorEk0, equation (4) is
often regarded as an equation with fixed diffusion coefficients. Since∇·k̂ is the curvature
of a roll, the perpendicular diffusion coefficientD⊥(k0) measures the response of the
system to bending of the rolls. Similarly,k̂ · ∇k describes the local change in spacing
of roll crests, and the parallel diffusion coefficientD||(k0) measures the response of the
system to the compression or expansion of rolls in a direction perpendicular to their axes.
The physical meaning ofphase-diffusionis that any deviation of the rolls from being
straight and parallel, with spacing of 2π , should “diffuse” away, restoring the rolls to this
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preferred state. Recent work [55], [21], [58] demonstrates that for the SH equation,near
threshold, the marginally stable stationary straight roll solutions of [16] are nonlinearly
stable. This provides strong support for the validity of the modulational ansatz. Of course,
as in geometric optics, these modulation equations have formal validity only so long as
the variation of the rolls is sufficiently gradual.

A diffusion equation having the form of a linearization of (4),

2T − D⊥(k0)∂
2
X2− D||(k0)∂

2
Y2 = 0,

was first written down by Manneville and Pomeau [42], who derived it from the Newell-
Whitehead-Segel equation [47], [56] as the corresponding phase equation. However,
unlike [19], their derivation was formally valid only near threshold (in the context of
SH this would mean forR small). What characterizes CN is that the small parameter
corresponds to the inverse aspect ratio of the system and the derivation is carried out by
modulating straight roll solutions.

The derivation of the CN equation for a wide variety of stationary pattern-forming
equations was worked out, for example, in [19], [46], [51]. In all these cases, the modu-
lation equation can be rewritten in divergence form as

τ(k2)2T = −∇EX · (EkB(k2)), (5)

where the diffusion coefficients are recovered askD⊥ = −kB/τ andD|| = −(kB)k/τ .
For SH,τ(k2) = 〈( ∂w0

∂θ
)2〉 and B(k2) = 1

2
d

dk2 〈w4
0〉, where〈·〉 = 1

2π

∫ ·dθ is the phase
average with respect toθ . Thestationaryform of (5) is given by

∇ EX · (EkB(k2)) = 0,
∇ EX × Ek = 0,

(6)

whereEk def= ∇EX2. These equations are the variational equationsτ(k2)2T = −δI/δ2 for
the free energy

I = 1

2

∫
Ä

G2(k2)d X dY, (7)

whereG2(k2) = − ∫ k2

k2
B

B(s)ds, wherekB is chosen so that the minimum ofG2(k2) is
zero.

For the Swift-Hohenberg equationG2(k2) = − 1
2〈w4

0〉 is transcendental. For con-
creteness here, we will approximatew0 by the first term in its Fourier expansion (which
is in fact valid close to threshold). In this truncationB andτ can be approximated by
polynomials as

kB(k2) ≈ 2k(1− k2)(R− (1− k2)2),

τ (k2) ≈ (R− (1− k2)2). (8)

The cubic-like profile ofkB, common to a large class of microscopic systems, is displayed
in Figure 2b. The energy density for this approximation,

G2(k2) = 1

4
(R2− (R− (1− k2)2)2), (9)
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Fig. 2. (a) CN energy density as a function of k. (b) Corresponding
(kB(k2)).

is graphed in Fig. 2a. Whenever one of the diffusion coefficients crosses zero, the system
(6) changes type. Figure 2b indicates where these crossings occur. In particular the range
of wavenumbers betweenkB andkr E constitutes the range of linearly stable wavenumbers
in the vicinity of the straight roll solutions. In this range, known as the Busse balloon
[11], (4) is a quasilinear diffusion equation for2 whose spatial part (the RHS of (4)) is
a positive elliptic operator.

2.3. Nonlinear Structure of the Cross-Newell Equation

We explore further the mathematical structure of the stationary phase diffusion equa-
tion (6). As we just mentioned, this is a quasilinear equation of mixed type. In order
to identify the different elliptic and hyperbolic regimes of this equation as well as to
describe its multivalued analytic solutions, it will be useful to introduce the quadratic
form, with entries depending on( f, g),

Q def= B1+ 2B′ Ek · t Ek,
(where ′ = d

dk2 ) and its adjugate form

Qadj = B1+ 2B′ En · t En,
whereEn = JEk and J = (0 −1

1 0

)
. The adjugate of a matrixM is implicitly defined by

M · Madj = det(M)1. The stationary equation may now be expressed as the vanishing
trace of a product of quadratic forms,

∇ EX · (EkB) = Tr{Q · D2
EX2}

= (B+ 2B′ f 2)2X X + 4B′ f g2XY + (B+ 2B′g2)2Y Y = 0, (10)
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with D2
EX2 construed as the Hessian of2. The characteristic ODE is then given by

td EXQadjd EX = (B+ 2B′ f 2)dY2− 4B′ f gd XdY+ (B+ 2B′g2)d X2 = 0. (11)

The eigenvectors ofQ areEk andEn. One easily sees from its definition that

QEk = (kB)kEk, (12)

QEn = BEn. (13)

Note that the eigenvalues are proportional to the parallel and perpendicular diffusion
coefficients appearing in (4). SinceQ and its adjugate are similar,

Q = t JQadjJ, (14)

Qadj has the same eigenvalues asQ with the corresponding eigenvectors rotated 90◦. In
particular, the stationary phase diffusion equation is elliptic when both diffusion coeffi-
cients have the same sign and hyperbolic when the signs are opposite. These eigenvalue
signatures partition the wavenumber ranges as follows (see Figure 2b):

kl E < k < kB ⇒ B > 0, (kB)k < 0 (hyperbolic), (15)

kB < k < kr E ⇒ B < 0, (kB)k < 0 (elliptic),

kr E < k < kr ⇒ B < 0, (kB)k > 0 (hyperbolic).

The characteristic speedsλ± (we use this terminology even when our equation is
elliptic) can be determined from (11) by the quadratic formula:

λ± = 2B′ f g±
√

4(B′ f g)2− (B+ 2B′ f 2)(B+ 2B′g2) (16)

= 2B′ f g±
√
−B(kB)k.

Comparing this with (15) one sees that the speeds become equal only at places where the
equation changes type between elliptic and hyperbolic, i.e., where one of the eigenvalues
of Q becomes zero.

The elliptic interval betweenkB andkr E is frequently referred to as theBusse balloon
[11]. One understands the significance of the Busse balloon by considering the second
derivative of the free energy (7) which can be represented in terms of the quadratic form
Q. On the family of perturbations2(δ) = 2(0)+ δ2(1) with 0≤ |δ| ≤ 1, the free energy
can be expanded by Taylor’s theorem as

Iδ = I0− δ
∫ ∫

U
d X dYEk(0)B(k(0)2) · Ek(1) (17)

− 1

2

∫ δ

0
(δ − s)

{∫ ∫
U

d X dY(t Ek(1))Q(s)(Ek(1))
}

ds,

whereQ(s) is Q evaluated on2(s).
If one takes2(0) to be a solution of the stationary equation, then the orderδ term

vanishes entirely. Moreover, if−Q(0) is positive definite in a neighborhood2(0), then for
2(1) sufficiently small so is−Q(s) for 0≤ s ≤ δ. It follows that in this caseI(0) < I(δ),
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and therefore any solution of the stationary phase diffusion equation whose wavevectors
Ek always lie in the Busse balloon is a local minimum of the energy. On this neighborhood
I would be convex.

On the other hand if2(0) is a solution for whichQ(0) has a negative eigenvalue at
some point, then the energy can be lowered by an arbitrarily small perturbation. To see
this observe from (12) and (15) that in the interval(kl E , kB) (resp.(kr E , kr )), En (resp.Ek),
is the direction of maximal decrease ofI at2(0). Taking2(1) = 9(0)(resp. 2(0)) lowers
the energyI(δ) belowI(0). Therefore, in the functional vicinity of any solution having
k < 1 in some region of theEX-plane, the energy is nonconvex. For the solutions that we
shall explicitly construct in Section 3.2 this will be the case. In the time-dependent setting
(5), this nonconvexity implies that the stationary solution is unstable. This instability,
known in the literature as the zig-zag instability, is one of the problems which force us
to consider a regularization of the Cross-Newell equation.

Equation (10) has a form that appears in many other mathematical contexts. One
such is the equation for nonparametric minimal surfaces inR3. These are locally area-
minimizing surfaces among surfaces presented as a graphZ = h(X,Y). The analogue
of the free energy in this problem is the area functional of the surface. HereB =
(1+ h2

X + h2
Y)
−1/2 and the energy integrand is

∫
kB(k2)dk = (1+ h2

X + h2
Y)

1/2. The
analogue of the rolls are the level sets of the minimal surface. There is a vast literature
on this problem [48]. We will exploit this geometric analogy in our analysis of defects
in Section 3. Another example is the equations for 2D stationary, ideal, isentropic gas
dynamics [17]. HereEk is the fluid velocity andB(k2) is the density. The energy integrand
is this fluid density, and the gas dynamics equations are the variational equations for
this energy. A particularly challenging aspect of these equations is to describe (weak)
solutions in the transonic regime where the equation changes type from hyperbolic to
elliptic. The phase diffusion equation is more difficult than these classical examples
because itsB(k2) is not monotone.

2.4. Singularities

In the immediate vicinity of a defect where one can see that the wavevector changes
rapidly, the modulational ansatz is no longer even formally valid, and in fact the station-
ary equation (6)—when solved by the method of characteristics—develops multivalued
solutions, as will be described in Section 3. Nevertheless, we will see that the unregu-
larized equation supports explicit solutions that give an excellent representation of some
of the most frequently observed isolated stationary defects. Two types of defects arise
in this setting. One type is related tocaustics, which are envelopes of characteristics of
the system (6)—i.e., places where characteristics begin to collide. Their presence indi-
cates that the solution has become multivalued and therefore can no longer be classical.
Caustics correspond to curves in the(X,Y)-plane where the solution changes from one
branch to another. The other type of defect is apoint defect. Whereas caustics represent
a geometric obstruction to the existence of a global classical vector field solution of
(6), a point defect is a topological obstruction to the existence of globalgradientvector
field solutions, although local gradient solutions will exist everywhere away from point
defects.
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2.4.1. Twist and the Topology of Point Defects.At the most fundamental level, our
experience of roll patterns is as a family of stripes. In the case of Swift-Hohenberg,
for example, these stripes may locally look like the level curves of a function such as
cos(Ek0 · EX), at least away from defects. The phase2 itself need not be well defined (for
instance,2 → −2 leaves the pattern unaltered). The existence of these ambiguities
is intimately related to the types of defects that can occur. The second equation in (6),
∇ EX × Ek = 0, allows us to conclude thelocal existence of a potential,2, for Ek; i.e.,
∇2 = Ek = ( f, g). Defects in the pattern can be obstructions to the extension of the local
potentials to a single global one. This obstruction is topological. To gain some insight
into the purely topological aspects of defects in our problem, we consider equation (6)
with B = 1. In this case the equations are linear (in fact, they are equivalent to Laplace’s
equation). Figure 3 shows some examples of canonical patterns with defects. This does
capture the topological character of defects; what is different for the caseB = 1 is that
the associated energy density has no minima. Hence, there is no mechanism for selecting
a preferred wavenumberk.

In Figure 3a we have tried to consistently plot a vectorfield along a box surrounding
the defect. We see that this attempt must fail; the vector returns to its starting point
with its orientation reversed. The angle through which the vector rotates in traversing a
counterclockwise circuit, divided byπ , is called thetwist [43], [31] of the defect. Thus
Figures 3a, 3b have twist−1,+1, respectively. Figures 3c, 3d which have twist∓2 do
in fact have global potentials, although the potential for Figure 3d is undefined at the
defect. In these patterns the local wavevectorEk is defined only up to a sign±Ek. To define
a global field with odd twist it is often convenient to consider the slightly weaker notion
of adirector field [18], which does not distinguish between+Ek and−Ek.

Finding solutions of equation (10) with nontrivial twist is a challenging problem. In
Section 3 we show how to construct some solutions of this type on the complement of
a small neighborhood of the defects. In particular we construct such solutions having
single point defects of twist−1 or+1.

2.4.2. Caustics.Singularities which we refer to ascausticsare probably best exem-
plified in the context of geometric optics where they arise as envelopes of rays. To be
precise let us consider the example of an elliptical domainÄ with rays emanating nor-
mally to the boundary,∂Ä, of this ellipse and directed towards its interior as indicated
in Figure 4a. To be specific, in what followsEX0(s) is the counterclockwise unit-speed
arclength parametrization of∂Ä and EN(s) = J EX0(s) is the inward pointing unit nor-
mal.

In this example, the analogue of a multivalued solution of the CN equation that we
will construct is the ray surface, which is defined to be{

( EX, Z): EX = EX0(s)+ t EN(s) and Z = t for (s, t) ∈ (0, L)× R
}
,

whereL is the length of the ellipse. This surface is ruled by the rays that are the lines
in the ray surface gotten by fixings = s0. The level curves of this multivalued ray
surface are gotten by taking a horizontal slice att = t0; i.e., these are the loci oflocally
equidistant points to∂Ä. A few of these level curves are shown in Figure 4b which shows
the development of caustic singularities whent gets large enough.
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a) b)

c) d)

Fig. 3. Trajectories of harmonic (B = 1) director fields with defects (a) of twist−1; (b) of twist
+1; (c) two of twist−1; (d) of twist+2.

Fig. 4. Aspects of a ray surface from an elliptical boundary: (a) rays, (b) level curves, (c) defect
locus.
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On the other hand one can introduce a single-valued truncation of the ray surface which
is simply the functiond( EX) onÄ defined to be the distance fromEx to the boundary of the
ellipse; i.e.,d(Ex) = distance( EX, ∂Ä). The graph of this function is smooth away from
placesEX for which there is more than one point on∂Ä having the same distance toEX.
Such nonsmooth points are part of thedefect locusof this surface shown in Figure 4c as
the horizontal segment on theX axis whose endpoints are located at the two curvature
centers of the ellipse.

Above this locus, two branches of the ray surface intersect. This intersection occurs
before the corresponding rays have a chance to reach a caustic (excepting the curvature
centers at the endpoints of the defect, which are incipient caustics).

Multivalued surfaces having caustic singularities of this form arise naturally as Leg-
endre transforms of nonconvex functions. If2̂(Ek) is such a function, then its Legendre
transform2( EX) is implicitly defined by the relation

2( EX)+ 2̂(Ek) = Ek · EX.

As will be explained in Section 3.1, when2( EX) is a solution of the stationary CN
equation,2̂(Ek) solves a hodograph equation in which the roles of the independent and
dependent variables are interchanged. The advantage of this hodograph equation is that
it is linear and so it is a more tractable equation to solve and analyze. The Legendre
transform is a differentiable map fromEk-space andEX-space. Caustics are analytically
described as the image inEX-space of the locus where the Jacobian( = Xf Yg− XgYf )

of the Legendre map vanishes.
Figure 5 illustrates the generic types of caustic singularities that arise in Legendre

transforms of solutions to the hodograph equation associated to the stationary CN equa-
tion. The caustics are the bold dark lines corresponding to places where = 0. Smooth
points along these curves are referred to asfolds. Cuspidal points such as those seen in
part (a) of this figure are calledcusps. Places where two branches cross, as in part (c)
are calledumbilics. Folds and cusps are generic singularities for general Legendre trans-
formations as was originally shown by Whitney [60]. Umbilics only become generic
when the additional constraint is imposed that2( EX) should solve the stationary CN
equation. The proof that, with this constraint, the above singularities are the only generic
singularities will be described in [22], which applies results from [13].

One would like to pass from multivalued solutions of the CN solution to single-valued
solutions with defects, analogous to what was done in the geometric optics example.
However, unlike this example, a solution of the CN equation—or of the associated
hodograph equation—does not have a natural notion of distance associated with it. Thus
there is no obvious mechanism for selecting where the multivalued solution can be
cut off, i.e., where the defect should be placed. In [22] we explore some examples in
which a metriccanbe associated with a solution of the hodograph equation which may
then be used to truncate the multivalued Legendre transform of this solution and so get
an approximate solution of the CN equation with defects. Alternatively one can try to
realize a single-valued weak solution of CN equation, as a singular limit of solutions
to a regularization of this equation as one does in taking the zero-viscosity limit of the
Burgers equation. This is what is done in Sections 4 and 5 of this paper. The next section
reviews the background for this approach.
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a) b)

c) d)

Fig. 5. Rolls in the physical plane (a), (c) and hodograph plane (b), (d). The bold dark lines in (a),
(c) show the locus of = 0. Note that in (a), (c) the cusps of the rolls lie on this locus.

2.5. The Regularized Cross-Newell Equation

To construct physically reasonable solutions, one needs to introduce a regularization of
eqs. (5) and (6). This regularization comes in at orderε3 since orderε2 terms do not
contribute to the phase equation. Among all terms at third order we only keep those
which are dominant with respect to the small parameter 1− k2. The same will be true in
Section 4 forB(k2), which we shall approximate by 1− k2. The resulting equation [19],

τ(k)2T +∇ · EkB(k)+ ηε2∇42 = 0, (18)

and its smallε limit will be discussed in later chapters of this paper. Here,η =
|Bk(kB)|/4kB. In the remainder of this paper we will, for convenience of notation, assume
thatη = 1. Near threshold Kuramoto added a similar fourth-order term to regularize an
antidiffusive 1D phase equation which has become known as the Kuramoto-Sivashinsky
equation. It is also interesting that a stationary version of (18) has recently been put
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Fig. 6. A quasi-stationary solution of the
Swift-Hohenberg equation atR= 0.5.

forward as a model for the formation of defects in the blistering of thin films [50],
[28].

Figure 6 exhibits the rolls, i.e., level curves, of a stationary solution of SH. The
equation is solved in a disk withw = 0 and∂w/∂n = 0 on the boundary and with
initial data having symmetry under 120◦ rotation. This figure, which exhibits a concave
disclination at the origin, is a snapshot taken when the solution has become effectively
stationary.

One can see that these are far from straight roll solutions. The curvature in these rolls
is due to the influence of boundary conditions and the fact that asR is raised above the
critical threshold,Rc = 0, roll “patches” arising at different locations have uncorrelated
orientations. The pattern is a mosaic of patches with different roll orientations, connected
at grain boundaries (which are the rays at anglesπ /3, π,5π /3) that meet at the origin in
a point defect.

Figure 7 shows a numerical solution of thestationaryRCN equation (18) on a double
cover of the disk. Notice that, away from a thin layer along the boundary, the agreement
between Figures 6 and 7 is quite striking.

Figure 8 is another numerical solution of the stationary regularized phase diffusion
equation also calculated on a double cover of the disk. The similarity of the structure
of this numerically generated solution with that of the experimental pictures shown in
Figure 1 provides some justification for the exploration of the Cross-Newell model.

The stationary RCN equation (18) is variational with free energyε
2Eε(2),

Eε(2) =
∫
Ä

ε(12)2 d EX + 1/ε
∫
Ä

G2(k)d EX,

whereG2 = − ∫ k2

k2
B

B dk2 and whereÄ will generally be taken to be a simply connected
domain in the plane. In general we will consider this energy functional on a class of
functions with (possiblyε-dependent) Dirichlet boundary conditions.
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Fig. 7. A concave disclination of the regularized Cross-
Newell equation.

As will be described in Section 4.1 we have found that functions in the above class
which equipartition this free energy solve the variational equations of this energy away
from places where the Gaussian curvature of the graph of2 is nonzero. The support of
this curvature concentrates on sets of vanishingly small measure asε tends to zero. The
energy is equipartitioned if2ε solves

ε∇22ε = ∓G.

We refer to solutions of either of these equations asself-dualsolutions. Such solutions,
used as test functions, are the key ingredient in estimating minimizers of the free energy
Eε , which is the subject of Section 5.

3. Exact Solutions of the Stationary Phase Diffusion Equation

This section presents detailed descriptions of solutions of the stationary phase diffusion
equation. It is possible to construct all multivalued solutions of (6) whose expansion as
a second-order scalar equation is given in equation (10), which we reproduce here for
the reader’s convenience:

∇ EX · (EkB) = Tr{Q · D2
EX2} = (B+ 2B′ f 2)2X X+ 4B′ f g2XY+ (B+ 2B′g2)2Y Y = 0.

This section will describe and illustrate this construction. Our method uses theLegen-



The Geometry of the Phase Diffusion Equation 239

Fig. 8. A convex disclination of the regularized Cross-
Newell equation.

dre transformwhich interchanges the dependent variablesEk = ( f, g)and the independent
variablesEX = (X,Y) in (10). The induced equation for the inverted functions,EX(Ek), is
a linear partial differential equation called thehodographequation, which turns out to
be separable in polar coordinates( f = k cosφ, g = k sinφ).

3.1. Legendre Transform

The Legendre transform [17] provides an effective means for interchanging the roles of
the dependent and independent variables of the phase diffusion equation, which will in
fact linearize this equation. In this application it is often referred to as the hodograph
transform. It also serves to describe the multivalued character of the analytic solutions to
the phase diffusion equation. The Legendre transform2̂ of the phase2 can be implicitly
defined by

2( EX)+ 2̂(Ek) = Ek · EX. (19)

Differentiating this relation,

∇ EX2 = Ek, ∇Ek2̂ = EX,

D2
EX2 =

∂ Ek
∂ EX , D2

Ek2̂ =
∂ EX
∂ Ek ,

one arrives at a relation between second derivatives(
2X X 2XY

2XY 2Y Y

)
= −1

(
2̂gg −2̂ f g

−2̂ f g 2̂ f f

)
,
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def=

∣∣∣∣∣∂ EX∂ Ek
∣∣∣∣∣ , (20)

from which the hodograph equation is immediate

tr {Qadj · D2
Ek2̂} = (B+ 2B′ f 2)2̂gg− 4B′ f g2̂ f g + (B+ 2B′g2)2̂ f f = 0.

This equation is manifestly linear. The characteristic ODE for the hodograph is

tdEkQdEk = (B+ 2B′ f 2)d f 2+ 4B′ f gd f dg+ (B+ 2B′g2)dg2 = 0. (21)

It follows from this and equation (14) that the stationary phase diffusion equation and
its hodograph are both elliptic (respectively hyperbolic) iffQadj, or equivalentlyQ, is
definite (respectively indefinite).

When the stationary phase diffusion equation is elliptic, one can show by an appli-
cation of Holmgren’s Theorem [24] that, with the possible exception of isolated point
defects, the hodograph mapEX(Ek) is locally 1:1. In particular, cannot vanish along a
curve in elliptic regions without vanishing identically.

In nonelliptic regions may vanish along curves. Then the hodograph mapEX(Ek) has
folds and more complicated caustics. A consequence of this folding is that the analytic
solutions of (6) are multivalued. Figure 5 illustrates the loci where = 0 in theEk plane
and the corresponding caustics inEX. One can notice in this figure that the caustics are
the envelope of places where rolls develop cusps and become multivalued.

SinceQadj is definite in the elliptic region of (15), the ODE (11) has no nontrivial real
solutions. On the other hand, in hyperbolic regions whereQadj is indefinite, there are two
families of characteristics solving (11) which give local coordinates on these regions.

3.2. Fundamental Hodograph Modes

Changing to polar coordinates,

( f = k cosφ, g = k sinφ),

equation (21) becomes

(kB)k2̂φφ + k{(kB)2̂k}k = 0, (22)

and the Legendre relation (19) simply reads

2 = k2̂k − 2̂. (23)

This section explains how equations (22) and (23) suffice for the construction of exact
solutions of (6).

The key reason they do suffice is that equation (22) is separable. With the ansatz

2̂ = Fn(k) cos(nφ + δ), (24)
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equation (22) separates, leading forFn(k) to the ODE

k{(kB){Fn}k}k − n2(kB)k{Fn} = 0. (25)

This separation is a reflection of the rotational invariance of the original phase diffusion
equation (6).

The Jacobian (20) of the mapping(φ, k) → (x, y) associated with thenth mode
solution (24) of equation (22) is

n = 1+ cos2(nφ)

−1+ (kB)k
B

(
{Fn}k − n2

k {Fn}
n
({Fn}k − 1

k {Fn}
))2

. (26)

Note that along the Eckhaus boundaries where(kB)k = 0,n vanishes when cos2(nφ) =
1 (φ = mπ

n ), while whenB = 0, it vanishes for cos2(nφ) = 0 (φ = mπ
2n , m odd).

For n = 0,1, equation (25) admits closed form solutions, which we use to illustrate
the general method. For n = 0, thegeneral solution of equation (22) is

2̂ = a0+ a1

∫ k dk

kB
+ a2φ + a3φ

∫ k dk

kB
. (27)

The mapping from the hodograph plane to the physical plane given byEX = (X,Y) =
∇Ek2̂ is

X = cos(φ)

(
(a1+ a3φ)

kB

)
− sin(φ)

k

(
a2+ a3

∫ k dk

kB

)
, (28)

Y = sin(φ)

(
(a1+ a3φ)

kB

)
+ cos(φ)

k

(
a2+ a3

∫ k dk

kB

)
. (29)

The pullback of2 to the hodograph plane, (23), is

2 = −(a0+ a2φ)+ (a1+ a3φ)

(
1

B
−
∫ k dk

kB

)
. (30)

The level curves,2 = mπ, in the hodograph plane are depicted in Figures 9a–c. The
corresponding rolls in the physical plane are calculated by tracing the images of these
level curves under the mapping (28) as shown in Figures 9d–f. The patterns represented
here are called “vortices” (Fig. 9a,d) in whicĥ2 is a linear function ofφ, “foci” or
“targets” (Fig. 9b,e) in whicĥ2 is purely a function ofk, and “spirals” (Fig. 9c,f) which
are general n=0 solutions. One can construct spiral solutions with an arbitrary number
of arms. If one setsX = Rcos(α), Y = Rsin(α), kX = k cos(φ), andkY = k sin(φ),
then the wavevector gets associated with its physical location by the formulas

R = (1/k)
√

a2
1/B(k)2+m2,

α = φ + tan−1(mB(k)/a1).

Here,m is the number of spiral arms and the parametera1 controls the structure of the
core of the spiral.
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d) e) f)

a) b) c)

Fig. 9. Contours of2 = mπ for several exactly calculatedn = 0 solutions in the hodograph
plane (a)–(c) and the corresponding contours in the physical plane (d)–(f).

For n = 1 thegeneral solution to equation (22) can be represented as

2̂ = 2c1k
∫ k dk

k3B
cos(φ)+ c2k cos(φ − φ0), (31)

wherec1, c2 andφ0 are constants and where the rotational degree of freedom corre-
sponding to the substitutionφ → φ + δ has been suppressed. The mapping from the
hodograph plane to the physical plane is

X = c1

∫ k dk

k3B
+ c1

k2B
(1+ cos(2φ))+ c2 cos(φ0), (32)

Y = c1

k2B
sin(2φ)+ c2 sin(φ0). (33)

The pullback of2 to the hodograph plane, (23), is

2 = 2c

kB
cos(φ). (34)

The level curves,2 = mπ , in the hodograph plane are depicted in Figure 10a. The
corresponding rolls in the physical plane are obtained by tracing the images of these
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a) b) c)

Fig. 10. Contours of2 = mπ for n = 1 solution in (a) the hodograph plane and (b) the corre-
sponding contour in the physical plane. A blown-up view of the center (boxed in (b)) with contours
drawn for2 = mπ /10, and the solution extended out tok = kr , is shown in (c).

level curves under the mapping (32). In Figure 10b we plot the images of these rolls in
the physical plane coming from half of a thin annular ring close tok = kB(1 < k ≤
1.1,−π

2 < φ < π
2 ).

We refer to the pattern shown here as a “roman arch.” There is an apparent defect
located near the origin with a half-line emanating from it along whichEk undergoes a
jump ofπ or, equivalently, a reversal of orientation. Parallel to this half-line are apparent
straight horizontal rolls with wavelength effectively equal to 1. This part of the pattern
comes from the region nearφ = ±π

2 in the hodograph plane where in the map (32) the
coefficients of the terms proportional to1B vanish so that the logarithmic term (∼ ln(|B|))
becomes dominant. Assume thatk2−1= O(ε) so that|B| = O(ε); if |φ±π /2| = O(ε)
then sin(2φ) = O(ε) and 1+ cos(2φ) = O(ε2) so that

X = c
∫

dk

k3B
+ O(ε), Y = c

k2B
sin(2φ) = O(1).

TheY component is effectively linear in(φ±π /2)/B, and theX component is effectively
independent ofφ and proportional to ln(|B|). In the right half of the physical plane the
rolls are semicircular. Here the polar part is dominating and the logarithmic integral term
in the X component can be neglected.

The image of this narrow ring appears to fill a large open region of the physical plane.
In the limit as the inner radius of the ring approachesk = 1, the image would appear
to fill the entire physical plane. The pointlike defect is a small, roughly circular region
in the physical plane. A blowup of this defect region is shown in Figure 10c (same as
in Fig. 9a) where the rolls are now level curves2 = mπ /10. Within this region is the
image of the locus where the jacobian of the mapping (32) vanishes:

1 = 1− cos2(φ)

{
1− (kB)k

B

}
= 0. (35)

Along this locus (shown in Fig. 10a) the mapping ceases to be 1:1, and its image is a
caustic in the physical plane. One sees that the caustic consists of a fold that at two points
develops a cusp. Moreover, the rolls themselves develop cusps along the caustic and so
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clearly the solution has ceased to be physical. Note that this caustic and the cuspidal rolls
all occur in the hyperbolic region beyond the right Eckhaus boundaryk = kr E .

Equation (25) has a regular singular point atk = kB(= 1) which is a root ofB. Since
the energy (7) tends to be minimized by solutions withk uniformly close tokB, we expect
to find good approximations to solutions of the stationary phase diffusion equation from
a Frobenius expansion neark = kB of the solution,Fn(k), to equation (25). Changing
variables fromk to B, this is equivalent to expanding atB = 0. The result to orderB2 is

Fn(k) ≈ log |B|(1+ β1B+ β2B2)+ γ1B+ γ2B2,

where

β1 = n2α1,

β2 = n2

4

(
4α2− α2

1

(
1− n2

))
,

γ1 = 2
α2

α1
− α1

(
1+ 2n2

)
,

γ2 =
(
6α3− (6+ 4n2)α1α2+ (2+ n2− 3n4)α3

1

)
4α1

,

and if we expandk ≈ 1+ α1B+ α2B2+ α3B3 we get

α1 = − 1

4R
,

α2 = − 1

32R2
,

α3 = −
(

1

16R4
+ 1

128R3

)
,

whereR= √X2+ Y2.
In this approximation the hodograph map for the “nth mode” is given by(

X
Y

)
= cos(nφ)

αB

(
cosφ
sinφ

)
(36)

+ n log |B|
(

n cos(nφ)

(
cosφ
sinφ

)
− sin(nφ)

(− sinφ
cosφ

))
,

whereδ in equation (24) is set to 0 and2 in the Ek plane is given by

2 =
(

1

αB
+ (n2− 1) log |B|

)
cos(nφ). (37)

Figure 11 shows the rolls in physical (EX) space corresponding to the level curves2 = mπ
for a range ofm in the case of some small values ofn.

The map (36) is a superposition of polar (1
αB ) and logarithmic (log|B|) terms. When

cos(nφ) = 0, a logarithmic term dominates. In the figures these regions correspond to
patches of straight parallel rolls. Note in the figures that these patches occupy a large
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a) b) c) d) 

e) f) g) h)

i) j) k) l)

m) n) o) p)

n=1 k<1 n=1 k>1 n=2 k<1 n=2 k>1 

n=1 k<1 n=1 k>1 n=2 k<1 n=2 k>1

n=3 k<1 n=3 k>1 n=4 k<1 n=4 k>1

n=3 k<1 n=3 k>1 n=4 k<1 n=4 k>1
Fig. 11. Rolls in physical plane (e)–(h), (m)–(p) and corresponding pre-images in thek plane
(a)–(d), (i)–(l).
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portion of the EX plane. On the complement of these patches the polar part is dominant.
This is the region of curvature which interpolates the patches of straight rolls.

Again we observe that the figures drawn, which fill infinite sectors ofEX space, are the
images of averynarrow band ofk values nearkB. Fork > kB the defects, which appear
pointlike in the figures, correspond to small hyperbolic regions bounded by the image of
|Ek| = kr E . Outside this small hyperbolic island, the field is elliptic and therefore without
folds although the degree of the map is typically greater than 1. Fork < kB the figures
are similar with the important exception that now there are folds.

3.3. Weak Solutions of the Stationary Phase Diffusion Equation

In the introduction we displayed several illustrative experimental and numerical patterns
(Figures 1, 6, 7, and 8). From these one would expect that the patterns—and their
defects—which we want to describe, should correspond to single-valued phase functions,
possibly with discontinuities in their derivativesf = 2X andg = 2Y. It is natural to ask
if one can construct such phase functions from the multivalued solutions we have been
considering by “jumping” from one branch of the solution to another along a “shock”
as in the classical model of weak solutions to scalar conservation laws. Along a curve in
the EX-plane where2 may have jump discontinuities in its gradientEk, the condition to
be a weak solution is

Ek+tang = Ek−tang,

BEk+norm = BEk−norm,

whereEk±tang (resp.Ek±norm) are the tangential (resp. normal) components on the two sides

(±) of the curve whereEk jumps [51].
A systematic attempt was made to construct weak solutions in the case of 2D stationary

ideal isentropic gas dynamics whenB(k2) is the fluid density. There are a number of
interesting partial results for this problem (see for instance [17]) but the program was
never successfully carried to completion.

One way to satisfy the jump condition for the normal components is ifB = 0, which
occurs, for instance, whenk = 1. In this case the jump conditions acquire a more
symmetrical form sincek = 1 implies that(Ek±tang)

2+ (Ek±norm)
2 = 1:

Ek+tang = Ek−tang, (38)

Ek+norm = −Ek−norm.

A beautiful example that is almost a weak solution is constructed from the multivalued
solution shown in Figure 5c. If one cuts the corresponding surface along the directions
of the cube roots of−1, where the rolls cross themselves, then the resulting surface is
single-valued with a roll pattern, which is an ideal version of that in Figure 6. The jumps
in Ek along the directions of the cube roots of−1 clearly satisfy the jump conditions
(38). This is not quite a weak solution since along the jump,B is not identically 0,
although it is exponentially close. There is a limiting form of this solution that is a weak
solution.
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Although one may construct a number of weak solutions in this way, as with the case
of gas dynamics, a complete solution seems unlikely. Instead we will take an approach
analogous to that of constructing viscosity solutions. In the next section we modify
the Cross-Newell equation (6) by adding to it an appropriate regularization term. The
solutions of this regularized equation will be smooth and single-valued. In a limit, as the
regularization is removed, we expect to recover a single-valued weak solution of (6).

When we consider the limit of regularized solutions we will find that we are driven
to limiting weak solutions for whichk = kB almost everywhere. Since, whenk = kB,
λ+ = λ−, this would appear to drive us outside the scope of what we have considered
in this section. However, we have seen in the examples of the concave and convex
disclinations, that there are branches of multivalued solutions defined on most of theEX
plane for whichk is uniformly very close tokB. We expect the weak limits we study to
be closely related to these.∗ In these examples, the single-valued branch selected by this
limit “cuts off” well before the multivalued solution would have reached a caustic. So,
caustic singularities are not seen in the weak solution; however, the structure of defects
in the weak solution is strongly influenced by the caustics of the associated multivalued
solution.

Finally, the point singularities, which for the most part occur atk = 0 or∞ or on
the boundaries of caustics, do not appear in limiting weak solutions. However, the twist
invariant of these singularities still influences the topology of weak solutions [22].

4. Regularization

The stationary RCN equation (18) is variational. Though not necessary, it will simplify
our description to further approximate the energy density (9) to leading order in the
vicinity of its minimumk = kB = 1. One then takesG2(k) = (1− k2)2, and in this case
the free energy for stationary RCN is

Eε(2) =
∫
Ä

ε(12)2 d EX + 1/ε
∫
Ä

(1− k2)2 d EX, (39)

where the domainÄwill, from now on, be taken to be a simply connected domain in the
plane. In general we consider this energy functional on a class of functions with fixed,
though possiblyε-dependent, Dirichlet boundary conditions.

Using the null-Lagrangian identity [23], [5],

(12)2 = |∇Ek|2+ 2[2,2], (40)

where∇Ek is the matrix of second partial derivatives of2, one sees that
∫
Ä
(12)2 d EX

∗ In fact there do exist solutions of the CN equation for whichk = kB almost everywhere; such solutions
have the hodograph jacobian, , equal to 0 everywhere and correspond to so-calledsimplesolutions of the
quasilinear system (6) [30].
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actually controls the second derivatives inL2. This follows from (40) because [2,2] is
a perfect divergence:
Let Ek = ( f, g)t . Then

2
∫
Ä

[2,2] d EX = 2
∫
Ä

( fXgY − fYgX)d EX (41)

=
∫
Ä

∇ ·
(

f gY − g fY
g fX − f gX

)
d EX (42)

=
∮
∂Ä

Ek× dEk

=
∮
∂Ä

k2d

(
tan−1 g

f

)
=
∮
∂Ä

k2(s)dφ(s).

Thus
∫
Ä
(12)2 dEx may be replaced by

∫
Ä
|∇Ek|2 dEx in Eε(2) at the cost of adding a

constant,c(ε), to the energy which depends only on the boundary data:

Eε(2) =
∫
Ä

ε|∇Ek|2 d EX + 1/ε
∫
Ä

(1− k2)2 d EX + c(ε). (43)

The minima of this energy are solutions of (18). So one approach to finding single-valued
weaksolutions of the stationary CN equation (6) is to consider a sequence of minimizers
2ε , one for eachε, and describe its limit points, if such exist in an appropriate sense,
asε → 0. Such limit points are referred to asasymptotic minimizers. For the boundary
conditions we will consider, the constantc(ε) tends to zero asε → 0 and therefore can
be ignored.

The problem of describing the asymptotic minimizers of (43) fits into a natural hi-
erarchy of geometrically and physically motivated singular variational problems. The
most basic of these is theharmonic map problem[23] which asks to find the minima of∫

Ä

|∇Ek|2 d EX,

whereEk is an arbitrary vectorfield onÄ subject to the constraint that|Ek| = 1 and with
fixed smooth boundary conditionEk|∂Ä = Eg with |Eg| = 1. These minimizers are harmonic
maps fromÄ to S1. If Ä is simply connected, then minimizers will not exist unless the
winding number ofEg around∂Ä is zero.

To capture harmonic maps with defects one can weaken the constraint that|Ek| = 1
everywhere by incorporating it as a nonconvex term in the variational problem. The
energy (43) does this if one takes the domain to be all vectorfields rather than just
those which are locally gradient. In this case—that is, whenEk is allowed to range over
arbitrary vectorfields—this energy is referred to as theGinzburg-Landaufree energy
since the gradient flow associated to this energy solves the Ginzburg-Landau equation. It
also arises as a model for vortex dynamics in superconductivity [26] and as an idealized
model for liquid crystal patterns [39]. One expects that the asymptotic minimizers for
this problem should satisfy|Ek| = 1 almost everywhere. A complete description of the
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asymptotic minimizers for the Ginzburg-Landau problem was recently worked out by
Bethuel, Brezis, and H´elein [7]. They showed that if the winding number ofEg around
∂Ä is d > 0, then the asymptotic Ginzburg-Landau minimizers acquired distinct point
defects, atEa1, . . . , Ead in the limit, and in the complement these minimizers converge
to a harmonic mapEk0: Ä − {Ea1, . . . , Ead} → S1. The location of the point defects is
completely determined by the boundary dataEg. The free energy written in microscopic
coordinatesx, y becomes1

2ε Eε with a minimum value that diverges as ln1
ε
, where1

ε
is

the aspect ratio.
The variational problem associated with the RCN equation fits naturally in succession

after the previous two. The energy is the Ginzburg-Landau energy but restricted to
vectorfields which are gradient. The numerical experiments shown in Figures 6, 7, and
8 suggest that the defects of the asymptotic minimizers occur along one-dimensional
curves. For a restricted but interesting class of boundary data our results suggest that
away from curvilinear defects the minimizers limit to a smooth viscosity solution of the
CN equation associated with the energy densityG2(k) = (1− k2)2. In this case the
microscopic free energy minimum will diverge as 1/ε, the aspect ratio.

4.1. Self-Dual Solutions

As mentioned above, equation (6) is a quasilinear second-order differential system which
can, depending on wavenumberk, be elliptic or hyperbolic. The time-dependent equation
(5) is ill-posed whenk crosses into regions where equation (6) becomes hyperbolic.
Moreover, in general, classical global stationary solutions will not exist unless they
are allowed to be multivalued. We have seen in examples that this occurs when the
modulational ansatz is violated and therefore one is led to seek an improved macroscopic
model. One such is the regularization (18), which we rewrite here for convenience,

τ(k)2T +∇ · EkB(k)+ ε2∇42 = 0.

The regularization termε2∇4
EX2 is formally orderε2 smaller compared to∇ EX · EkB(k) and

only comes into play whenk crosses into regions where equation (6) becomes ill-posed
and∇ EX · Ek can become large on the order ofε−1.

Equation (18) can be written asτ2t = − 1
2δFε /δ2 with

Fε =
∫ (

G2(|∇2|)+ ε2(∇22)2
)

d X dY, (44)

whereG2 = − ∫ k2

k2
B

B dk2 is always nonnegative, with an isolated minimum atk = kB.
Note that, in the case of the modulation coefficients for the SH equation (8), fork within
the marginal stability band,τ(k) > 0. In fact, this is generally the case [51]. Thus, the
linearization of (18) at a stationary solution whose wavenumber support lies within this
band, will be pseudo-gradient in the sense that ifδFε /δ2 > 0, the stationary solution
will be linearly stable with respect to the time evolution.

In introducing higher order terms to regularize the Cross-Newell equation, we lose
the method of constructing explicit stationary solutions via the Legendre transform.
However, we can, to a certain extent, recover solutions related to this method at least
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asymptotically. We refer to this method asself-dual reduction.† The idea is motivated by
trying to extend to the field-theoretic setting the principle of the equipartition of energy in
classical Hamiltonian mechanics in which energy minima occur when the kinetic energy
equals the potential energy. In particular, the suggestion that this principle should hold
for RCN came from the discovery that it holds exactly in the weak bending setting [44].

In (44), G2(k2) is the “potential” andε2∇222 the “kinetic” energy density. (The
analogy for the latter is clearer in the energetically equivalent formε|∇Ek|2 found in (43).)
There are results on the equipartition of energy for nonconvex variational problems in the
1D setting [32] as well as in the weak bending setting [44] mentioned above. The method
described in this section is generally applicable in 2D problems. This reduction is highly
effective as it allows one to exploit the well-developed theory of viscosity solutions to
control singular limits.

Let 2ε
SD be a solution of the following second-order equation, which we call the

(anti–)self-dual equation:

ε∇22ε
SD = ∓G, (45)

whereG is chosen such that it is positive whenk2 > k2
B.

Proposition 4.1. A solution of the (anti–)self-dual equation (45) also satisfies

δFε

δ2
= ±ε(∇2

Ek G)[2,2], (46)

where1
2[2,2] = detHess(2) = 2X X2Y Y−22

XY.

1

2

δFε

δ2
= ε2∇42−∇(G∇EkG).

We separately evaluate the two terms on the RHS. For the first, applyε∇2 toε∇22 = sG,
wheres= ±1, to get

ε2∇42 = ε∇2(ε∇22) = ε∇2(sG) = sε∇ · (∇ EXG) = sε∇ · (∇EkG · Hess(2))

= sε
∂

∂X

(
∂G

∂2X
2X X + ∂G

∂2Y
2XY

)
+ sε

∂

∂Y

(
∂G

∂2X
2XY + ∂G

∂2Y
2Y Y

)
.

For the second term we have, using equation (45),

∇(G∇EkG) = sε∇(∇22∇EkG)

= sε
∂

∂X

(
(2X X +2Y Y)

∂G

∂2X

)
+ sε

∂

∂Y

(
(2X X +2Y Y)

∂G

∂2Y

)
.

Taking the difference of these terms we find that

1

2

δFε

δ2
= −sε

(
∂2G

∂22
X

+ ∂2G

∂22
Y

) (
2X X2Y Y−22

XY

)
.

† The termself-dualis borrowed from quantum field theory. This concept is used to achieve a reduction from
fourth to second order in the Yang-Mills field equations [26]. There, as here, the reduction is effected by
making the ansatz (45) of energy equipartition.
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Fig. 12.“Knee” solution of self-dual equation.

Proposition 4.1 shows that a solution of equation (45) is a critical point of the free
energyif [2,2] is also zero. Since [2,2] is proportional to the curvature of the surface
which is the graph of2, we can also interpret this as saying that curvature measures the
deviation of (anti–)self-dual solutions from being solutions of the variational equations.
This result doesnot tell us that2ε

SD minimizesFε . However, in the next section we will
demonstrate, for an interesting class of self-dual solutions, that asymptotically they limit
to weak solutions of the unregularized phase diffusion equation that in an appropriate
sense are asymptotic minimizers ofFε asε → 0.

4.2. Viscosity Solutions of the Self-Dual Equation

Whenk is nearkB, G = k2 − k2
B to a good approximation. From now on we will take

kB = 1. Whenk is close to 1, we replaceG by k2 − 1 and then the (anti–)self-dual
equation (45) may be transformed to a linear equation, in fact the Helmholtz equation,

ε2∇2ψ − ψ = 0 (47)

by the logarithmic transformation2 = ±ε ln ψ .
An illustrative and important example of the method of self-dual reduction is provided

by what we refer to as a “knee” solution of (47) (see Figure 12) which models a defect
along a one-dimensional contour (called aphase grain boundaryin the literature on
pattern formation):

2 = k0X − ε ln 2 cosh

(√
1− k2

0Y/ε

)
. (48)

It is straightforward to check that this solution in fact solves equation (18) since
[2,2] ≡ 0. This solution can also be interpreted in the following way: The zig-zag
instability of the field of rolls2 = k0X with wavevector(k0,0), k0 < 1, saturates into
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a pair of roll fields(k0,+
√

1− k2
0) and(k0,−

√
1− k2

0) separated by a boundary layer
along the bisector of their constant phase contours. The asymptotic limit of (48) asε → 0
is a weak solution of the CN equation (see Section 3.3).

Now more generally let9(ε)( EX) be any classical solution of the Helmholtz equa-
tion (47) on a bounded domainÄ with smooth boundary and with Dirichlet boundary
conditions:

9(ε)( EX(s)) = v(ε)(s),
wherev(ε)(s) is continuous and piecewise differentiable along∂Ä for eachε and EX(s)
denotes the arclength parametrization of∂Ä.

We will assume that the sequencev(ε)(s) converges uniformly inε to a continuous
functionv(0)(s) on ∂Ä and that

lim
ε→0

ε
(∇ log9(ε)

)
( EX(s)) · n̂(s) = β(0)(s), (49)

whereβ(0)(s) is continuous and where we have denoted the outward unit normal to∂Ä

by n̂(s).
In the case whenv(ε)(s) is a constant independent ofε, which physically corresponds

to ∂Ä being a roll, the following result of Ishii and Koike [25] enables us to show that
assumption (49) is valid.

Theorem 4.2. For v(ε)(s) ≡ 1 andε > 0, let9ε be the solution of (47). Then

(a) there is a constant C1 > 0 such that

|ε log9ε( EX)− d( EX)| ≤ C1ε
1/2,

for EX ∈ Ä andε > 0, where d( EX) is the distance fromEX to ∂Ä.

(b) there is a constant C2 > 0 such that

|2( EX)−2( EY)| ≤ C2| EX − EY|,

for ( EX, EY) ∈ ∂(Ä×Ä) andε > 0.

Briefly, the proof of this theorem proceeds as follows. First, one derives a continuous
upper bound, independent ofε. Define

V(x) = sup{2ε(x) : 0< ε < 1} ,

for x ∈ Ǟ, and

V∗(x) = lim
r→0

sup
{
V(y): y ∈ Ǟ, |y− x| ≤ r

}
.

The functionV∗ is manifestly an upper bound independent ofε. Using obstacle functions,
Ishii and Koike prove that this function is Lipshitz. It follows from the maximum principle
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that2ε(x) is nonnegative on̄Ä. Part (b) of the theorem is immediate from these two
observations.

From (a) we have that the sequenceε log9ε( EX) converges uniformly to the distance
function and (b) implies that the condition on the normal derivatives, (49), holds. Once
condition (49) is known to hold, the following asymptotic analysis determines the limits
of the higher derivativesEk and∇Ek as well.

Using Green’s identity [14], one has a boundary integral representation

9(ε)( EX) =
∫
∂Ä

vε( EY(s))∂G(ε)

∂n
( EX, EY(s))− G(ε)( EX, EY(s))∂v

ε( EY(s))
∂n

ds, (50)

whereG(ε) is the Green’s function for the Helmholtz equation on all ofR2:

G(ε)( EX, EY) = − 1

2π
K0

(
| EX − EY|
ε

)
,

for EX in the interior ofÄ. The modified Bessel functions of integer order,Kn(r ) [1],
formula 9.7.2, all have a singular point atr = 0 and larger asymptotics

Kn(r ) ≈
√
π

2r
e−r

{
1+ 4n2− 1

8r

}
. (51)

From [1], formula 9.6.27, we also have the useful relation

K1(r ) = − d

dr
K0(r ), (52)

and

K0(r )+ 1

r
K1(r ) = − d

dr
K1(r ). (53)

Substituting (52) and (51) into (50),

9(ε)( EX) = 1

2π

∫
∂Ä

vε(s)

ε
K1

(
| EX − EY(s)|

ε

)( EY(s)− EX
| EY(s)− EX| · n̂

)

+ ∂v
ε

∂n
(s)K0

(
| EX − EY(s)|

ε

)
ds

= 1

2π

∫
∂Ä

(
vε(s)

ε

EY(s)− EX
| EY(s)− EX| · n̂+

∂vε

∂n
(s)

)
(54)

·
(√

πε

2| EX − EY(s)| exp

(
−|
EX − EY(s)|

ε

))
EY=EY(s)

+O
(√

ε

| EX − EY(s)| exp

(
−| EX − EY(s)|

ε

))
ds.
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In addition, applying (53) and (51) to the gradient of (50) gives

∇9(ε)( EX) = 1

2π

∫
∂Ä

vε(s)

ε
K0

(
| EX − EY(s)|

ε

)( EY(s)− EX
| EY(s)− EX| · n̂

)( EY(s)− EX
| EY(s)− EX|

)

+ ε

| EX − EY(s)|K1

(
| EX − EY(s)|

ε

)( EY(s)− EX
| EY(s)− EX| · n̂

)( EY(s)− EX
| EY(s)− EX|

)

+ ∂v
ε

∂n
(s)K1

(
| EX − EY|
ε

)( EY(s)− EX
| EY(s)− EX|

)
ds

= 1

2π

∫
∂Ä

(
vε(s)

ε

EY(s)− EX
| EY(s)− EX| · n̂+

∂vε

∂n
(s)

)
(55)

·
(√

πε

2| EX − EY(s)| exp

(
−|
EX − EY(s)|

ε

)( EY(s)− EX
ε| EY(s)− EX|

))
EY=EY(s)

+O
((

ε

| EX − EY(s)|

)3/2

exp

(
−| EX − EY(s)|

ε

))
ds.

The self-dual boundary data2ε is expressed as Helmholtz data through

vε(s) = exp

(
1

ε
2ε( EY(s))

)
. (56)

Replacingvε(s) by (56) and substituting this into (54), one then arrives at the asymptotic
representation

9(ε)( EX) = 1

23/2
√
πε

∫
∂Ä

( EX − EY(s)
| EX − EY(s)| − ∇2(

EY(s))
)

· n̂(s)exp

(
−|
EX − EY(s)| −2( EY(s))

ε

)
ds

+O
(
√
ε exp

(
−d( EX)
ε

))
, (57)

whered( EX) is the distance fromEX to ∂Ä, n̂(s) = (−Y′2(s)
Y′1(s)

)
and we have used the substi-

tution

∂vε

∂n
(s)

1

vε(s)
= β(0)(s) = ∇2( EY(s)) · n̂.

Note that in this last point we have used the assumption (49) which, if valid, insures that
β(0)(s) isO(1) in ε so that (57) is a valid asymptotic representation.
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Similarly, we see that

∇9(ε)( EX) = 1

23/2
√
πε3

∫
∂Ä

( EX − EY(s)
| EX − EY(s)| − ∇2(

EY(s))
)
· n̂(s) (58)

· exp

(
−|
EX − EY(s)| −2( EY(s))

ε

)( EY(s)− EX
| EY(s)− EX|

)
ds

+O
(

1√
ε

exp

(
−d( EX)
ε

))
.

Asymptotically for smallε, the dominant contribution in these integrals comes from
places on the boundary at which the exponent| EX − EY(s)| − 2( EY(s)) is minimal. For
most EX there will be a unique simple minimum̄s. In this case (later we will discuss what
happens when the minimum is not unique), the dominant contribution can be evaluated
by Laplace’s method and gives, to leading order inε,

9(ε)( EX) = 1

4

(∣∣∣∣(| EX − EY(s̄)| −2( EY(s̄)))′′∣∣∣∣)−1/2

(59)( EX − EY(s̄)
| EX − EY(s̄)| − ∇2(

EY(s̄))
)
· n̂(s̄)exp

(
−|
EX − EY(s̄)| −2( EY(s̄))

ε

)

+O
(
√
ε exp

(
d( EX)
ε

))
.

The asymptotic phase gradient is then

ε
∇9ε

9ε
= Ekε( EX) = Ek(0)( EX)+O(ε), (60)

with

Ek(0)( EX) = lim
ε→0

ε∇ EX log9ε( EX) =
EX − EY(s̄)
| EX − EY(s̄)| , (61)

wheres̄ satisfies ( EX − EY(s̄)
| EX − EY(s̄)| + ∇2(

EY(s̄))
)
· EY ′(s̄) = 0, (62)

and EY ′(s̄) is the unit tangent vector to the boundary ats̄. Since the integrand in (57) is
uniformly bounded forEX ∈ Ä, this representation can be differentiated arbitrarily. In
particular, tracking the asymptotic representation of∇9 as was done for9 itself yields
that for pointsEX at which the phase| EX − EY(s)| −2( EY(s)) has a unique minimum

∇Ekε( EX) = ∇Ek(0)( EX)+O(ε), (63)

where∇Ek is the matrix of second partial derivatives of2.
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At points EX where Laplace’s method yields a unique minimum, this minimum value is
also unique in a neighborhood ofEX and varies smoothly in this neighborhood. Therefore,
EX is not part of a defect. Defects occur at pointsEX0 where there are two or more critical
points,s̄1, s̄2, . . ., for which | EX0 − EY(s̄i )| − 2( EY(s̄i )) attains thesameminimal value.
We include in this the possibility that a defect occurs with multiplicity two or more; i.e.,
as a consequence of the coalescence of two or more simple defects.

Using equation (61) one sees thatEk(0)( EX) has magnitude 1 everywhere, and therefore
the corresponding2(0) is a ruled surface away from defects. Consequently, [2(0), 2(0)] =
0 and so away from possible defects we in fact have a solution of the limiting equa-
tion (6).

For a givenEX0, the condition that there are exactly two critical points attaining the
same minimum value imposes one condition onEX ∈ Ä. Hence there is a curve in
the interior ofÄ (depicted in Figure 13c as the curve separating the regions labeledα

andβ) containing EX0 such that over this curve two branches (Figure 13a) of a multi-
valued solution of equation (6) intersect. These two branches are associated with the
two critical pointss̄α, s̄β . The roll pattern near this defect consists of almost equally
spaced level curves of the single-valued truncation (Figure 13b) of the multi-valued
solution of (6). We call such curvesgrain boundaries. These grain boundaries will per-
sist under perturbations of the boundary data. Roughly speaking, a perturbation will
slightly move the two intersecting branches but the new branches will still intersect
transversely.

The following proposition shows that along grain boundaries,Ek(0) satisfies the same
jump conditions (38) as weak solutions of (6).

Proposition 4.3. Let0 denote a grain boundary. ForEX ∈ 0

Ek0
tang(
EX|s̄1) = Ek0

tang(
EX|s̄2),

Ek0
norm(

EX|s̄1) = −Ek0
norm(

EX|s̄2),

whereEk0
tang(
EX|s̄i ) (resp.Ek0

norm(
EX|s̄i )) is the tangential (resp. normal) component along

0 of Ek0 corresponding to the boundary points̄i . In other words, the jump inEk0 along0
is normal to0.

This follows by a direct calculation from the condition that

| EX − EY(s̄1)| −2( EY(s̄1)) = | EX − EY(s̄2)| −2( EY(s̄2))

and from the variational condition (62).
For a givenEX0, the condition that there are exactly three critical points attaining the

same minimum value imposes two conditions onEX ∈ Ä. Hence there is a discrete set
of points where three branches of a multivalued2 intersect. We refer to these points as
spines; each such point will be a place where three grain boundariess̄α, s̄β , ands̄γ of
2 coincide. Figure 14 illustrates how a spine defect arises from these three branches.
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α

β

β
α

(a)

(b)

(c)

Fig. 13. Grain boundary constructed by Laplace’s method from a
self-dual solution.

These point defect configurations will be topologically stable under perturbation of the
boundary data. A perturbation will move the three intersecting branches but the new
branches will still intersect transversely at a new point.

When (
| EX − EY(s̄)| −2( EY(s̄))

)′′
= 0, (64)

the Laplace representation needs to be replaced by a different asymptotic representation,
whose normal form is a Pearcey integral [3]. This occurs when, asEX varies along a grain
boundary, the two critical points̄s1, s̄2 with the same critical value coincide. Generically
at such a point the grain boundary terminates. Therefore we refer to such points as
terminal points.
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(c)

Fig. 14.Spine constructed by Laplace’s method from a self-dual solution.

If 2 is constant on∂Ä, then (64) becomes

1

| EX − EY(s̄)| −
EX − EY(s̄)
| EX − EY(s̄)| ·

EY ′′(s̄) = 0.

The second term is the expression for the inverse of the curvature of∂Ä at s̄. Thus the
degeneracy condition (64) has the interpretation thatEX is the center of curvature for a
point Ey(s̄) where the curvature of∂Ä has a local maximum. This is shown in Figure 15.
Note in this figure that there is a sharp transition from smooth rolls to a shock that occurs
precisely at the center of curvature.
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Fig. 15. Terminal point constructed by Laplace’s method
from a self-dual solution.

The asymptotic behavior of the boundary integral (57) in the vicinity of a terminal
point is given by

9(ε)( EX) = ε−1/6 0(1/3)

62/3
√

8π

(∣∣∣∣(| EX − EY(s̄)| −2( EY(s̄)))′′′∣∣∣∣)−1/3

×
( EX − EY(s̄)
| EX − EY(s̄)| −

Ek( EY(s̄))
)
· n̂(s̄)exp

(
−|
EX − EY(s̄)| −2( EY(s̄))

ε

)

+O
(
ε5/6 exp

(−1

ε

))
. (65)

Assumption (49) still insures thatEk( EY(s̄)) · n̂ is O(1) so that this asymptotic is valid.
Although this differs from (59), the phase gradient near a terminal point still has an
asymptotic representation of the form of (60) and (63).

The topological stability of these singularities for the phase diffusion equation is also
easy to see in the case when2 is constant on∂Ä; in this case equation (64) is equivalent
to EX being the center of curvature for a pointEY(s̄) where the curvature of∂Ä has a local
maximum.

If the boundary data is perturbed, a convex “focus” will persist, slightly removed from
the curvature center of the boundary. This is not a convex disclination unless the jump
in the inclination ofEk across the grain boundary is equal toπ .
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The types of defects we have just described are, generically, the only types one will
see:

Theorem 4.4. For generic boundary datav(ε)(s) = exp( 1
ε
2( EY(s))) satisfying (49),

the viscosity limit (ε → 0) of the solution of the Helmholtz boundary value problem
9(ε)(s) has level curves (roll pattern) whose defects consist of only grain boundaries
that branch at spines and terminate at terminal points.

The proof of this result, given in [3] or [20], essentially follows the lines of the arguments
sketched above [22].

In the next section we will discuss how to show that these limiting (asε → 0) self-
dual solutions are in fact realized as limits of stationary solutions of the regularized
phase diffusion equation (18). However, since these solutions arise as limits of solutions
whose gradient fields are in fact global vectorfields, the limits cannot have odd twist. In
particular, these limits cannot realize concave or convex disclinations. To achieve this
one needs to build multivaluedness into the boundary conditions. If this is done, then by
the results of [13] one finds the concave and convex disclinations are generic as well. One
can study these types of defects with single-valued boundary conditions by constructing
special boundaries which support anevennumber of disclinations in the interior ofÄ.
We will look at an example of this in the next section by considering a stadium shaped
region which supports two convex disclinations connected by a straight grain boundary.

5. Asymptotics of Minimizers

In the previous section we saw that the self-dual solutions captured the correct behavior
of critical points of the free energy at least away from defects. We will see that the
self-dual solutions can also asymptotically capture the correct behavior ofminimizersin
the vicinity of defects. In this section we are going to examine the asymptotic behavior
of the free energy in a restricted but nevertheless representative class of examples.

We recall that the free energy (44) for the regularized phase diffusion equation in the
case whenG2(k) = (1− k2)2 is, when multiplied by 2ε−1, given by

Eε(2) =
∫
Ä

ε(12)2 d EX + 1/ε
∫
Ä

(1− k2)2 d EX, (66)

where the domainÄwill, from now on, be taken to be a simply connected domain in the
plane. In general we consider this energy functional on a class of functions with fixed
Dirichlet boundary conditions:

Aε =
{
2 ∈ H2(Ä) : 2|∂Ä = αε(s), ∂2

∂n
|∂Ä = βε(s)

}
, (67)

whereαε(s) andβε(s) are both piecewise smooth functions on the boundary parame-
terized with respect to arclengths. We also recall from (43) in Section 4 that the free
energy is equivalent to

Eε(2) =
∫
Ä

ε|∇Ek|2 d EX + 1/ε
∫
Ä

(1− k2)2 d EX + c(ε). (68)
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Standard arguments [23] show that forε > 0, Eε realizes a minimum inAε and that
any such minimizer is smooth. However, for functionals of this class, it isnot known
whether there is a unique minimizer [38]. Nevertheless, if{2ε} is a sequence of such
minimizers, one can investigate properties of its limit points.

For the function classes,Aε , that we will consider,αε andβε will be chosen so that
asε → 0, k2 = α̇2 + β2 → 1 everywhere along the boundary ofÄ. In this casec(ε),
defined in (41), limits to a purely topological invariant of the boundary data:

lim
ε→0

c(ε) =
∮
∂Ä

dφ(s) = winding number ofEk around∂Ä.

We are going to compare the minimizers{2ε} to the (anti–)self-dual solutions dis-
cussed in Section 4. Since the (anti–)self-dual equations are second order, their solutions
are already determined by specifying2|∂Ä = αε(s). We denote the self-dual solution
corresponding toαε(s) by2ε

SD. Then we will takeβε(s) = ∂n2
ε
SD|∂Ä. With this choice

of βε(s), 2ε
SD, which is smooth and hence inH2(Ä), lies in the admissible classAε .

This condition onβε(s) is not as restrictive as it might at first seem since our model
is derived in a regime wherek ≈ 1. It follows from (61) that, in the limit asε → 0,
α̇2 + β2→ 1 and, therefore, as mentioned above, the boundary integral (41) tends to a
purely topological invariant of the boundary data.

The previous paragraph sets the stage for the principal application of (anti–)self-dual
solutions to the description of asymptotic minimizers. Namely, since2ε

SD ∈ Aε , and2ε

minimizes the energy we must have

Eε(2ε) ≤ Eε(2ε
SD). (69)

We will see, in Corollary 5.5 that the RHS of (69) is uniformly bounded inε.
We begin our analysis of the free energy by rewriting it as follows:

Eε(2) =
∫
Ä

(
ε1/2(∇ · Ek)+ ε−1/2(1− k2)

)2
d EX

− 2
∫
Ä

(∇ · Ek)(1− k2)d EX (70)

=
∫
Ä

(
ε1/2(∇ · Ek)+ ε−1/2(1− k2)

)2
d EX

− 2
∮
∂Ä

(1− k2)Ek · n̂ds− 4
∫
Ä

Ek · ∇Ek · Ek d EX. (71)

The second term of (71),
∮
∂Ä
(1− k2)Ek · n̂ds, goes to zero asε → 0.

Applied to (69), (70) and (71) respectively imply

Proposition 5.1.

Eε(2ε) ≤ −2
∫
Ä

(∇ · EkεSD)(1− (kεSD)
2)d EX, (72)

Eε(2ε) ≤ −4
∫
Ä

EkεSD · ∇EkεSD · EkεSD d EX +O(ε). (73)
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In this evaluation the first term of (70) (resp. (71)) vanishes because the integrand of this
term is precisely the self-dual operator.

In Section 4 we saw that the defect locus of a self-dual solution generically consisted
of grain boundaries that could terminate at points or meet other grain boundaries at a point
with three branches. In other words the defect locus0 is a set that almost everywhere
is a local one-dimensional manifold. The generic exceptions are terminal points where
it has the form of a 1D manifold with boundary and spines where it has the form of the
neighborhood of a graph vertex of valence 3.

We will express the bound (73) directly in terms of the jump inEk along the defect. Set
20 = d( EX) = limε→02

ε
SD. The following lemma summarizes the asymptotic results

from Section 4 that we will need.

Lemma 5.2.

1. Outside of an arbitrarily small neighborhood of0, Ek0 = ∇20 satisfies|Ek0|2 = 1 and
∇Ek0 · Ek0 = 0.

2. In coordinates adapted to a tubular neighborhood of0, Ek0
tang(
EX) extends to a con-

tinuous function.Ek0
norm(

EX) is discontinuous along0 but bounded throughoutÄ. The
partial derivatives ofEk0

tang(
EX) are uniformly bounded throughoutÄ.

Remark. Part 1 implies that up to contributions of orderε, it suffices to consider the
integrand of (73) in anO(ε) neighborhood of0. Part 2 follows from the jump conditions
(64). Strictly speaking, the jump conditions do not apply at terminal points and spines.
However, these are isolated points and in our application to the inequality (73) the value
at these points will not affect the value of the integral.

Let EX(γ ) be a parametrization of a smooth branch of0 and letν be the coordinate
along the normal direction in the tangent bundle to0. In a sufficiently narrow tubular
neighborhood of0, EW = (γ, ν) is a smooth coordinate system. The change of coordi-
nates is given by

EX = EX(γ )+ ν N̂(γ ),

whereN̂(γ ) is the unit normal along0. The unit tangent vector to0 is T̂(γ ) = EX′(γ )
σ

whereσ = | EX′(γ )|, the arclength parameter. We choose orientations of our parametriza-
tions so thatN̂ is equal toT̂⊥. If M = d EW

d EX , the jacobian of the coordinate transformation,
then the inverse is given by

M−1 = (σ T̂ + νκ T̂, N̂),

where we have used the Frenet formulad/ds N̂ = −κ T̂ andκ(γ ) is the curvature of
0. From this it is straightforward to calculate that the determinant|M−1| = σ + νκ and
that

M = 1

σ + νκ
(

N2 −N1

−(σ + νκ)T2 (σ + νκ)T1

)
.
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Here the components of̂T andN̂ are with respect toEX coordinates. IfEK is the gradient
of 2 with respect toEW, then

Ek = EK M

and

∇ EX Ek = Mt∇ EW EK M.

Finally, if 0 does not branch, the integral (73) can be rewritten as∫
Ä

Ek · ∇Ek · Ekt d EX =
∫
EW−1(Ä)

EK M Mt∇ EW EK M Mt EK t |M−1|d EW, (74)

where the determinant|M−1| = σ + νκ.

Theorem 5.3. For 0 a smooth curve with boundary points,

Eε(2ε) ≤ −1/3
∫
0

[
20
ν

]3
dσ +O(ε).

With EK ε
SD = (Fε,Gε) and withα = σ + νκ, one expands the estimate (73) as follows:

Eε(2ε) ≤ −4
∫
0

∫ ε

−ε
α−4Fε

γ (F
ε)2+ 2α−2Fε

ν FεGε + Gε
ν(G

ε)2α dνdγ +O(ε)

= −4
∫
0

∫ ε

−ε
Gε
ν(G

ε)2α dν dγ +O(ε)

= −4
∫
0

∫ ε

−ε
2ε
ν2

ε
νν2

ε
να dν dγ +O(ε)

= −4/3
∫
0

(
2ε
ν

)3 ∣∣ε
−εσ dγ +O(ε)

= −4/3
∫
0

(
20
ν

)3 ∣∣ε
−ε dσ +O(ε)

= −1/3
∫
0

[
20
ν

]3
dσ +O(ε),

where [20
ν ] is the jump of this derivative across0. The inequality on the first line is

just (73) rewritten in the tubular neighborhood coordinatesEW. Up to terms of orderε
we can restrict the integral to this tubular neighborhood by Lemma 5.2.1. Using the
orthonormality ofT, N, one sees that the productM Mt is the diagonal matrix(

α−2 0
0 1

)
.

The second line is a consequence of Lemma 5.2.2 since the first two terms on the first
line are uniformly bounded in a region of sizeε. The next equality simply replacesGε

by2ε
ν , and we observe that this term is a perfect derivative which yields the equality on
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the fourth line. The fifth line is then an immediate consequence of (60). Next observe
that [

20
ν

]3 = (20
ν

∣∣ε
−ε
)3
= (20

ν)
3(γ, ε)− 3(20

ν)
2(γ, ε)20

ν(γ,−ε)
+ 320

ν(γ, ε)(2
0
ν)

2(γ,−ε)− (20
ν)

3(γ,−ε).

From (60) and Proposition 4.3 it follows that asε → 0, (20
ν)

2(γ,−ε) = (20
ν)

2(γ, ε)+
O(ε) so that the RHS of the above equality becomes 4(20

ν)
3|ε−ε , modulo terms of order

ε. This gives the RHS of the inequality in Theorem (5.3).

Corollary 5.4. Let0i , i = 1, . . . , N be the smooth branches of a generic defect locus
0. Then

Eε(2ε) ≤ −1/3
N∑

i=1

∫
0i

[
20
νi

]3
dσ +O(ε),

whereνi is the coordinate normal to0i .

At a spine there are three rays from the disclination to the boundary of equal (minimal)
distance. CuttingÄ along all such rays dissects it intoN regions, each containing one of
the branches0i . The integral on the RHS of (73) equals the sum of such integrals over
each region in the dissection. Applying Theorem (5.3) gives the corollary.

Corollary 5.5. There is a constant C, independent ofε, such that for domainsÄ with
generic defect locus0, ∫

Ä

|∇Ekε |2d EX ≤ C/ε, (75)∫
Ä

(1− (kε)2)2 d EX ≤ Cε, (76)

where kε = |∇2ε |. From (76) we may conclude that|∇2ε |2 → 1 in L2(Ä). It follows
that there is a subsequence2εj ⇀ 2̄ in H1(Ä). This sequence converges strongly to2̄
in L2(Ä).

The size of the jump [20
νi

] is bounded along0i , which has finite length. Thus the sum
over branches on the RHS of Corollary(5.4) is finite and therefore, forε sufficiently small,
Eε(2ε) is less than a constant that is independent ofε. Since the energy (68) is the sum
of two positive terms, this gives a uniform bound on each term; i.e., the bounds (75) and
(76) hold. The rest of the corollary is a standard consequence of uniform boundedness.

We next turn to an estimation of a lower bound forEε(2ε). In this we follow an
approach used by Jin and Kohn [28] in the context of thin film blisters. This approach
has been successfully implemented to give a sharp lower bound only when the defect
locus0 is a straight line segment. In what follows we will restrict to this case. We shall
take the straight segment to be parallel to theX-axis. For simplicity we also takeα(s) = 0
so that on the boundary,Ek is normal to∂Ä and pointing insideÄ.
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The idea of [28] is to seek a vector function ofEk, call it ES(Ek), such that∫
Ä

∇ · ES(Ek)d EX ≤ Eε(Ek)

for all Ek. The term on the left will in fact be independent ofEk ∈ Aε since by the divergence
theorem it is equal to a boundary integral. As a guide to choosingESone observes that

∇ · ES(Ek) = S1 f2X X + (S1g + S2 f )2XY + S2g2Y Y.

One then tries to find anES whose partial derivatives can be related to the integrand of
Eε . The following choice,

ES(Ek) = 2

(∫
(1− k2)d f, −

∫
(1− k2)dg

)
= 2

(−1/3 f 3− f g2+ f, 1/3g3+ g f 2− g
)
, (77)

has partial derivatives proportional to(1−k2): S1 f = 2(1−k2), (S1g+S2 f ) = 0, S2g =
−2(1− k2). Using this one has the following estimate for the integrand:

∇ · ES(Ek) = 2(1− k2)(2X X −2Y Y) (78)

≤ ε(2X X −2Y Y)
2+ ε−1(1− k2)2

= ε(2X X +2Y Y)
2+ ε−1(1− k2)2− 4ε(2X X2Y Y)

≤ ε(∇ · Ek)2+ ε−1(1− k2)2− 4ε(2X X2Y Y−22
XY).

Modulo the last term, this gives the desired inequality. However, this term, which is
proportional to the Hessian [2,2] and equal toJ, is a perfect divergence 2J = ∇ ·
( f gY − g fY, g fX − f gX). Since for our problemEk approaches magnitude 1 asε → 0
everywhere on the boundary, we have, from (41) that∫

Ä

2[2,2] d EX =
∮
∂Ä

k2(s)dφ(s) → winding number ofEk around∂Ä;
i.e., it is asymptotically a purely topological invariant of the boundary data and therefore
the last term, when integrated overÄ, isO(ε).

We can now prove the equality of the upper and lower bounds in these cases.

Theorem 5.6. If 0 is a straight horizontal line segment, then any L2-convergent sub-
sequence of the minimizing sequence2ε for Eε onAε converges to the self-dual limit
20 in energy, i.e.,

Eε (2ε)− Eε (2ε
SD

)→ 0,

where in this formula we assume thatε indexes the convergent subsequence. Moreover,
this limit is independent of the initial choice of a sequence of minimizers.

From (78) and (70) we respectively have

Lower Bound= 2
∫
Ä

(
1− (kεSD)

2
) (
(2ε

SD)X X − (2ε
SD)Y Y

)
d EX +O(ε),

(79)

Upper Bound= −2
∫
Ä

(
1− (kεSD)

2
) (
(2ε

SD)X X + (2ε
SD)Y Y

)
d EX +O(ε).
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The expression of the lower bound in (79) follows from the fact that the lower bound in
(78) can be evaluated on any element ofAε since it really depends on only the boundary
values of this element; in particular one can evaluate it on the self-dual solution. It follows
from Lemma 5.2.2 that

(
1− (kεSD)

2)
)
(2ε

SD)X X→ 0 asε → 0. Hence, the two bounds
become asymptotically equal in this limit.

Although the proof of the above theorem uses thebulk representations of the upper
and lower bounds, what is interesting and useful about these two bounds is that they are
both also expressible as contour integrals. We illustrate this in two particular examples.
The first example will be typical of the admissible class of (anti–)self-dual solutions
whose asymptotics were studied in the previous section. The other, strictly speaking,
falls outside this class but represents an extension for which the arguments given here
generalize. In all these examples the defect locus0 is a straight line segment.

In the first example,Ä is a domain whose boundary is an ellipse, with major axis
along theX-axis. The defect locus0 is the horizontal segment on theX-axis whose two
endpoints are located at the two curvature centers of the ellipse andEk|∂Ä is proportional
to n̂. This choice ofEk on the boundary is justified a posteriori by checking the asymptotic
behavior of the self-dual solution. It is straightforward to check thatES(Ek)·n̂ = −4/3( f 2−
g2). Combining this lower estimate with (5.3) gives

− 4/3
∮
∂Ä

(22
X −22

Y)ds+O(ε) ≤ Eε(Ekε) ≤ −1/3
∫
0

[
20

y

]3
d X+O(ε). (80)

Using the parameterization

EX = (a cos(t),bsin(t)) (a > b),

the asymptotic lower and upper bounds can be respectively represented as

−4/3
∮
∂Ä

(22
X −22

Y)ds = 4/3
∫ 2π

0

b2 cos2(t)− a2 sin2(t)√
b2 cos2(t)+ a2 sin2(t)

dt,

−1/3
∫
0

[
20

Y

]3
d X = 8/3

∫ a2−b2

a

−(a2−b2)
a

(
1− a2X2

(a2−b2)2

1− X2

a2−b2

)3/2

d X.

By Theorem 5.6 these two contour integrals are equal, giving a nontrivial identity
between elliptic integrals. What is remarkable about this result is that whereas [2,2] is
zero away from0, it is not zero in the neighborhood of0, where all the free energy resides,
unlike the case of the “knee” solution (48). Rather, the solutions in the neighborhood
of 0 resemble a modulated knee where, in theε → 0 limit, the angle between the
phase contour and the line defect0 changes along0. So even though the boundary layer
solutions of eqs. (18) and (47) may not agree, in the limitε → 0, their jumps [20

Y], as
functions ofX measured along0 do.

A second example is the case of the stadium (see Figure 16), consisting of horizontal
stripes with two semicircular ends. The constant phase contours retain this shape, and the
line defect is the straight line joining the centers of curvature of the semicircles (that are
convex disclinations). Note that in this case there areinfinitelymany points on∂Ä (along
the semicircles) that are equidistant from a given convex disclination. This does not fall
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Fig. 16. “Stadium” comprised of two convex disclinations connected by a phase grain
boundary.

within the class of defect asymptotics that we examined in the last section. Nevertheless
one finds

Lower Bound= −4/3
∫
0

2( f 2− g2)d X

= −8/3
∫
0

−d X = 8

3
`(0),

Upper Bound= −1/3(−2)3
∫
0

d X = 8

3
`(0),

where`(0) is the length of0. In the upper bound the jump is constant, equal to−2,
all along0. In the lower bound we use again the boundary evaluationES(Ek) · n̂ =
−4/3( f 2 − g2). There is a dominant equal contribution from each of the two straight
sides parallel to0; there is no dominant contribution from the circular parts of the
boundary. The integral over these portionsO(ε logε). While this is stronger than the
endpoint contribution for the ellipse, which isO(ε), it nevertheless vanishes in the limit.

One of the principal motivations for the introduction of the RCN equation was to
use it as a mechanism for selecting single-valued branches of multivalued CN solutions
by taking the limit of RCN solutions asε → 0. It is now natural to ask about the
relation between the generic singularities of the hodograph solutions and the generic
defects of20. In the free energy (39) we tookG2 = (k2 − 1)2. However, this was
only for convenience. The results presented here hold for a much more general class of
Ginzburg-Landau free energies [38]. The generalization of Corollary 5.5 to asymptotic
minimizers of (44) suggests that these singular limits are special solutions of the CN
equation that take values in the circlek2 = 1. Such solutions have the hodograph jacobian,
 , equal to 0 everywhere and correspond to so-calledsimplesolutions of the quasilinear
system (6) [30].

An important consequence of our analysis of self-dual solutions was Corollary 5.5,
which shows that a subsequence of minimizers2ε has a weak limit2̄ in H1(Ä). It
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is natural to think that one can pass to the limit in the relation|∇2ε | → 1 giving
|∇2̄| = 1 almost everywhere. We further expect that2̄ has the form of a smooth
solution of the eikonal equation,|∇2̄| = 1, except along jump discontinuities and that
the set of jump discontinuities is a countable union of rectifiable curves; indeed, as
we have shown, the asymptotic limit of the self-dual solutions has precisely this form.
However, even if one knew that, asymptotically, the energyEε(2ε) tends to the energy
of the asymptotic self-dual solution (as we do in the case of Theorem 5.6), one could
not conclude that the asymptotic minimizer has this form since it may be that{2ε}
and{2ε

SD} have the same asymptotic energy without limiting to the same element of
H1(Ä).

Nevertheless, assume that in addition to what we have already proved about2̄ one
knew that the components̄f , ḡ of ∇2̄ were of bounded variation (BV). In this case
there is a decomposition theorem [2], [6] forHess(2̄), regarded as a measure, which
states that the jump discontinuities of∇2̄ are supported on a set,6, of one-dimensional
Hausdorff measure. Then, at least, the defect set6 for 2̄ would consist of a countable
union of rectifiable curves, and one expects that the asymptotic energy will concentrate
on6 with strength given as a function of the jump inEk across6. It has been conjectured
by Ortiz and Gioia [50] and Aviles and Giga [5], based on scaling arguments, that the
asymptotic minimum ofEε(2) is realized as

J(2̄) = 1

3

∫
6

|[∇2̄]|3 dσ. (81)

Aviles and Giga [5] have shown that if, in addition to the other assumptions, one also
assumes that∇2ε converges to∇2̄ in L3(Ä), thenJ(2̄) ≤ lim inf ε→0 Eε(2ε).

Although in many cases it can be demonstrated that the distance function,20, realizes
the minimum ofJ(2) over H1 functions with BV gradient and satisfying the eikonal
equation with the asymptotic boundary conditions, there are counterexamples for non-
convex domainsÄ [28], [6] which show that it does not have to be unique. This raises
the possibility that although2ε may converge to20 in energy, it may not converge to
it in any stronger sense. It should however be pointed out that for the counterexamples
cited above, the boundary∂Ä was not smooth.

Finally we discuss how to realize patterns with twist =±1 as singular limits of the reg-
ularized phase diffusion equation. To achieve this in general one would need to consider
spaces consisting of double-valued functions, the double-valuedness corresponding to
the orientational ambiguity of director fields. One way to do this concretely would be
to consider single-valued functions on domains which are two-sheeted Riemann sur-
faces rather than simply connected planar domains. However, in the variational setting
of Section 5 one would then need to consider variations over Riemann surfaces as well
as functions. This would be an ambitious undertaking, and so for the present we have
restricted our considerations to examples in which there is some symmetry that isolates
the structure of the Riemann surface. We will illustrate this for the case of the concave
disclination. Figure 7 shows a numerical solution of the stationary RCN equation that
has the form of a concave disclination. The Riemann surface used in this simulation was
the double cover̃Ä of a disc,Ä, given by the covering map

F : EW = (U,V) 7→ EX = (X,Y) = (U2− V2,2U V). (82)
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Fig. 17.Three knees.

The pullback of the energyEε(2) to Ä̃ will depend explicitly onr in that∫
Ä

(12)2 d EX

gets replaced by ∫
Ä̃

(1̃2)2

4(U2+ V2)
d EW,

where1̃ is the Laplacian oñÄ. The solutions shown in Figures 7 and 8 were found
by numerically solving the variational equations of the pulled back energy onÄ̃ with
boundary conditions given by pulling back the double-valued boundary data of the
hodograph solutions of the CN equation on∂Ä to single-valued boundary values on
∂Ä̃.

To study this concave disclination analytically we want to use self-dual solutions
again. Because of the explicitr -dependence of the pulled back energy density, one doesn’t
have a direct reduction of the self-dual equation to a Helmholtz equation. However, for
the particular case we are considering one can build appropriate test functions directly
by patching together the knee solutions (48) of the Helmholtz equation. Specifically we
use a form of the knee with a parameterα that exhibits roll-bending through an angle of
π − 2α:

2ε
α = −ε logψ = cos(α)x − ε log cosh(sin(α)y/ε). (83)

An approximation to a regularized concave disclination is realized by patching together
three copies of (83) withα = π /6. The two other sectors are constructed by rotating2ε

α

through 2π /3,−2π /3 radians, respectively. The pairwise common boundaries of these
three 120◦ sectors are the raysα = −π /3, α = π , andα = π /3 (see Figure 17). The
patching across these rays is not smooth; there is a jump in the direction ofEk as one
crosses each ray (there is no jump in the magnitudes). However, asε → 0, the jump in
the direction ofEk is either 0 orπ (this ambiguity is due to the ambiguity of the twist).
Proceeding counterclockwise, if one consecutively chooses the matching so that this
jump is 0 (i.e., there is no jump) then, after making a full circuit from the rayα = π /3
back to itself,Ek will return with the opposite orientation. If one makes two circuits it will
return to itself. It is natural therefore to think of this as a two-valued solution. Forε > 0
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there is a jump inEk across the rays even if we view the solution as two-valued. However,
these jumps can be smoothed with bump functions so that in the limit asε → 0 one gets
the same result as in the unsmoothed case. The pullback of2ε

α underF consists of two
branches:2ε,−

α is the branch with 0< ν < π and2ε,+
α is the branch withπ < ν < 2π .

Similarly, set2ε,±
α,β equal to the corresponding branch of the pullback of2ε

α rotated
throughβ radians. Letφε,±β be a bump function satisfyingφε,±β = 1 if 2ε,±

α,β > ε/2 and
φ
ε,±
β = 0 if 2ε,±

α,β < −ε/2. Then the patched three-knee solution on the double cover is
given by

χε = φ
ε,−
0 2

ε,−
α,0 − φε,−2π /32

ε,−
α,2π /3+ φε,−−2π /32

ε,−
α,−2π /3

− φε,+0 2
ε,+
α,0 + φε,+2π /32

ε,+
α,2π /3− φε,+−2π /32

ε,+
α,−2π /3.

For all positiveε, this function is smooth on the double cover. The function classAε
will be taken to have double-valued Dirichlet data coinciding with that of the patched
test function,χε , constructed above. We then have the analogue of the minimization
inequality (69):

Eε(2ε) ≤ Eε(χε). (84)

From (83) one calculates

1− k(χε)2 = O(sin2(α)sech2(sin(α)y/ε)),

|∇Ek(χε)| = O((sin2(α)/ε)sech2(sin(α)y/ε)).

The leading order growth of|∇Ek(χε)| comes entirely from the defects forming along
the raysα = 0, α = 2π /3, α = −2π /3. There is no contribution to the blowup coming
from the smoothed interfaces where the patching is done. From these last estimates one
can deduce the fundamental estimates of Corollary 5.5 as before.

The covering (82) used to “untwist” the data of the concave disclination was a double
cover of the disc branched at the origin. One might ask if there aren’t double covers of the
disc, possibly branched at more than one point, which would produce other double-valued
solutions having lower energy than that of the three-knees and leading to a different limit
asε → 0. For topological reasons there can be only one branch point. The Hurwitz
formula for the Euler characteristicE(Ä̃) is

E(Ä̃) = 2E(Ä)− b,

which gives the relation between the Euler characteristic of the base discÄ and the cover
Ä̃. Hereb is the number of branch points. Since the Euler characteristic of a disc= 1,
we findb = 1.

Since the data for the concave disclination is symmetric with respect to rotation by
120◦, the branch point must be located at the origin.

6. Conclusion

In this paper we have analytically constructed multivalued solutions of the CN equation
using the hodograph method. This method does a remarkably good job of qualitatively
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reproducing isolated defects of patterns seen in experiments and simulations far from
threshold. In the microscopic vicinity of the defects these solutions are multivalued and
therefore not physical. We view this as a success rather than a failure of the theory, since
the modulational ansatz of slow variation of the wavevector, under which the CN equation
is derived, is certainly violated in the vicinity of a defect. Thus the formation of caustics
in the CN equation identifies locations where the microscopic equations exhibit rapid
variations ofEk. The Legendre transform that underlies the hodograph method is quite
interesting in that the dual variables which it relates,EX andEk, are also the dual variables
of the Fourier transform. Thus one can think of the solution of the linear hodograph
equation (21) as the distribution of wavevectors over physical space. Reference [10]
discusses a wavelet algorithm for finding this distribution in experimental and numerical
patterns.

In order to compensate for the breakdown of the modulational ansatz and the con-
current appearance of multivaluedness in solutions of the CN equation, we introduced
a fourth-order regularization of CN. We have shown that the RCN equation exhibits
patterns and defects qualitatively similar to those of the original microscopic equations.

A fundamental contribution of this paper to the analysis of asymptotic minimizers
of the RCN free energy is contained in Theorem 5.3 and Corollaries 5.4 and 5.5, which
are based on the use of (anti–)self-dual solutions as test functions and the extension of
these results to some examples having total twist±1. These provide the basis for the
existence of asymptotic minimizers of the free energy (39) that solve the eikonal equation,
|∇2| = 1 almost everywhere, and give effective upper bounds for the asymptotic energy
of the minimizers.

When the Dirichlet boundary conditions for the fourth-order RCN equation are chosen
to be consistent with the solutions of the second-order self-dual equation, the self-dual
solutions can realize tight upper bounds for the asymptotic energy. This was demon-
strated when the defect of the self-dual solution is a straight line segment. This same
result was found by Jin and Kohn [28] who were motivated by the problem of blis-
tering of thin films. However, for calculating the upper bound they use test functions
corresponding to nearly one-dimensional solutions rather than (anti–)self-dual solu-
tions. The latter have the advantage that they can be used for any domain, including
nonconvex domains, as long as the boundary is smooth and the Dirichlet boundary
conditions for RCN are consistent with being solutions of a second-order (anti–)self-
dual equation. On the other hand, the test functions used in [28] don’t have these latter
constraints. The example of the stadium shows that tight bounds on the asymptotic en-
ergy can also be realized by self-dual solutions when there are point defects with odd
twist. A natural question concerns the classification of defects of the self-dual solu-
tions in three dimensions. We have begun to consider this question and it is interest-
ing to note [57], [22] that the self-dual solutions are solutions to the higher dimen-
sional RCN equation away from places where the sectional curvatures of the surface are
nonvanishing.

We have constructed explicit solutions of the hodograph equation in Section 3 that
illustrate the generic singularities of such solutions. We have also described the generic
defects of20 in Theorem 4.4. Point defects were defined in the context of multival-
ued solutions of the CN equation. There are still many unanswered questions. What
are the analogues of the point defects in the context of asymptotic minimizers? We
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have already defined spines and terminal points in terms of defects of20, but what
about the concave and convex disclinations? The asymptotic behavior of the Hessian,
[2ε,2ε ], appears to provide a mechanism for distinguishing these disclinations. This
Hessian is proportional to the Gaussian curvature of the surface corresponding to the
graph of2. In the numerical simulations such as those shown in Figures 7 and 8,
we have observed that [2ε,2ε ] tends to zero everywhere except in the vicinity of the
point disclinations. On the other hand, in the case of the ellipse the nonzero asymp-
totic values of [2ε,2ε ] are distributed all along the grain boundary between the two
terminal points. Thus we are led to provisionally define a disclination of an asymp-
totic minimizer to be a point at which the Hessian of the sequence{2ε} concen-
trates.

Although admittedly based on a small amount of evidence, the following seems to
us to be a natural conjecture for the form of theε expansion of the energy in terms of
defects:

Eε(2ε) = J(2̄)+ ε log(ε)T(2̄)+O(ε),
where J(2̄) is the jump energy (81) of the asymptotic minimizer andT depends on
the configuration of point disclinations, as defined in the previous paragraph, inÄ of
the twist of each disclination. The associated densities ofJ and T are natural mea-
sures in terms of which to give a reduced description of the structure and dynamics
of defects in patterns. Although much remains to be done to establish this description,
what we have shown in this paper supports it and provides the first steps toward prov-
ing it.
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[8] E. Bodenschatz. Private communication, 1997.
[9] C. Bowman, N. Ercolani, R. Indik, A. C. Newell, and T. Passot. Patterns, defects and inte-

grability. Physica D, 123:474–492, 1998.
[10] C. Bowman, T. Passot, M. Assenheimer, and A. C. Newell. A wavelet based algorithm for

pattern analysis.Physica D, 119:250–282, 1998.
[11] F. H. Busse. Nonlinear properties of thermal convection.Rep. Prog. Phys., 41:1929–1967,

1978.
[12] F. H. Busse and R. M. Clever. Mechanisms of the onset of time-dependent in thermal con-

vection. Time-Dependent Nonlinear Convection, P.A. Tygvand, ed.:1–49, Computational
Mechanics Publications, Boston, 1998.

[13] R. E. Caflisch, N. M. Ercolani, T. Y. Hou, and Y. Landis. Multi-valued solutions and branch
point singularities for nonlinear hyperbolic or elliptic systems.Commun. Pure Appl. Math.,
46:453–499, 1993.

[14] G. F. Carrier and C. E. Pearson.Partial Differential Equations: Theory and Technique.
Academic Press, New York, 1988.

[15] S. Chandrasekhar.Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford,
1961.

[16] P. Collet and J. P. Eckmann.Instabilities and Fronts in Extended Systems. Princeton University
Press, Princeton, NJ, 1990.

[17] R. Courant and K. O. Friedrichs.Supersonic Flow and Shock Waves. Interscience Publishers,
New York, 1948.

[18] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium.Rev. Mod. Phys.,
65(3):851–1112, 1993.

[19] M. C. Cross and A. C. Newell. Convection patterns in large aspect ratio systems.Physica D,
10:299, 1984.

[20] J. G. Dubois and J. P. Dufour. Singularities de solutions d’´equations aux d´erivées partielles.
J. Diff. Eqns., 60:174–200, 1985.

[21] J. P. Eckmann, C. E. Wayne, and P. Wittwer. Geometric stability analysis of periodic solutions
of the Swift-Hohenberg equation.Commun. Math. Phys., 190:173–211, 1997.

[22] N. Ercolani, R. Indik, A. C. Newell, and T. Passot. Singularities, defects and twist in phase
diffusion equations. In preparation.

[23] L. C. Evans.Partial Differential Equations. American Mathematical Society, Providence,
RI, 1998.

[24] P. R. Garabedian.Partial Differential Equations. John Wiley, New York, 1964.
[25] H. Ishii and S. Koike. Remarks on elliptic singular perturbation problems.Appl. Math. Optim.,

23:1–15, 1991.
[26] A. Jaffe and C. Taubes.Vortices and Monopoles. Birkhäuser, Boston, 1980.
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