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Abstract

Complex order parameter descriptions of large aspect ratio, single longitudinal mode, two-level lasers with flat end
reflectors. vaiid near onset of lasing and for small detunings of the Jaser fron: the peak gain, are given in terms of a complex
Swift-Hchenberg equation for Class A and C lasers and by a complex Swiii-Hohenberg equation coupled to a mean flow
for the case of a Class B laser. The latter coupled system is a physically consistent generalized rate equation model for wide
aperture stiff laser systems. These universal order parameter equations provide a connection between spatially homogeneous
oscillating states of the complex Ginzburg-Landau equation description of the laser system valid for finite negative detunings,
and traveling wave states, described by coupled Newell-Whitehead-Segel equations valid for finite positive detunings. One
of the main conclusions of the present paper is that the usual Eckhaus instability boundary associated with a long wavelength
phase instability. and which delineates the region of stable traveling wave solutions for Class A and C lasers, no longer defines
the stability boundary for the mathe.aatically stiff Class B laser. Instead a short wavelength phase instability appears causing
the stability domain to shrink as a function of increasing stiffness of the system. This prediction is consistent with the strong
spatiotemporal filamentation instabilities experimentally observed in a broad area semiconductor laser, a Class B system.

1. Introductien ing uniform illumination (intensity and phase) across

the output aperture. Unfortunately, the uniform inten-

Under increased stress (external pumping), the out-
put power of existing laser systems is limited by the
fact that in transversely constrained geometries, satu-
ration effects set in, or catastrophic damage can oc-
cur as the internal cavity laser intensity grows. Ide-
aliy one would like to avoid these problems and in-
crease the output power significantly by increasing the
transverse cross-section of the laser while maintain-
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sity/phase state is unstable to transverse perturbations
and some form of pattern emerges [1-11]. In stan-
dard gas or solid state lasers with spherical mirrors,
the patterns that emerge closely approximate the clas-
sical TEM mode solutions of the paraxial wave equa-
tion in vacuum [2,12]. These shapes which are dic-
tated primarily by external constraints (e.g. spherical
mirrors), are coupled through their interaction in the
nonlinear lasing medium, and increasing the aperture
of such lasers leads to a complex oscillation between
the modes {7]. Semiconductor and solid state lasers
often have flat end reflectors due to the growth pro-
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cess by which they are fabricated and it is natural to
investigate the types of patterns which emerge if such
lasers are extended spatially in the transverse dimen-
sion. Here it is the laser gain medium which dictates
the shapes of the patterns, and the nature of the inter-
action of light with the laser medium plays an impor-

near threshold is described by generic order parameicr
equations whose form depends on symmetry proper-

ties of the lasing system [ 1,16~23]. It has been shown
that the nature of the solution above threshold de-
pends on the sign of the detuning between the cavity
and atomic frequencies. For negative detuning, homo-

tant role in the ensuing spatiotemporal evolution of
the internal cavity intensity.

Laser media are loosely classified into three types,
Class A, B and C, depending on the relative magnitude
of the relevant field and material decay constants [ 13].
In a Class A laser both the material polarization de-
phasing and population deenergization rates are much
larger than the field (cavity) damping rate and the ma-
terial variables can be viewed as being slaved to the
latter. A Class B laser differs in that the polarization
dephasing rate greatly exceeds the cavity and popuia-
tion decay rates and hence it is slaved to the other two
variables. Finally in a Class C laser, all damping rates
are comparable in magnitude. Semiconductor lasers
which are of great technoiogical ¢*gnificance, fall un-
der the Class B heading. For exampie, the polarization
dephasing time is of the order of 100 femtoseconds
(10~ seconds), while the cavity damping constant
is of the order of hundreds of picoseconds ( 10~ sec-
onds) and the population decay rate is of the order of
nanoseconds (107 seconds). A realistic material de-
scription of the interaction of light with a semiconduc-
tor medium is very complicated requiring the inclusion
of microscopic many-body effects describing the inter-
actions between electron and hole plasmas [ 14]. Pre-
liminary numerical simulations support the conjecture
that many of the qualitative spatiotemporal features of
semi-conductor lasers can be captured by the simpler
2-level Maxwell-Bloch model for a Ciass B laser. In
particular, attempts to observe stable lasing emission
from wide aperture semiconductor lasers have failed
so far. Instead strong filamentation instabilities are the
norm, with sharp intensity spikes appearing at random
across the output aperture of the laser [15}. These
intensity spikes can lead to localized damage in the
laser and are clearly undesirable. As we shali see the
2-level laser model captures the cxistence of narrow
stability domains of class B lasers rather well.

From a theoretical point of view, pattern formation

g oscillations set ir and stable optical vortices
[17] may be observed. For positive detunings, travel-
ing waves are favored [ 17,211, whose generic defects
are dislocations. In this paper we demonstrate that a
complex Swift-Hohenberg equation of the form

Y o (utind +ia ¥~ (1 +iB) (@4 T

—(1+ iy, (1

provides the generic description of transverse pattern
formation in wide aperture, single longitudinal mode,
two-level Class A and C lasers, when the laser is oper-
ating near peak gain (small detuning from maximum
lasing emission). In Eq. (1), ¢ is a complex field
and u, v, @, B and y are real parameters. The lin-
ear gain (u > 0) and laser frequency (») appear in
the leading term, gain saturation is represented by the
real part of the nonlinear term, and the diffusive term
introduces a wavenumber selection mechanism (gain
discrimination). This equation is a generalization te
oscillatory systems [24-26] of the Swift-Hohenberg
(SH) equation, which has been proposed as a model
of stationary convection [27]. It presents the advan-
tage of capturing the laser behavior when the cavity
frequency is detuned on both low and high sides of the
material transition frequency. Indeed, if £2 is pesitive,
a traveling wave of the fonui ¢ = /Eexp{il +V 3+
(¥ — yp — adP)t]} will grow for posmve PR whﬁe
when £2 is negative, a spatially h

= u - Pexplilv —yp + (7 B).Dzif} will
dcvelop for u > 2. We will show that an equation
similar to ( 1) can be derived from the Maxwell-Bloch
laser equations when the d g is small [28]. We
will call this equation the laser Swift-Hohenberg equa-
tion, and see that it captures the main features of the
laser dynamics in so-called Class C lasers where the
decay rate of the population inversion is comparable
to the cavity and polarization damping rates. It also
holds for Class A lasers, which are characterized by a
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slow dynamics of the electric field. An equation simi-
lar w { i} has also been considered for optical bistable
systems [29,30].

In commonlv encountered Class B lasers, such as
commercially important gas CO, and semiconductor
lasers, the polarization damping rate is many orders
of magnitude faster than the cavity and population in-
version decay rates. In this case we will see that the
pepulation inversion acts like a mean-flow, driving the
active modes at finite wavenumber and the resulting
coupled complex order parameter equations provide a
generalized rate equation description of a wide aper-
ture laser {28]. It is well known from plane wave the-
orv which would correspond to exciting the spatially
homogeneous mode in the context of the present pa-
per. that the system undergees damped relaxation os-
cillations to a stable state. The imaginary part of the
eigenvalue obtained by linearizing about the spatiaily
homogeneous state gives an estimate of the relaxation
oscillation frequency. When one allows for transverse
structure, the natural lasing solution occurs at finite
transverse wavenumbers and, moreover, the eigenval-
ues become strongly coupled. One can no longer iden-
tify the imaginary part of an eigenvalue with a relax-
ation oscillation frequency, although it is evident from
numerical simulations ihiat a strong remnant of this
oscillation stili persists.

Conventional rate equation approximations which
are extended in a rather ad hoc manner to include
transverse scales by adding a diffraction term, have
been shown to be plagued by spurious nonphysical
nigh spatial wavenumber instabilities which mimic nu-
merical grid oscillations {21]. The latter instabilities
are typically removed by iniroducing artificial diffu-
sion which damps out large transverse wavenumbers
[31]. In contrast, the systematic procedure employed
below in the derivation of the complex order param-
eter equations naturally incorporates a diffusion term
which depends explicitly on the physical problem pa-
rameters { 1 }. Some important conclusions to be drawn
from the present study are that increased stiffness of
the laser problem leads to a rapid shrinking of the sta-
ble domain of traveling wave lasing solutions, and that
the coinplex order parameter equation description in
terms of the SH equation in the nonstiff fimit or the

generalized coupled rate equations in the stiff limit,
provides remarkably good agreement with those of the
full laser Maxweil-Bloch equatioiis, even for lasing
well beyond threshold.

The paper is organized as follows. in Section 2 we
derive the laser Swift-Hohenberg equation from the
Maxwell-Bloch equations, analyze the properties of
its traveling wave solutions, and compare the results
to those obtained from the laser equations. Section 3
is devoted to a study of the stiff limit of the 2-level
laser, for which two coupled order parameter equations
are necessary. Again we make a direct comparison of
the predictions of these general rate equation models
with those of the full Maxwell-Bloch equations as
a function of the degree of stiffness of the system.
We conclude in Section 4 with a summary and some
general remarks. Details of the calculations as well
as a review of the properties of the traveling wave
solutions of the Maxwell-Bloch equations for the 2-
level laser are deferred to appendices.

2. Derivation of the laser Swift-Hohenberg
equation

2.1. Weakly nonlinear analysis

The dynamics of the 2-level laser in a section trans-
verse to the main direction of propagation of the elec-
tromagnetic wave is described, in the simple case of
a single longitudinal mode and flat end mirrors, by
the following set of Maxwell-Bloch equations [32],
written here in complex Lorenz notation [1]:

e,—iavze=—¢re +op,
p+ (I +i2)p=(r—n)e,
m+bn=4(p+ep’). 2)

The complex variables e and p are the scaled envelopes
of the electric and polarization ficlds, n is propor-
tional to the difference between the atomic inversion
and the initial inversion, o and b are respectively the
decay rates of the electric field and of the population
inversion, both scaled to the decay rate of the polar-
ization, and the detuning £2 is the difference beiween
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the atomic and the cavity frequencies, divided by the
polarization decay rate. Details of the scalings and
changes of variables involved in the complex Lorenz
notation can be found in Appendix A. For the conve-
nience of the reader we also review in this appendix
the main properties of the traveling wave solutions to
the 2-level Maxwell-Bloch equations. In particular,
it is useful for the following to note that the lasing
threshold is given by

(22— ak?)?

=1 .
eIt T or

with k. = 0if 2< 0, and &2 = 2/aif 2 > 0. In other
words, the nature of the bifurcaticn changes depending
on the sign of the detuning £2 [ 17]. In order to capture
the behavior of the Maxwell-Bloch equations for both
signs of the detuning, we will assume £2 small, and
took for solutions (e,p,n) in the form of a power
series expansion in this small parameter. The laser
variables also depend on slow temporal and spatial
scales, which have to be determined.

Let us define £2 = €42y, with ¢ being a small param-
eter. We will then look for solutions to the Maxwell-
Bloch equations in the form

(e, p,n) =(eq, po,ng) + (e, pi,ny)
+€X e pm) + ...,

where the (e, p;,n;)’s depend slowly on time and
space. The right spatial scalings are given by the width
of the band of unstable modes above threshold. For
12 =0, we have k. =0 and the eigenvalues of the lin-
earized system about the trivial solution are, for per-
turbations of wave vector k (see Appendix A),

. 2 - — zz
,\i=_l+¢72+mk + lra_+(l 04 iak?) )

If we let r = 1 + p, and expand the square root assum-
ing p and & small, the growth rate of perturbations of
wave vector k reads at lowest order in p and &,

po a’k® (l_z(l-a)z)
1+¢ 4(1+0) (1+0)2)"

\

Ree(A) =

which shows that a band of wav: vectors k of width
p'/% = (r—1)"/% centered about k. = 0 is experiencing

growth. The right scaling for the spatial vasiables is
then

X=(r— D%, v=(r-1y.

In order to have the terms in J2 of the same order as the
spatial derivative term iaV?, we will assume r = [+¢”,
X = \/ex, and Y = \/ey. We finally need to introduce
two slow time scales, namely T} = et and T = €22. We
now plug these expressions into the Maxwell-Bloch
equations, and identify the coefficients of powers of €
at each order. At order zero, we get

0=—0ey+opg,

po=C! -meg,

bny = 3(e5po + eopy )

where the star (*) stands for complex conjugate. This

gives eg = pp = 0 and g = 0. At order 1, we have
=—ge; +0op;,

pi=e,

bny =0,

which implies ny = 0. The solution is ther ¢ = p; =

i, where ¢ is a compica variable. At order 2, the
Maxweil-Bloch equations vield

38[ . 2
— —iaVe; = —cez +op,,
T, €y 2 P2

%Tp_: +p+tipr=e,
bny = 3(eip +epf).
In terms of ¢, these equations read

Tgey —opr = —% +iaV%,

—e+pr= '“% - iy,
bny = |yf?.

The compatibility of the first two equations requires a
condition on ¢, which will be the dynamic equation
sought for. It reads, at this order,

(o + 1)% =iaVi — ifhoy .
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One can then choose e» = 0 and

a .
(5 wm)e

=— 1
I+U(av + 1)
=51M'v
At next order. we get
de den -
ﬁ;-é-a;_;—iai"ez:-o'e;%—o'pg.
3,
£+%+p3+ill;p:=e3+el-—tz.eg—nze.,
any | dn» 1, . . . . .
o +bnz = 5(ejp2+e3p) +e1py +eapy),
which reads
ges —opz: = d
L
b A\ o
—pa = - r
atp=-ap )m ¢
LI
—bx«mw

WV - V%),

1
by == af"”‘ +2<1+ )

and requires another solvability conditior, which will
give the behavior of ¢ at the ume scaie 73. Using

(i) (3 ) ()

1 2,2
.-“+0)2(!l,+aV ).

we get

F:;
-:a+nﬁ"’2=aw~ 2y

(]+ Z(I)l +avh)y.
Again, we choose e; =0, and get for p3 and ns,
- ol
e TR o)
e A

__da (1 1 27 ol
"-“:+a(zb’w)“’v‘” V).
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The final equation for ¢ is obtained by collecting all
the terms and reads

o

W _ W

a  dn "

One can get rid of the small parameter € by re-
introducing the original variables x = X//€, y =
Y/VeE Q=€ r—1= €2, and re-defining €y as .
This yields an equation for ¢ of the Swifi-Hohenberg
type that we will call the laser Swift-Hohenberg
equailon,

(a+l)%=a(r—])t/] (2+aV:%y

(i+o )2
+iaViy — ifdo — ZI"”Z'I" 3)

This equation is very similar to the model equa-
tion (1), and has solutions of different types for
different signs of the detuning 2. We investigate
some of its properties in the next section, and in par-
ticular compare the stability diagram of its traveling
wave solutions to the one obtained from the full set
of Maxwell-Bloch equations. For this purpose, it is
useful to write the expressions of e, p, and 7 in terms

of ¢,

e=€e| + ey + 3 =y,

p=epi+ ezpz +€ps
1

IO v - A el

= l+a'v"ll l+¢r¢ l+o"/l

_ 2 1 22
b“+0)llllll// (|+a)3(0+aV)¢l,

n =52n2 + £3n3

_Loa ia _1_
I'” * l+o'(2h i

where the spatial derivatives are with respect to the
original variables x and y, and we have redefined ey
as ¢. Eq. (3) has been derived assuming o and b of
order one, i.e. for a Class C laser. In the case of a Class
A laser (o small), a sinilar derivation would give a
SH equation that can be obtained by setting o small
in (3), and expanding 1/(1+ o) as a power series of
o. The form given in (3) is then more general, and
holds for both Class A and Class C lasers.

1 A - -
ﬁ) WV - §V%),
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2.2. Properties of the laser Swift-Hohenberg
equaition

2.2.1. Linear stability analysis

The non-lasing solution ¢ = 0, whick corresponds
to (e, p,n) = (0,0,0), becomes unstable with respect
to spatial penurbations of wave vector k if

o _ 2,2
iro P> (|+ Troy 24

This condition is the same as for the full set of
Maxwell-Bloch equations (see Appendix A).

2.2.2. Traveling wave solutions
Above threshold, Eq. (3) admits a traveling wave
solution of the form

¢ =Rexpli(kx+ wt)],
where

o2+ ak?
1+o0

2\ 2
=b[r—l—- (!)—ak ) ] .
I+o
Again, this formula is to be comparad with the trav-
eling wave solution of the Maxwell-Bloch equations.

Using the expressions of e, p, and n in terms of
obtained above, we have

i

e =Rexpli(kx + wt)],

a2
p=Rexpli(kx + )] + ~%_ Rexplitkx + 1))
i+o

in .
T D_Rexp[z(kx+ wt)]

+

R
i +aexp[i(kx+wr)]
R? (!l—ak2>2
Xlr—1-—-~
L b l1+o

[1 4% ”] ,

e;_ 1+o
R s (1 22 . g2
n_b+i+a(2b+k)(kk R%3)

2

lelt
>

2}
z E
8 ™
5
216
3
4
T 14 /
5 /
8
" /
1 _—_—“—___/
o 2 4 6 8 10

wave veclor k
Fig. 1. Neutral curve (N) and Eckhaus boundasy (E) for the
laser Swift-Hohenberg equation. The zig-zag instability boundary
(2) is also included. P used to this figure are
a=001, 0=0.1, 2=0001 and h=038.

which is exactly the traveling wave solution of the
Maxwell-Bloch equations (see Appendix A).

The linear stability analysis of the traveling wave
solution of Eq. (3) yields two complex eigenvalues
for each perturbation wave vector g along x, which
read

Ax =%Tl'i %([ll ‘122)2+[]2121,

where

o
Tr=-
f z(b(H-o')R

+dX(g* + 6K | +2iag—

(1 +9')3[ ~2aff

kq) ,
o

———l-datkq

lu—lzz-—2< — Pt ——

I+o (!+ o)

+ a*(4kg® + 4k’q)}) .

2
(2 g
I‘ZIZI—‘(b(l-i-U)R) .

These cigenvalues can be puted numerically, and
it is convenient to draw the domains of existence and
stability of the solutions in the (k, r) plane. By anal-
ogy with convective systems {33], the stability do-
main of the traveling wave solution is called the Busse
Balloen. Fig. 1 gives an example of the stability dia-
gram obtained from the laser Swift-Hohenberg equa-
tion. The Busse Balloon is in this case delimited by the
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phase (Eckhaus and zig-zag) instability boundaries,
which are analytically computed in the next sectiorn.

2.2.3. Cross—Newell equation

The phase (Eckhaus and zig-zag) instability bound-
aries can be obtained analytically by deriving an cqua-
tivn for the phase of the traveling wave solution. For
details on the notion of phase instability, the reader
can consult Ref. [34-36]. The method we use here
has been introduced by M.C. Cross and A.C. Newell
[37] for stationary convection, and has recently been
applied 1o traveling wave patterns in the case of the
Maxwell-Bloch equations for a Raman laser [38].
The derivation for the laser Swift-Hohenberg Eq. (3)
is outlined in Appendix B. The phase diffusion equa-
tion describes how the phase @ of the traveling wave
sclution ¢ = Rexp(id) + ... diffuses when one al-
lows slow spatial variations of the orientation of the
rolls. Here, the dots stand for higher order correc-
tions, and the wave vector of the traveling wave pat-
tern k = V@ varies slowly in time and space. For the
laser Swift-Hohenberg equation, the phase diffusion
equation reads (see Appendix B)

0.=w+Eck O, +Zig Oy +...,

where @ is given by the dispersion relation w =
—{¢2+ax?)/(1 + @), k has been chosen equal to
{k.0), and

o 2
Eck= —Zam(ﬂ— 3ak )

8a%k’bo »
TR +a)5R2(”_ ak?)?.

. i o2
bg = 720m(.0‘ ax’ )

When Eck or Zig are negative, perturbations of small
wave vectors see growth and the traveling wave is
phase unstable. In sufficiently extended systems, phase
instabilities generally lead to the creation of defects
135]. Tiic phase instability boundaries obtained from
these formulas are plotted in the stability diagram of
Fig. 1, snd it wrns out that they delimi: the Busse
Balloon. "o other words, no amplitude instabilities or
higher order phase instabilities occur before the Eck-
haus (Eck < 0) and zig-zag (Zig < 0) instabilities.

control parameter r
- -
» o

- -
o ®
S A S S

0 2 4 6 8 10
wave vector k

Fig. 2. Neutral curve (N), Eckhaus boundary (E) and Busse
Balloon (diamoads) for the 2-level Maxwell-Bloch laser equa-
tions. The zig-zag instability boundary (Z) is also included in
this figure. The parameter values used to generate this figure are
a=00! o=01, 2=0.001 and b = 0.8 (same values as in
Fig. 1).

Fig. 2 shows a similar diagram obtained from the
full set of Maxwell-Bloch equations, for the same
laser parameters. The Busse Balloon (stable domain)
agrees with that computed from the laser Swift-
Hohenberg equation (shown in Fig. 1). However, the
stable region is, as depicted in Fig. 2, now delimited
by a higher order phase instability boundary, while the
Eckhaus boundary for the ™ Yaxwell-Bloch laser equa-
tions lies to the right of this stable region. One would
however expect qualitatively similar pattern dynamics
for both models. Fig. 3 compares the real parts of the
eigenvalues of the linearization about the common
traveling wave solution of wave vector k = kx to
the Maxwell-Bloch and complex Swift-Hohenberg
equations, as a function of the amplitude of the per-
turbation wave vector ¢ = gx, for the same set of
oroblem parameters, and for a k& wiiun the unsiable
band. The agreement between both models is excel-
lent over the range of unstable modes g. The stronger
decay of the damped modes of the SH equation at
large g is indicative of a stronger diffusion mechanism
which acts to regularize the partern dynamics.

3. Generalized rate equations for Class B lasers

We are now interested in the stiff limit (b — 0)
of the Maxweli-Bloch equations which describes a
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0.1

single SH eqgn.
s - - 2devsliaser

g’ 1
E]

s

=

%-0.1

o

=

H

Q.

k-1

e

&
n

0 5 10 15 20
perturbation wave number q
vig. 3. Comparison of the real parts of the phase and ampli-
e eij fues of the linearization about the travel-

ing wave solution to the 2-level Maxwell- Bloch and complex
Swift-Hohenberg equations for b = 0.8, r = 1.1 and a wave vec-
tor k = 5.46. Other parameter values are a = 0.01, o = 0.5, and
{2 = 0.001 (same as for previous figures). The eigenvalues are
graphed as functions of the p bati ber ¢ about the
traveling wave in the direction of travel. Only the relevant ampli-
tude eigenvalue of the MB problem has been plotted.

= -
Iy @ @

control paramater r

=
o

] 2 4 6 8 10
wave vector k

Fig. 4. Neutral curve (N), Eckhaus boundary (E) and Busse
Balloon {symbols) for the 2-level Maxwell-Bloch laser equa-
tions. The Busse Balloon, ie. the region of stable wavel-
ing wave solutions. is shown for different values of the stiff-
ness f b. Other p are the same as in Fig. |
(¢ =001, o=0.1, 2=0.001).

Class B laser. In this case, the Busse Balioon shrinks
1o a very narrow band centered about k., as shown in
Fig. 4, which gives the family of stability diagrams
of the traveling wave solutions to the MB equations
as the stiffness parameter b is reduced in magnitude.
Only perturbations of the wave vector parallel to the
direztion of travel were taken into account to produce

(s)
ol-
g b=0.0%
s
€
& 0005
<
S
=
«
2 o0t
g
-0.015
[} 2 4 4 8 10
perturbation wave number g
{b) 8=0.2
o OfT .- e -
2 - T
g -
5
-]
S 0.1
i
€
3
= 02
g
0 2 4 6 8 10
rerturbation wave number g

Fig. 5. Graph of the real part of the biggest eigenvalues as a

ion of bati g along the ling wave,
for r = 1.2 and k = 0.9. (a) Stiff limit (b = 0.01) and (b}
Nonstiff limit (b = 0.2). Other parameters are the same as in
Fig. 1 (¢=001, o=0.1, 2=6001).

this figure ? . The laser output in the unstable domain
is then highly disorganized, and shows many defects,
which are advected away by the unstable carr; ing trav-
eling wave. As noted in the introduction such a limit
is a relevant model for the description of wide aper-
ture CO, and semiconducior lasers. It can easily be
seen that the laser Swift-Hohenberg equation will then
not be a good mode! for the laser dynamics. Indeed,
Fig. 5a shows the behavior of the real parts of the three
biggest eigenvalues of the linearized system obtained
from the Maxweli-Bloch equations about the travel-
ing wave solution with wave vector k = 0.876, for
r = 1.2. These eigenvalues are plotted as functions of
the perturbation wave vector ¢ along x. A similar plot

*For both the full set of MB equations and the coupled SH
i the ei I bl ined by linearizing about
the traveling wave solution has the symmetry A — Aand ¢ — —¢.
Asa il the k ledge of the beh of the reul pasts
of the cigenvulues for positive ¢'s is sufficient to infer the stability
of the solution.
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is given in Fig. 5b. for a non-stiff laser. One immedi-
ately sees that two eigenvalues are close to zero in the
non-stiff casc, which makes reasonable the elimination
of the three most damped scalar variables, and then
justifies the use of the laser Swift-Hohenberg equa-
tion. However. having & small in the stiff limit makes
the corresponding third eigenvalue closer to zero. One
can then at best eliminate two scalar quantities, which
means that two coupled equations are in order to ac-
curately describe the laser dynamics in this case. An-
other interesting remark corcerning Eq. (3) is that by
defining

LU, Ve, [0
T or ’ “Tra” TP l+o |’
'F"’X’
X=,/=X".
Vo

it can be re-written (after dropping the primes) as
ay 2.2 .
== DY = A+ VY + iy — gy,

where g = (1 +0)2/2 and v = (1 + 0)? /0 £2. The
parameter b is then scaled out of the equation, which
means that the stiff limit is irrelevant for this equation.

We then need to repeat the procedure of Section 2,
taking into account the fact thai b is small. Since the
sclution to ihe full laser problem is

= 2\ 2
ﬁ:‘_=r-|—(” “k) =0,
b o+1i

we see that if b is, say, of order €2, and n and |e} = [¢|
are aiso of order €. We will then look for expressions
of e, p and n starting at order €. The derivation of the
coupled Swifi—-Hohenberg (CSH) equations is given
in Appendix C. They read at order 4 in €,

(o + 1)%:0(#» D + iaVip — io iy

a=or :g)z(ﬂ+avz)21[/ —aony,

on 5

i —bn + Y| .

The instability threshold of the trivial solution ¢ =0,
n = 0 is the same as for the laser Swifi-Hohenberg
equation. and the traveling wave solution above thresh-
old is also unchanged. It reads

¢ = Rexpli(kx+ wt)],

o) + ak?
@=——
l+o
R=b|r-i- a-a\’
l+o ’
17
n===,

which correspends in terms of e and p (see Ap-
pendix C) to

e=y = Rexplilkx + w1)],
- 2
p=u x+a(”+“v W

! 252

—“+0_)3(.(l+av '
r—1 1

l+o"ll- I+o

+ ny

= [l - —i—(ﬂ—akz)

1+o

1 B2 (0-ak?)?
+i+a(’_"7" (+o)? )]
xRexpli(kx + wt) ]

= [1 - ﬁ(ﬂ—akz)]e.
The phase instability boundaries are also the same
as for the laser Swift-Hoh .= .ig equation, as shown
in Appendix D. The only difference is that because
of the caupling of ¢ and n, higher order instabilities
occur, and the Busse Balloon shrinks. The family of
stability diagrams obtained from these two coupled
equations for the same laser paramcicrs as in Fig. 4 is
given in Fig. 6. The Busse Balloon is correctly reduced
to a narrow band about k = k., and the dynamics
of the Maxwell-Bloch equations is now satisfactorily
captured by the reduced equations. Note that the Busse
Balloon of the laser Swift-Hohenberg equation alone
would have been delimited by the long wavelength
phase instability boundaries as shown in Fig. 1.

Fig. 7 compares the real part of the eigenvalues
computed from the linearization about the traveling
wave solution to the Maxwell-Bloch and the CSH
equations. This figure corresponds to the stiff limit of
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control parameter r

SH equations
b=0.0001
=0.00%
b=0.1
b=08

0 2 4 6 8 10

wave vector k
Fig. 6. Neutral curve (N), Eckhaus boundary (E) and Busse
Balicon (symbols) for the coupled Swift-Hokenberg equa-
tions. The Busse Balloon bounding the region of stable trav-
eling wave solutions is shown for different values of the stiff-
ness | b. Other are the same as in Fig. |
(a=001, =01, £2=0.001). This figurc should be compared
to Fig. 4.

o r ]
/ < h e 2evel laser
o b / . CSHeqns.
£} FAT
o / k.
H 2
g a5t
T .
3
T _
1
g
g oo
0 2 4 6 8 10

perturbation wave number G

Fig. 7. Comparison of the real parts of the relevant eigenvalues
of the li about the ling v/ave solution to
the Maxwell-Bloch and coupled CSH equations in the stiff limit
at b = 0.01. Other parameter values are the same as in Fig. 5
(@a=00!, o=0.1, £2=0001).

Fig. 5a and the agreement between the eigenvaiues is
seen to be excellent. The overall robustness of the SH
models in the nonstiff limit (b = 0.2) is exemplified
by the comparison of the cigenvalues of the lineariza-
tion of the traveling wave solution for the 2-level MB
equations, the single SH equation and coupled SH sys-
tem. One sees from Fig. 8 that the dynamics is well
captured by the single SH equation in this case. Fi-
nally, let us remark that the description in terms of SH
equations is also valid for negative detunings and for
detunings of relatively large magnitude, as exempli-

o
2
]
H
k3
£l
k-]
=
5
3
B
2
01
0 2 4 [ 8 10
perturbation wave number g
Fig. 8. Cemparison of the real part of the relevant eigenval-
ues »f the | about the ling wave solu-

tinn to the single and coupled SH equations in the nonsaff mit
at b = 0.2. Other parameter valugs are the same as in Fig §
(a=001, =01, 2=0.001).

control parameter r

wave vector k

Fig. 9. Comparison of the stability diagrams obtained from the
full set of MB equations and from the coupled SH equation. for
negative detuning. The two Eckhaus boundaries are the same in
this case since & has been chosen equal to 1. The pasameter values
used to gencrate this figure are « =0.01, ¢ = 1.0, 2= 0.3 and
& = 0.1 But for the sign of 2, these values correspond to those
used in [11}.

fied in Fig. 9, which shows a comparisen of the stabil-
ity diagrams obtained from the full set of Maxwell-
Bioch equations and from the coupled SH equations,
for 2 = —0.3. The case for £2 = 0.3 has already been
discussed for the fuli MB cquations in [I1] and we
have confirmed that the coupled SH equations repro-
duce the stability diagram.
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4. Conclusions

The description of pattern formation in wide aper-
ture single fongitudinal mode two-level lasers in terms
of the ubiquitous complex Swift-Hohenberg (SH)
equation for a Class A or a Class C laser, or such
an equation coupled to a mean flow for a Class B
laser. suggests that nonlinear optical systems provide
a unique testbed for the study of pattern formation.
As remarked in the introduction, we have shown that
this universal amplitude equation description, strictly
valid in the neighbourhood of the critical point, holds
true even well beyond onset of lasing. An interesting
chservation is that the traditional single SH equation
is insensitive to the degree of stiffness of the orizinal
physical problem in that the physical parameter that
captures stiffness. namely & = ¥2/y; which measures
the ratio of the polarization dephasing to the popula-
tion decnergization rate, can be trivially scaled out of
the problem. As a consequence cf this a mean flow
must be coupled to the SH equation, which is consis-
tent with the observation that the population inversion
variable n in the Maxwell-Bloch Iaser equations acts
as a weakly damped mode when the problem becomes
stiff. The effect of this additional degree of frecedom is
to destabiiize the laser further through a short wave-
lengzth higher order phase instability which cannot be
captured by the usual phase (Cross-Newell) evolution
equation. The shrinking of the stable domain (Busse
Balloon) with an increase in stiffness is reascnable
as broad area semiconductor lasers typically unaerge
strong filamentation instabilities immediately beyond
onset of lasing. We remark finz"y that the coupling of
the mean flow term to the SH equation becomes neces-
sary when the cigenvalue associated to that mode ap-
proaches and becomes strongly perturbed by the cigen-
vaiue(s) of the complex amplitude. This can happen
either at ¢ = 0 or at finite ¢ where the asymptotes of
the amplitude and inversion cigenvalues are —o and
~ &, respectively. Obviously if the cavity damping co-
efficient ¢ is large then the comesponding value of b
car: also he large (subject of course to the physical
restriction that b < 1 for a laser). This means that the
mean flow needs to be coupled to the amplitude equa-
tion even when the system is no longer mathematically

stiff.
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Appendix A. Properties of the traveling waves
solutions of the 2-level Maxwell-Bloch equations

In this appendix, we briefly summarize the stabil-
ity properties of the traveling wave solutions of the
Maxwell-Bloch equations for the 2-level laser.

For perfectly flat end reflectors and in the single
longitudinal mode approximation [32], they read [ 1]

? VZF=EA,
2¢ep

Fr+eF—i =
20wy

. ipt,
A+ [n+ilwa—w)lA= TFN-
N, 47N = No) = 2 (F A= FA).

where F and A are the eavelope variables of the elec-
tric and polarization fields, « is the cavity damping
coefficient, ¢ the speed of light in vacuum, w, is the
frequency of the single longitudinai mode, wy is a typ-
ical length scale in the transverse sectior: of the laser,
€y is the vacuum permittivity, ¥ is the dipole dephas-
ing rate, w2 is the 2-levei aicm transition frequency,
P12 is the dipole matrix element coupling the two lev-
els, NV is the atomic inversion, Ny is the initial inver-
sion, ¥ is the inversion decay rate, and £ is Planck’s
constant. In the following, we will use these equations
written in complex Lorenz notation. For this purpose,
we make the following changes of variables:
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t ik

r=+_  F= ihy,
b4 2p12
F

A=tnex N Ne= Zeoxf;y; .
WPz wWePi,

The Maxwell-Bloch equations then read
e —iavze=—-m?+a'p,

pr+ (1 +i)p = (r—n)e,
n+bn=3(e"p+ep”),

where
o=X, p2nrT%% L. 1
1 Y Vi
wcP%ZINl)' ¢
r = . a= .
2eohixy 20 w3yt

The linearized system about the trivial solution
yields two eigenvalues, for each perturbation wave
vector of modulus k, which read

Ar=— L1 +o+i(2+ak’)]

+/ro+ 1 +i - iak? — o)2.

At threshold, the real part of the eigenvalue clusest to
neutral vanishes, and one has

A+ =)+ (2-ak®)?=0.

For positive detuning £2, the instability threshold is
then r. = 1, and the critical wave vector k. is given
by k2 = f2/a. For negative values of £, the critical
wave vector is k. = 0, and the lasing threshold is r, =
1+ £2/() + o) The critical lasing frequency is in
both cases ». = (02 + ak?)/(1 + o). In the case
of positive detuning, even though all wave vectors of
modulus k. are likely to see growth above threshold,
numerical simulations show that the system generally
selects a particular direction, and a traveling wave pat-
tern saturates [21].

It turns out that an exact traveling wave solution
to the Maxwell-Bloch equations can be found above
threshold [21], which reads

e =¢expli(kx + wt)},
p=pexpliltkx + wt)],

n=mn,

where € can be chosen real, and

- wo+ak?] ak? — £F
p=é|l+i =&l +i .
o I+o
a2
=5
— ak®\?
Ez=b[r—l~(ﬂ ak)]'
o+1

e+ ak?
I+o

Note that a traveling wave of wave vector k only exists
when

(1+a) 1 -r)+(2—-ak®)? <0,

that is when the perturbations of wave vector k ase
amplified by the jaser dynamics.

The stability domain of this solution in the (k.r)
plane corresponds to what has been called the Busse
Balloon [33] for convective systems. Its boundaries
can converiently be found numerically by computing
the eigenvalues of the 5 x 5 matrix obtained from
linearization of the Maxwell-Bloch equations about
the traveling wave solution. An example of stability
diagram, including the region of existence of traveling
waves and their stability domain is given in Fig. 4.

Owing to the gauge invariance (e — eexp{ig),
p — eexp(ip), n — n) of the Maxwell-Bloch
equations, the phasc of the traveling wave solution
can be chosen arbitrarily. As a resuit, it is always
marginal with respect to homogeneous perturbations,
which makes phase instabilities in general more dan-
gerous than amplitude ones. The limits for the Eck-
haus and zig-zag phase instabilities (for general re-
sults on these notions, see for instance [34-36]), can
be found analytically by computing the Cross—Newell
equation [37] for the traveling wave solutions of the
2-level laser [38]. This equation reads

0, = w + Eck 8, + Zig 8,,.
where
2.2 O - al?
Eck= da‘k‘o _ a2 ak’)
(1 +o)? (I+o)?
&’ k’ba (12— ak?)?
lel?(t + )3

.
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a{ 2 - ak’)
(1+e)?

Zi

e

Here, (e.p.n) = (€exp(iB),pexp(if),n), VO =
k = (%.0), and @ has the same expression as
above. The Eckhaus instability occurs when the
coefficient Eck changes sign. Since the wave vec-
tor k has been chosen in the x direction, one
sees that this instability corresponds to compres-
sion or dilatation in the direction perpendicular
to the wave crests, whereas the zig-zag instabil-

the bending of the traveling rolls. The Eckiaas and
zig-zag boundaries are ploited in the stability diagram
of Fig. 2. Depending on the laser parameters, it may
happen that higher order phase instabilities or ampli-
tude instabilities occur before the usual phase insta-
bilities. This is in particular the case in the stiff limit
(b — 0) of the Maxwell-Bloch equations, for which
the Busse Balloon shrinks to a small region in the
middle of the domain of existence of traveling waves
(see Fig. 4). In such situations, the limits of the Busse

ity (which occurs for Zig < 0) cormresponds to Balloon can only be found numericalty.

Appendix B. Cross—Newell equation for the single laser Swift—-Hohenberg equation

In this appendix, we outline the derivation of the Cross-Newell equation for the laser Swift-Hohenberg equation

(14

W et - —7
(0'+l)—67—a'(r Dy +0)?

(2+ aV2% +iaV — iy — %w:zw
The procedure consists in looking for a solution to this equation in the form of a traveling wave whose wave vector
is allowed to vary slowly in space and time. The solvability condition for the existence of this solution gives the
phase diffusion equation we are interested in. Details of the method can be found in the original paper by Cross
and Newell {37], and an application to the traveling wave solutions of the Raman laser is given in [38].
‘We look for a solution to the iaser-Swift-Hohenberg equation in the form
¥ =Rexp(i0) + 9% + ...,
where
]
0= —=6(X.YT.15),
7
X=1)2x, Y=7]2y,

Ti=7’t. Th=v',

and 7° is a small parameter related to the inverse aspect ratio of the system or the scale at which the phase
variations occur. We define the oscillation frequency w and the spatial wave vector k as follows:

w=06r, VA=VyxO=k.
Here Vx means that the spatial derivatives are taken with respect to the slow scales X and Y. With these notations,
6, = 9]—, + 7]291-: =w + 17291: .

We now plug these expressions into the laser S+.:ft-Hohenberg equation, and write the corresponding equations at
each order in 7°. At zeroth order, we get that K exp(i@) is the traveling wave solution to the laser Swift-Hohenberg
equation, namely

R_ . _(2-a\  _ al+o0
; [N R

At first order, we have
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)

3R o
u—a—o;+167, _Hr(r—l)w.

a 4
“—+;)—3[02|/1;+2a!2(k —) §1l|+a (k%) lﬁ]i‘
T 5 AS ? a\?
__—(]+0')3 {Za!I(k Vx-!—vlrk%) +a {Vx (k%) + (kﬂ.é) Vx (k;;)
a a a
+(kﬁ) Vx (k-%)-i-( aa) v,]}kexp(w)

iof2 ia ia aJ a .
——in + ( ) o+ — (k aon-f*V;( kae) REXP(IB)

l+cr 1+o 1+0o

m—) (2R + R exp(2i0)dn) -

Letting ¢, = 1 exp(if), we are left with

—Z Ry +47) = —i (R612+2a 37 (2 VxR + RVxk)

b(l+ ) 1+

2% __(4KPVxR + RVxk® + kRVxk* + kZRka)) (ﬂ +1 ia . ) .

(l+ )3 Ty

Since the Lh.s. of this equation is real, we obtain a solvability condition which gives &y, in terms of R and k. We
now compute the different terms using the fact that R depends on 42, and that

ak. ok,
ka-a—);‘l-ﬁ Exx + Oy,

since Vy@ =k = (k,,k,). We have

2d
2%k VxR= 3 (kze,‘\r + 2kekyOyy + KOy )

RVyxk = R(Oxx + Ow) ,

Vik® = k2 (Oxx + On) + 2k20xx + 4k, k,Oxy +2K20y ,
k- Vxi? =2K20xx + 4k kyOxy + 2K20y .

The solvability condition then reads
Ron + 2 o \RdE

_ od® 4Kk% dR?
(1+0)7\ R di?
+R[K? (Oxx + Op) + 2k30xx + 4ok, Oy + 220y )

2 (2dR?
o ( (20xx + 2kkyOxy + K2Oy) + R (Oxx + aw))

(K2Oxx + 2kskyOxy + K2Oy)

R (2K2Oxx + 4k kOxy + 2K20y) + KR (Oxx + aw)) =

If we choose a particular direction for &, i.e. k = (k,0), we have
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2k2dR?  2ac , 200 5 2a0
RO = N 32 -ak’) - ——— ?
9. RH_“( e (o ? ak?) — e )3(9 3ak))+R@yy( ”Hﬂsm ak)).
Using
dR®  2ab
— (2 ak?),

a2~ (1+o)
we obtain
8a’kok? 2.2 2ac 2. 2ag 2
Or, =6xx ( Trmm - ak®) ~ Taoy (- 3ak )) +6y ( drop - ).
and the equation for 7 is

8,=0r, +7°0r, = w + Eck 8,, + Zigh,,,

where
2a0 8a’bok?
ck=— n- (02— ak?)?,
Bek =~ (5 93 (27308 — i (2 - ak?)
. 2a0 2
Zig=——22 _(0—ak?,
& (l+cr)3( ak’)

and we have used the fact that 7°Oxx = 9*0;x = 0, and 72Oy = %0,y = 0.

Appendix C. Derivation of the reduced equations in the stiff limit

We now give details of the derivation of the two coupled equations which describe the laser behavior in the
stiff-limit of the Maxwell-Bloch equations. These equations read

e, —iaPe=—ge+ap, p+(1+i)p=(r—n)e, n,+bn=%(e"p+ep’).

As in the derivatien of the iaser Swift-Hohenberg equation, we assume that the detuning 2 is small, namely
2 = €. In addition, we suppose that the parameter b is now of order &2, ie. b= €2hy, and that r is still given by
r =1 + €%. We then introduce the spatiai scaics X = \/ex, Y = /€y, and the three time scales 7} = er, To = €%,
and T3 = €t, and look for expansions of e, p and n as power series of €, namely

(e.p.n) = (e, po.mo) + €(er.pr.m) + € (€2, prma) + ...

Since the traveling wave solution to the full Maxwell-Bloch equations is such that

P 02— ak?\?
i=—=r—1- =0(€?),
=TT ((r+l) 0t

we expect n and e 1o be of order €2. At zeroth and first orders in €, we get

O=—meg+apy, po=(1—ndeg, 0=13(efpo+ eops),

whose solution is 9 = 0, pp = 0, and
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O=-—cey+op, pr=(l-n)e, 0=0,

for which we choose ) = 0, py = 0, ny = 0, and n; = 0, as suggested by the scaling of the raveling wave solution.
At order 2, we get

=-cer+op, pp=e, 0=0,

which gives e2 = p, = . and the equations at order 3 are

dey 2 P . any
Ve, = — , == =e;, —=0,
—iaV-e; = —oe3 +opy T, +p3+ithpr=e;3 P 0
which reads in terms of the complex variable 4,
)
—ae3+a'p3=§7wl—iavzill. e;—p3=%+i!2u/1, _"Z=0

The compatibility of the first iwo equations requires the following solvability cundition, which describes the
variations of ¢ at the time scale T;:

4

(0 + 1) == = —igU + iaV . (C.Iy
T
We can then choose
o
=0, py=—gr—ilg= —~—<n, +aViy.
s i
At fourth order,
a I
17;? + ‘;_z iaVie; = —ces + ops .
3  9p2 _
T + i +patilhps=es+e2—mer,
an; 3 »* . =
ﬁl + ET_z + by = j(t’zpz +epr),
ie.
—ges+ops= 674,‘2 .
3, i
e4—p4-aT£+aTl+:ﬂ.p, ¢+mip,
aﬂg 19n2 = 2
o + 57 bany + )"

Again, e obtain the following solvability condition:

W (2 _
(a'+l)ﬁ?——0'<tm+l.()|)p3+m/1 anyp .

Using the expression of p3, we get

o - (2 0 2, 22
(ﬁl-{r-lfh)p}- (0,\7_' i—l[)l) H_U(!Z.-i-aV )l/l—(l+ )2(f).+a‘7 v,

N\
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and the solvability condition becomes

((r-l)-a:%f—r!—:—)-(ﬂl+av Vi + oy —onapr . (C.2)

‘We now can choose

es=0,
P‘=_(aril+iﬂ|)[’3—%+lll—nzw

= (T_(_]———)-(!’l-r-aV)lll+—-—‘7-—§(!)1+aV2)'/’—H_—a_lll+ T + 4 — oy
=““+—la)3(lll+aV2 2¢+1+_0_¢ ]+a_,,2¢

We could stop at this order, and get the two coupled equations for ¢ and n, which are used in the text. For
completion, we will push the expansion up to next order so that we can include fifth order corrections in the
equation for the population inversion n. The Maxwell-Bloch equations read at order 5,

de. de des
oes oes + =2

+ = — iaV%eq = —ges +aps,
o, o s 4 ST ops
£+%+apj+m+lﬂ|p €s + €3 — Mer — N2ez
an  dh  dn 4= ’

3"4 3?13 unz
ﬁ,]‘-f-ﬁz + ﬁ +~ bony = z(espz+e3p2 +e203 +e3psy),

ie.
a
70‘€5+0‘Ps=ﬁ¢:.
E
a aps O
25—P5=(ﬁl+iﬂl)m+5rp—+#+"3¢/

ity ah_x X allz

i g3 omp 1.7 o ' 4V — GV
ﬂ;+¢?’rgfa’l}4 bany + 5(Yp3 + ¢p3) b2"3+2(l+0')( b -ygVy),
wherc ¢ is the complex conjugate of . The solvability condition reads
& g
(a'-«‘»l)% _"(‘E“Q‘)”‘_"%_""“”'
With the expressions of p3 and ps, we get
(2 in, . 9P
\aTi )T an
iy "n) (n + a3y + ! TV ] ! n|/1 +i ——i—(rz +av2)¢)
BN A AT +o 2 LB\ 1+e
‘ 2.3 2
_‘—————)-I(!)x«z»av )y + ,H ((l.+aV YW+ ——— (l+ e —nm (i +aV)yY

e (4} + aY?) (
o)~

s (2 +aV)y - oy + o’nzl//)

(1+0)?
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_ilc—1) i(o—1) 2 (o~ )
(l+ )4 Trap eV + oy

(] T ‘7)2 (Zvng - Vl/l + sznz) .

(0 +aVh3y - nz(ﬂ; +aV?yy

where we have used dn;/dT; = 0. The fifth order solvability condition is then

Wy ioc(o—1) 2.3,  io(o—1) 2
(an)-1_ Q1o (!214-aV)¢+~—(|+ L (01 +av )4
ioc(o--1) ic’a .
_“—+--n2(ﬂ] +aV? Y — '(-l—_'_—)z (Zvnz Vi + l/lvznz) onip. (C.3)

We can now collect all the terms and get the equation for ¢,

Wy AL Y. A
NN—= —_—
(e+N— (zr+l)(e‘m+ a'z' ,97'3
The spatial derivatives in Egs. (C.1), (C.2) and (C.3) are derivatives with respect to the slow scaies X = vex
ard Y = /€y. Any term of the form €V? then comresponds to V2 in terms of spatial derivatives with respect to x
and y. Letting n = €2n; + €313 + €*ns, and re-defining €% as ¢, we get

(a'-x’-l)%l:—:a(r—l)¢+iaV2a"l—icrﬂw “+ )2(.(l+aV2 ) ~ onp
—f(glg—i;—_—)lz—)n(ﬂ+avz)¢ )2 (@2Vn- T+ §V?n)
"(’](+)4-<ﬂ+avz) v (r- )"(’%T(nwvz)a/f

Similarly, the equation for n is

@ 36n2+ arn+_ﬂ__rl_z 4
at /4] Ty T

s [y  dm dny
) — - —
¢ ( T

=e'(- bznz+!'l'|2)+5'\ bzn3+2“+ )(WZ./, .WZ./;))

i.e. in terms of the original variables,
on
Z = b .
5 = ~on T2(|+ )

The equations at order 4 read

(Vg - ¥y .

W ] ) 2y2
+1)—= — 1
(o ')at a{r— 1) +iaVy —iofly — 0 )ﬂ(!)—f—aV ¢ —ony,
on 2
it C4
F bn+ |¢|°, (C4)

and are the equations we will nse to study the stability properties of the traveling wave solutions. The expressions
for e and p are, at this order,

e=y,

P 2 2,2 - 1t
p=¢ I+0(!2+av):/1 2+ aV% ./;+ —

(l+ o)? +o I+o

my .
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A remark is in order with regard to the derivation of the complex Swift-Hohenberg equation. In Ref. [29], the
authors, when considering the case of positive detuning, could have combined the solvability conditions obtained
at each order into a single amplitude equation in the original space and time scales as above, in order to construct
a uniformly convergent asymptotic approximation correct to the order considered.

Finally. let us mention that if we had not chosen n; = 0, we would have obtained the foliowing system of
equations at order 3 in €:

(a'+l)§§=a'(r—l)¢v+iavzw—ia'ﬂ¢ (!2+aV‘)|/1 ong

(1+ )?
_ia(a'— 2 2 z a? 2
s (2 +aVihy — —(l+ )zw n+ |$| _(]+o')2n ¥,
am_ (W 27 22
== (b - )n+l¢| +—2“+ (V3G - §V20) .

Appendix D. Cross—Newell equation for the two coupled equations

In this appendix, we compute the phase cquation for the traveling wave solution of Egs. (C.4) abuve. We will
use a slightly different method than in Appendix B, in order to show how the amplitude of ¢ and 7 a-: slaved to
the phase of ¢.

We look for a solution to Egs. (C.4) in the form ¢ = A exp(if) + w, where

9:—?. d=HNX=ex.Y=€y,T=¢€t), A=AXXT).

and w stands for higher order corrections. Because of the gauge invariance of Egs. (C.4), it turns out that w is of
the form wexp(if). so that we can redetine A as A= Ap+ €4, + €2A; + ..., and look for a solution in the form
¢ = Aexp(id), withn = ny + en + €%ty + .. .. With these notations, we have

ap = (€Ar + iOrA) exp(if) ,

Vi = (EZVZA +i5(k VA + A k) - kZA) exp(if) ,

{ 2me

W D = V-kAX Q2 al®)]+ (ol —0)2,4+0<52)) exp(if) ,

and Egs. (C.4) become

e(o+ DAr=0o(r-1NA- %v-(mz) ﬁ(akz M2A - onA +0(eY), (D.1)

A6r= —— (—aka- o0 - —Z 20 (kA2 - )] | +0(eD (D2)
AN T UFoA ) Ot )

enr= A —bn. (D.3)

The §i
equat

rst two equations correspond to the real and imaginary parts of the equation for ¢. Eq. (D.2} is the phase
n (we have assumed A real), and reads

g€ 2a
Or =w— ——— =V - [kAJ (12 — ak? o
o T a+a) Al 502 —ak)] + O(eh) .
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where @ = —(o 2+ ak®) /{1 + &), and we have written A = Ay + €A; + . .., with

(ak? —- mz]

2
A(,—b[r—l— TEPSE

If we take k = (k,0), and use
V(ku) = [ll+k-—-:!9xx+[k 3’( +k ak]exy+[u+kak]9yy,

we see that the phase equation reads

oe  2a [d[kA}(2-ak))] 5
Or=w— (|+0»)3A‘-7j [ p7 8;(;(4':40(!2 ak YOy | +0(€%),
ie.
a0 o 2a[d[kA}(2-ak)] o% 5. 3%0]
—=w - —= A —i+.... D4
a=? (1+a)3AZ,[ dk a2 A “k)y2 * (b4)
wiiich is the same as for the laser Swift-Hohenberg equation (cf. Appendix B). Indeed, the coefficient of 8., is
o 2a dA} 2 242
ECk=_(—lla3) [Ao(rl ak)+k (!l ak®) — 2ak°Ag
2a0 2 4ak’c o 2ak —2ak’ - ) 2
PR, - 2ak( 2 -
(7o ) oy ~Trey B (1707 2ek2-akd)
2ac 5. 8a%KPhor {02 — ak?)?
a3 )3({‘ 3ak”) ——A%(I—Hr)s ,
and the coefficient of 8,, is
. 2 2
Zig=— T )3(0 ak°y.

This means that ine Eckhaus and zig-zag boundaries found for the two coupled equaiions are the same as for the
laser-Swift-Hohenberg equation. Eq. (D.1) gives the 2xpression of Ay at lowest ordcr, and

Ay a
(o + I)ﬁl— = ~Agon; — A—OV(kAZ,)

at order one. Using the fact that
aAo - dA() dw 2
o, - Fag ae 1K 0x] -

we get for ny,

L] ol +odAode  a d(kAD) a a
=— —_——— — —Oy=-— (O By) .
" { -4 Ay 4k di2 Al dk Oxx P 0_( xx + Ow)

Finally, Eq. (D.3) gives ng = A2/b at lowest order, and

3
3;‘2 = ZA()A - bn|

H
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at order 1. Using the expression of np, we obrain

A= (4!:2(13(.(2—01\'2) ab

ab
S e T ) O — —Oy.
Ao(1 +0)F "2vo) XX 20Ag "
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