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Abstract 

Complex order pammeter descriptions of large aspect ratio, single longitudinal mode, two-level lasers with flat end 
reRectors. vaiid near onset of lasmg and for small detunings of the laser from the peak gain, are given in terms of a complex 
Swift-Hohenberg equation for Class A and C lasers and by a complex SwiiMlohenberg equation coupled to a mean flow 

for the cast of a Class 6 laser. The !at:er coupled system is a physically consistent generalized rate equation model for wide 
aperture stiff laser systems. These unrversal order parameter equations provide a connection between spatially homogeneous 
oscillating states of the complex Ginzburg-Landau equation description of the laser system valid for finite negative detunings, 
and tmveling wave states. described by coupled Newell-Whitehead-Segel equations valid for finite positive detunings. One 
of the main conclusions of the present paper is that the usual Eckhaus instability boundary associated with a long wavelength 
phase instability. and which delineates the region of stable traveling wave solutions for Class A and C lasers, no Ionger defines 

the stability boundary for the mathe,.tatically stiff Class B laser. Instead a short wavelength phase instability appears causing 
the stability domain to shrink as a function of increasing stiffness of the system. This prediction is consistent with the strong 
spatiotemporal filamentation instabilities experimentally observed in a broad area semiconductor laser, a Class B system. 

Under increased stress (external pumping), the out- 
put power of existing laser systems is limited by the 
fact that in transversely constrained geometries, satu- 
ration effects set in, or catastrophic damage can oc- 
cur as the internal cavity laser intensity grows. Ide- 
al]) one would like to avoid these problems and in- 
crease the output power significantly by increasing the 
tratzverse cross-section of the laser while maintain- 
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ing uniform illumination (intensity and phase) across 
the output aperture. Unfortunately, the uniform inten- 
sity/phase state is unstable to transverse perturbations 
and some form of pattern emerges [ I-l I]. In stan- 
dard gas or solid state lasers with spherical mirrors, 
the patterns that emerge closely approximate the clas- 
sical TEM mode solutions of the paraxial wave equa- 
tion in vacutim [2,12]. These shapes which are dic- 
tated primarily by external constraints (e.g. spherical 
mirrors), are coupled through their interaction in the 
nonlinear king medium, and increasing the aperture 
of such lasers leads to a complex oscillation between 
the modes [ 7). Semiconductor and solid state lasers 
often have hat end reflectors due to the growth pro- 
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cess by which they are fabricated and it is natural to 

investigate the types of patterns which emerge if such 

lasers are extended spatially in the transverse dimen- 

sion. Here it is the laser gain medium which dictates 

the shapes of the patterns, and the nature of the inter- 

action of light with the laser medium plays an impor- 

tant role in the ensuing spatiotemporal evolution of 

the internal cavity intensity. 

Laser media are loosely classified into three types, 

Class A, B and C, depending on the relative magnitude 

of the relevant field and material decay constants [ 131. 

In a Class A laser both the material polarization de- 

phasing and population deenergization rates are much 

larger than the field (cavity) damping rate and the ma- 

terial variables can be viewed as being slaved to the 

latter. A Class B laser differs in that the po!arization 

dephasing rate greatly exceeds the cavity and popula- 

tion decay rates and hence it is slaved to the other two 

variables. Finally in a Class C laser, all damping rates 

are comparable in magnitude. Semiconductor lasers 

which are of great technological s’gaificance, fall un- 

der the Class B heading. For example, the polarization 

dephasing time is of the order of 100 femtoseconds 

( IO-t3 seconds), while the cavity damping constant 

is of the order of hundreds of picoseconds ( IO-to sec- 

onds) and the population decay rate is of the order of 

nanoseconds ( I Oe9 seconds). A realistic material de- 

scription of the interaction of light with a semiconduc- 

tor medium is very complicated requiring the inclusion 

of microscopic many-body effects describing the inter- 

actions between electron and hole plasmas [ 141. Pre- 

liminary numerical simulations support the conjecture 

that many of the qualitative spatiotemporal features of 

semi-conductor lasers can be captured by the simpler 

2-level Maxwell-Bloch model for a Class B laser. In 

particular, attempts to observe stable lasing emission 

from wide aperture semiconductor lasers have failed 

so far. Instead strong filamentation instabilitiesare the 

norm, with sharp intensity spikes appearing at random 

across the output aperture of the laser [ Is!. These 

intensity spikes can lead to localized damage in the 

laser and are clearly undesirable. As we shall see the 

2-level laser model captures the existence of narrow 

stability domains of class B lasers rather well. 

From a theoretical point of view, pattern formation 



slow dynamics of the electric held. An equation simi- 
iar to i i j has &so beep cnn=idered for opiicai bistabie . . ___.___ _ 
systems [ 29,30]. 

In commoni-J encountered Class B lasers, such as 
commerciaiiy important gas CO2 and semiconductor 
lasers, the polarization damping rate is many orders 
of magnit~e faster than the cavity ayd population in- 
version decay rates. In this case we will see that the 

inversion acts like a mean-flow, driving the 
es at finite wavenumber and the resulting 

complex order parameter equations provide a 
generalized rate equation description of a wide aper- 
ture laser [ 28]. It is well known from plane wave the- 

ch would correspond to exciting the spatially 
s mode in the context of the present pa- 
system undergoes damped relaxation os- 

cillations to a stable state. The imaginary part of the 
envaiue obtained by linearizing about the spatially 

geneous state gives an estimate of the relaxation 
ion frequency. When one allows for transverse 

structure, the natural lasing solution occurs at finite 
transverse wavenumbers and, moreover, the eigenval- 
ues become strongly coupled. One can no longer iden- 
tify tbe imaginary part of an eigenvalue with a relax- 
ation oscillation frequency, although it is evident from 
~u~~c~ simulations that a strong remnant of this 
oscillation stiii persists. 

Conventional rate equation approximations which 
are extended in a rather ad hoc manner to include 
transverse scales by adding a diffraction term, have 
been shown to be plagued by spurious nonphysical 
high spatial wavenumber instabilities which mimic nu- 
merical grid oscillations [ 2 I] _ The latter instabilities 
are typically removed by introducing artificial diffu- 
sion which damps out large transverse wavenumbers 
[ 3 I ] _ In contrast, the systematic procedure employed 
below in the derivation of the complex order param- 

RS naturally incorprates a diffusion term 
nds explicitly on the physical problem pa- 

ant conclusions to be drawn 
are that increased stiffness of 
to a rapid shrinking of the sta- 

ble dom~n of traveling wave lasing solutions. and that 
the c;jinplex order parameter equation description in 
terms of the SH equation in the nonstiff limit or the 

generalized coupled rate equations in the stiff limit, 
provides remarkably good agreement with those of the 
full laser Maxweii-Bloch equations, even for lasing 
well beyond threshold. 

The paper is organized as follows. in Section 2 we 
derive the laser Swift-Hohenberg equation from the 
Maxwell-Bloch equations, analyze the properties of 
its traveling wave soiutions, and compare the results 
to those obtained from the laser equations. Section 3 
is devoted to a study of the stiff limit of the 2-level 
laser, for which two coupled order parameter equations 
are necessary. Again we make a direct comparison of 
the predictions of these general rate equation models 
with those of the full Maxwell-Bioch equations as 
a function of the degree of stiffness of the system. 
We conclude in Section 4 with a summary and some 
general remarks. Details of the calculations as well 
as a review of the properties of the traveling wave 
solutions of the Maxwell-Bioch equations for the 2- 
level iaser are deferred to appendices. 

2. Derivation 
equation 

of Swift-Hohenberg 

2.1. Weakly nonlinear analysis 

The dynamics of the 2-level laser in a section trans- 
verse to the main direction of propagation of :be elec- 
tromagnetic wave is described, in the simple case of 
a single longitudinal mode and flat end mirrors, by 
the following set of Maxwell-Bioch equations [ 321, 
written here in complex Lorenz notation [ I ] : 
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growth. 
then 

The right scaling for the the atomic and the cavity frequencies, divided by the 
polarization decay rate. Details of the scalings and 
changes of variables involved in the complex Lorenz 
nota!ion can be found in Appendix A. For the conve- 
nience of the reader we also review in this appendix 
the main properties of the traveling wave solutions to 
the Z-level Maxwell-Bloch equations. In particular, 
it is useful for the following to note that the lasing 
threshold is given by 

r,= I+ (J2--&)* 
(lf 

x= (r- l)‘& 9 Y= (r- rpy. 

In order to have the terms in L?of the 
spatial derivative term i&7’, we will 
X = fix, and I’ = &y. We linaily 
two slow time scales, namely Tt = ??r 
now plug these expressions into the MaxweE-B 
equations, and identify the coeftici 
at each order. At order zero. we get 

with kc = 0 if R < 0, and kz = f2/a if R > 0. In other 
words, the nature of the bifurcaticn changes depending 

0=-ueofupo, 

n=t! --no)eo. 
on the sign of the detuning fi [ 171. In order to capture 
the behavior of the Maxwell-Bloch equations for both 

bw= $(e$po+e0p~!. 

signs of the detuning, we will assun& 0 small, and 
look for solutions (e,p,n) in the form of a power 
series expansion in this small parameter. The laser 
variables also depend on slow temporal and spatial 
scales, which have to be determined. 

Let us define R = EC!, , with E being a small param- 
eter. We will then look for solutions to the Maxwell- 
Bloch equations in the form 

(e,p,n) = (e0,p0,m) f del,pl,nl) 

where the star (* ) stands for complex coojug 
giveseo=po=Oand~=O.Atorderi,we 

0=-gel +upi, 

PI =a, 

bn I =o, 
which implies nl = 0. The solution is then et = ~1 = 
$, where @ is a compie;r variable_ At order 2, t 
Maxweii-Bloch equations yield 

+e2(e2,p2,n2) + . . . . 

where the (ei,,~~~,ni)‘s depend slowly on time and 
space. The right spatial scalings are given by the width 
of the band of unstable modes above threshold. For 
R=O, we have kc = 0 and the eigenvalues of the lin- 
earized system about the trivial solution are, for per- 
turbations of wave vector k (see Appendix A), 

det -- 
fit 

;aV2el = -ue2 -I- u’p2 ~ 

aPl -go f pr + if2lpl = e2, 

bn;! = i(e;pi + elpi) . 

In terms of I$, these equations read 

A* = - 
1 +a+iuk* 

2 

If we let r = 1+ p, and expand the square root assum- 
ing p and k small, the growth rate of perturbations of 
wave vector k reads at lowest order in p and k, 

bn2 = 1$1*. 

The compatibility of the first two equations requires a 
condition on +, which will be the dynamic equatim 
sought for. It reads, at this order, 

which shows that a band of wa\: rectors k of width 
p’i4= (r-i)1/4centeredaboutk, = 

* 
0 is experiencing ((Tf l)-=&Zv~~-iL?~a~. 

aT, 



One can then choose e2 = 0 and 

p2=-- ($;+iL?,)$ 

=- f-(crV2+f21)8. 

n2 = ;i&f _ 
At next urder. we get 

ae, 6k-l 
i - - iaC’e~ = -ue3 + up3. 

z c?T, 
@I --i~+p3Cifllp2=e3+e, -nle~-fzzP~, 
;;r, 
ikt an, -..-+ --+-bn3=i(e;pz+e~p1 +elpG+e?p;), 
dTz c?T, 

which reads 

bn3 = -;fl$/’ t - 
.I 

,&c,v’W - $V21b_, ??

and requires another solvability condition, which will 
give the behavior of@ at the trme scale T2. Using 

(-&+-if2i)m=(-&+iL+) (-$-- ;nl$) 

= $--&w, + aV212111. 
T 

we get 

--(f2, hm2#. (1 +a)2 
Again, Jve choose ej = 0, and get for p3 and ns. 

CV2~?. 

The final equation for fi is obtained by collecting all 
the terms and reads 

One can get rid of the small parameter ??by re- 
introducing the original variables x = X/& y = 
~&,R=Efi~,r- I = c2, and re-defining E$ as I&. 
This yields an equation for IJ of the Swift-Hohenberg 
type that we will call the laser Swift-Hohenberg 
equstron, 

a* CT to-+ l)z=dr- I)#- (* +u)2 -_(n+av2)2~ 

(3) 

This equation is very similar to the model equa- 
tion ( 1), and has solutions of different types for 
different signs of the detuning R. We investigate 
some of its properties in the next section, and in par- 
ttcular compare the stability diagram of its traveling 
wave solutions to the one obtained from the full set 
of Maxwell-Bloch equations. For this purpose, it is 
useful to write the expressions of e, p. and IZ in terms 

of $9 

2 3 e=eet+e e2fE cg=$‘, 

p = EpI I- E2P2 + E3P3 

= ;I)12 +-- ia (-!- +- ;) (@72lj - ljV2~), 
1+u 2h 

where the spatia! derivatives are with respect to the 
original varkbles x and y, and we have redefined E$ 
as @. Fq. (3) has been derived assuming u and b of 
order one, i.e. for a Class C laser. In the care of a Class 
A laser (u small), a similar derivation would give a 
SH equation that can be obtained by setting u small 
in (3), and expanding I/ ( I + a) as a power series of 
u. The form given in (3) is then more general, and 
holds for both Class A and Class C lasers. 



2.2. Pmperties of the laser Swift-Hohcnberg 
equation 

2.2.1. Linear stability analysis 
The non-lasing solution r,k = 0, which corresponds 

to (e, p. n) = (0, 0, 0), becomes unstable with respect 
to spatial perturbations of wave vector k if 

&(r- 1) > &(a--ak*)*. 

This condition is the same as for the full set of 
Maxwell-B&h equations (see Appendix A), 

2.2.2. Traveling wave solutions 
Above threshold, Eq_ (3) admits a traveling wave 

solution of the form 

cf+ = Rexp[i(kx+wt)] , 

where 

ufi + ak* 
&I=-- 

1+a ’ 

R*=b[r-I-($$)*]. 
L J 

Again, this formula is to be compared with the trav- 
eling wave solution of the Maxwell-Bloch equations. 
Using the expressions of e, p, and n in terms of $ 
obtained above, we have 

e =Rexp[i(kx+wt)] , 

* 2 

p=Rexp[i(kx+ot)] + eRexp[i(kx+wt)] 

-$$Rexp[i(kx+ wt)] 

+&exp[i(kx+or)l 

1 
ak* .- ti 

=e I-+-i----- 
! 1 1+u * 

n= 

=lelZ 
b ’ 

which is exactly the traveling wave solution of t 
Maxwell-Bloch equations (see Appendix A)_ 

The linear stability analysis of the traveling wave 
sol&ion of Eq. (3) yietds two complex eigenv 
for each perturbation wave vector 4 along X, wbL 
read 

rt* =$Trf @I, - 122J2 + ~12~21~ 

where 

u -[-2a& 
(1 +a13 

+ a2(q4 + 6k2d>l + 2ia&kq 
> 

, 

111 - 122 = -2 
( 

i- a # + a[-4aiZkq 
I+a (I +uF 

+a214k$ +4k3q11), 

’ 1,212, = (&R*)2. 

These eigenvalues can be computed numerically, 
it is convenient to draw the domains of existent 
stability of the solutions in the (k, r) @me. By 
ogy with convective systems [33], the stabilit 
main of the traveling wave solution is called the B~RSS 
Bdhn. Fig. I gives an exampie of the stabibty dia- 
gram obtained from the laser Swift-Hobenberg equa- 
tion. The Busse Balloon is in this case dehmited by the 
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0 5 10 15 20 
pellurbationwavenwnberq 

i$. 3. Comparison of rhe real parts of the phase and ampli- 
t&Je eigenvalues of the linearization about the common travel- 

ing wave solution to the 2-level Maxwell-Bloch and complex 
Swift-Hohenberg equations for h = 0.8, r = I .I and a wave vec- 

tor k = 5.46. Other parameter values are a = 0.01. rr = 0.1. and 

fj = 0.001 (same as for previous figures). The eigenvalues .are 

graphed ac functions of the perturbation wavenumber y about the 
traveling wave in the direction of travel. Only the relevant umpli- 

tude eigcnvalue of the MB problem has been plotted. 

0 2 4 6 a 10 
wwe v&of k 

Fig. 4. Neutml curve (N), Eckhaus boundary (E) and Busse 
Rnlloon (symbols) for the 2-level Maxwell-Bloch laser equa- 

tions. The Bus.se Balloon, i.e. the region of stable travel- 

ing wave solutions. is shown for different values of dte stiff- 

ness parameter h. Other parameters are the same w in Fig. I 

(~I=o.ol, cr=O.l, R=O.OOl). 

0 2 4 6 6 10 
perturbation wave number q 

‘, E Fig. 5. Graph of the real part of the biggest eigertvahzes s P 

Class B laser. In this case, the Busse Balloon shrinks 
to a very narrow band centered about k,, as shown in 
Fig. 4, which gives the family of stability diagrams 
of the traveling wave solutions to the MB equations 
as thf: stiffness parameter b is reduced in magnitude. 
Only perturbations of the wave vector parallel to the 
direction of travel were taken into account to produce 

perturbation wava numbar q 

for r = I .2. and k = 0.9. (a) Stiff limit Lb = 0.W ) &I (bb 

Nonstiff limit (h = 0.2). Other parameters are the same as izr 

Fig. I (a=O.OI, ri=O.I, ~~=O.OOi). 

this figure 3. The laser output in the unstable ir 
is then highly disorganized, and shows many defects, 
which are advected away by the unstable carr,mg trav- 
cling wave. As noted in the introduction such a limit 
is a relevant model for the description of wide aper- 
ture CO2 and semironducior Easers. It can easily be 
seen that the laser Swift-Hohenbexgequation wili t 
not be a good model for tlie laser dynamics. I 
Fig. 5a shows the behavior of the real parts of the t 
biggest eigenvaiues of rhe linearized system obtai 
from the Maxwell-B&h equations about &e travel- 
ing wave solution with wave vector k = 8.876, f~ 
r = 1.2. Rese eigenvaluty are pfotted as ftmctions of 
the perturbation wave vector y aEong x. A similar pk% 

‘For both the full set of MB equations and the cotppkd W 
equations. the eigenvatue problem obtained by iineurizirrg about 

the traveling wave solution has the symmetry A -c % and y 4 -y. 

As a consequence. the knowledge of the behavior of the %al 
of the eigenvulues for positive y’s is suficient to infer the stab&y 

of the solution. 



is given in Fig. 5b. for a non-stiff laser. One immedi- + = Rexp[i(kx+ wt)] , 

ately sees that two eigenvaiues are close to zero in the a0 i ak2 
non-stiffcase. which makes reasonable the elimination 

@Z-- 
i+a ’ 

of t three most damped scalar variables. and then 

just;!ies the use of the laser Swift-Hohenberg equa- 

tion. Howeszr. having b small in the stiff limit makes 

R++$)‘], 

the corresponding third eigenvalue closer to zero. One 

can then at best eliminate two scalar quantities, which 
*, = !PJ 

b ’ 
;neans that two coupled equations are in order to ac- 

curately describe the laser dynamics in this case. An- 

other interesting remark cor.cerning Eq. (3) is that by 

defining 

which corresponds la. terms of e and p (see Ap- 

pendix C) to 

e=$=RRexp[i(kx+wt)], 

(I +a!-’ 
t=-I’ 

&In Lb 
UL?~ - 

tj = -*‘exp -i----t ~ 
1+(T i 1 i+u 

p=$ - $-(f2-i-aV2)Jr 
??

it can be re-written (after dropping the primes) as 

wberc .rr = ( I i u)‘/n’ and y = ( I + a)‘/ufIL The 

parameter b is then scaled 0111 of the equation, which 

means that the stiff limit is irrelevant for this equation. 

We then need to repeat :he procedure of Section 2. 
xRexp[i(kx+wt)] 

&~lcing into account the fact that b is small. Since the 

solution to :be full laser problem is 
= I - k(D-ok2) e. 

[ I 

+,-, _ (~)2=O@), 
The phase instability boundpries are also the same 

as for the laser Swift-HohI J.‘_,,g equation, as shown 

we see that if b is. say, of order E’, and II and lel = I$! 

are also of order $. We will then look for expressions 

of e. p and n starting at order 6. The derivation of the 

coupled Swift-Hohenberg (CSH) equations is given 

in Appendix C. They read at order 4 in E, 

fc7-vl)~=u(r- I)@+iaV’J/-ium 

- &Ul+aV’?Clr-un*, 

air 
- = -btz i i$j’ _ dt 

e instability threshold of the trivial solution $ = 0, 

II = 0 is the same as for the laser Swift-Hohenberg 

uation. and the traveling wave solution above thresh- 

old i\ also unchanged. It reads 

in Appendix D. The only difference is that because 

of the coupling of I,!% and II, higher order instabilities 

occur, and the Busse Balloon shrinks. The family of 

stabilicj didg~ams obtained from the$e two coupled 

equations for the same laser parameters as in Fig. 4 is 

given in Fig. 6. The Eusse Balloon is correctly reduced 

to a narrow band about k = k,, and the dynamics 

of the Maxwell-Bioch equations is now satisfactorily 

captured by the reduced equations. Note that the Busse 

Balloon of the laser Swift-Hohenhrg equation alone 

would have been delimited by the long wavelength 

phase instability boundaries as shown in Fig. 1. 

Fig. 7 compares the real part of the eigenvalues 

computed from the iinearizat;an about the traveling 

wave solution to the Maxwell-Bioch and the CSH 

equations. This figure corresponds to the stiff limit of 
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Fig. 6. Neutral curve (N), Eckhaus boundary (E) and Bus.se 

Balloon (symbols) for the coupled Swift-Hobenberg equa- 

tions. The Busse Balloon bounding the region of stable trav- 

eling wave solutions is shown for difterenr values of the stiff- 

ness parameter tj. Other parnmerers nre the same as in Fig. I 
(II = 0.01, w = 0.1. 0 = 0.001). This figure should be compared 

to Fig. 4. 

I I 

0 2 4 6 6 1” 

pariurbabon wava number q 

Fig. 7. Comparison of the real parts of the relev:mt eigendalues 

of the linearization about the common trnveling wnve solution to 

the Maxwell-B&h and coupled CSH equations III nhe stiff limit 

at h = 0.01. Other parameaer values are the sar~lt: as in Fig. 5 

(rr=O.OI. f+=o.l, :1=0.:X3:). 

Fig. 5a and the agreement between the eigenvalues is 
seen to be excellent. The overall robustness of the SH 
models in the nonstiff limit (b = 0.2) is exemplified 
by the comp,arison of the Pigenvalues of the lineariza- 
tion of the traveling wave solution for the 2-level MB 
equations, the single SH equation and coupled SH sys- 
tern. One sees from Fig. 8 that the dynamics is **ell 
captured by the single SH equation in this case. Fi- 
nally, let us remark that the description in terms of SH 
equations is also valid for negative detunings aId for 
detunings of relatively large magnitude, as exempli- 

Fig. 8. Co*.Jarison of the real part of the reievarra eigeyrv 
ues ,)f !he I neruizarion about :he common trave wave sobs- 

the :ingle and coupled SH equarions in the 

0.2. other parameter vnlues are the s3ne 

a 2 4 6 % 

wave vector k 

Fig. 9. Comparison of :he stability diagrnms obtnioed from @be 

full seirt of MB equations md from the coupied SH equntion. f@r 

negative detuning. The two Eckhaus bounduries are the same iw 

this case since u has been chosen equal to I. ?%e parameter v&es 
used fo generate this figure are u = 0.01. 6~ = 1.0, f1 = -0.3 a& 

b = 0.1. But for the sign of U these values correspond to those 

usedin Illi. 

fied in Fig. 9, which shows a comparison of the stab& 
ity diagrams obtained from the full set of MaxweBI- 
Bioch equations and from the coupled SH equations, 
for $2 = -0.3. The case for D = 0.3 has already beea 
discussed for the fuli MB equations in [ I1 1 and we 
have coufirmed that the coupled SH equations repro- 
duce the stabi!ity diagram. 



1. CQnciaosiQns 

The dL%ription of pattern formation in wide aper- 

ture single longitudinal mode two-level lasers in terms 

of the ubiquitous complex Swift-Hohenberg (SH) 

equation for a C&s A or a Class C laser, or such 

sn equation coupled to a mean tlow for a Class B 

Iascr. suggests that nonlinear optical systems providr 

a unique testbed for the study of pattern formation. 

As remarked in the introduction. we have shown that 

this universal amplitude equation description, strictly 

valid in the neighbourhood of the critical point. holds 

true even well beyond onset of lasing. An interesting 

observation is that the traditional single SH equation 

is insensitive to the degree of stiffness of the original 

physical problem in that the physical parameter that 

tures stiffness. namely i? = yz/y~ which measures 

ratio of the polarization dephasing to the popula- 

tion deenergization rate, can be trivially scaled out of 

the problem. As a consequence cf this a mean ffow 

must be coupled to the SH equation, which is consis- 

tent with the observation that the population inversion 

variable II in the Maxwell-Bloch laser equations acts 

as a weakly damped mode when the problem becomes 

stiff. The effect of this additional degree of freedom is 

to destahiiize the laser further through a short wave- 

length higher order phase instability which cannot be 

captured by the usual phase (Cross-Newell ) evolution 

equation. The shrinking of the stable domain (Busse 

Balloon) with an increase in stiffness is reasonable 

as broad area semiconductor lasers typically unaergo 

strong tilamentation instabilities immediately beyond 

onset of lasing. We remark finc’ly that the coupling of 

the mean flow term fo the SH equation becomes neces- 

sary when the eigenvalue associated to that mode ap- 

roaches and becomes strongly perturbed by the eigen- 

value{ s) of the complex amplitude. This can happen 

either at 4 = 0 or at finile (I where the asymptotes of 

the amplitude and imersion eigenvalues are -u and 

-L, respectively. Obviously if the cavity damping co- 

efficient G is large then rhe corresponding value of b 
can also be large (subject of course to the physical 

restriction that b < I for a laser). This means that the 

mean flow needs !o be coupled to the amplitude equa- 

lion eten when the system is no longer mathematically 

stiff. 
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Appendix A. Properties of the traveling waves 
solutions of the 24evel Maxwell-Bloch equations 

In this appendix, we briefly summarize the stabil- 

ity properties of the traveling wave solutions of the 

Maxwell-Bloch equations for the 2-level laser. 

For perfectly flat end reflectors and in the single 

longitudinal mode approximation [ 321, they read [ 1 ] 

. 2 
A,+[~~+~(oJI~--~,)]A=~FN. 

N,+y,(N-No)=;(F*A-F/l’). 

where F and A are the envelope variables of the elec- 

tric and polarization fields, K is the cavity damping 
coefficient, c the speed of light in vacuum. w, is the 

frequency of the single longitudinei mode, wn is a Fyp- 

ieal length scale in the transverse section, of the laser, 

~a is the vacuum permittivity, ye is the dipole dephas- 

ing rate, 012 is the 2-levei aicm transition frequency, 

p!; is the dipole matrix element coupling rhe two lev- 
els, N is the atomic inversion, NO is the initial inver- 

sion, y? is the inversion decay rate, and A is Planck’s 

constant. In the following, we will use these equations 

written in comp?ex Lorenz notation. For this purpose, 

we make the following changes of variables: 
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t 
7=-•, 

itiyl 
F=-e 

YI %? - 
b’l EoK 2eoKhy, 

A=----p, N-No=Tn. 
wcpi2 WcP12 

The Maxwell-Bloch equations then read 

e,-iav’e=--ae+crp. 

p,+(L-tifl)p=(r-n)e. 

n, + bn = $<e*p +ep*) , 
where 

K WI2 - @c a=-, fi=- 
YI YI 

, h=E, 

w~:zlNol c2 

r=T&xg ==z&. 

The linearized system about the trivial solution 

yields two eigenvafues. for each perturbation wave 

vector of modulus k, which read 

A+=- $[I +u+i(.Q+ak’)] 

At threshold, the real part of the eigenvafue ciosest to 

neutral vanishes, and one has 

(I + ,T)~( I - r) + (R - (;k2)2 = 0. 

For positive detuning 0, the instability threshold is 

then r, = I, and the critical wave vector k, is given 

by kf = .0/a. For negative values of L?, the critical 

wave vector is k, = 0, and the fasing threshold is r, = 

I $- Q2/( f + CT)~. The critical fasing frequency is in 

both cases vC = (an + akf)/( 1 + a). In the case 

of positive detuning, even though all wave vectors of 

modulus k, are likely to see growth above threshold, 

numerical simulations show that the system generafly 

selects a particular direction, and a traveling wave pat- 

tern saturates [ 2 I I. 
It turns out that an exact traveling wave solution 

to the Maxwell-Bfoch equations can be found above 

threshold [ 2 11, which reads 

e=.?exp[i(kx+wt)j. 

p=pexp[i(kx+wt)J, 

n=A, 

where Z can be ctisen real, and 

P2 jj =- 
b’ 

I. 

FL! + ak2 
3r-- ---G-Y-’ 
Note that a traveling wave of wave vector k only exi 
when 

(i+o)2(f-r)+!f?-ak2)2<0, 

that is when the penurbations of wave vector k 
amplified by the iaser dynamics. 

The stability domain of this solution in tfre (k~) 

waves and their stability domain is given in Fig. 4 

Owing to the gauge invariance (e + e exp(&~), 

p -f eexp(icp). n -f n) of 

equations, the phase of [he trav 

can be chosen arbitrarily. As a 

marginal with respect to homoge 

which makes phase instabilities i 

gerous than amptitude ones. The iimits for tk Eck- 

haus and zig-zag phase instabilities (for generaf re- 

sults on these notions, see for instance [ 3436j ), can 
be found analytically by computing the Cross-Newell 
equation [ 37 j for the traveling wave solutions of &e 

24evef laser [Xi]. This equation reads 

8,=w+Eck@,,+Zig8,,. 

where 

4a2k2c a( R - ak2) =P--I----- 
ISzck (I+a)’ ( I + rrP 

_ga2k2bc( fb - ak2)’ 
lei2( L + cl5 ’ 



a(Kl-- ak’) 
Zig=-(I. 

Here. (c.p.n) = (Pexp(iB),jjexp(i0),n), Vi9 = 
$ = (k.0). and a has the same expression as 

ve. Tbe Eckhaus instability occurs when the 
c~~cie~t Eck changes sign. Since the wave vec- 
tor k has been chosen in the x direction, one 
sees that this instability corresponds to compres- 
sion or dilatation in the direction perpendicular 
to the wave crests. whereas the zig-zag instabil- 
ity (which occurs for Zig < 0) corresponds to 

the bending of the traveling rolls. The Eckhaus and 
zig-zag boundaries are plotted in the stability diagram 
of Fig. 2. Depending on the laser parameters, it may 
happen that higher order phase instabilities or ampli- 
tude instabilities occur before the usual phase insta- 
bilities. This is in particular the case in the stiff limit 
(b -+ 0) of the Maxwell-Bloch equations, for which 
the Busse Balloon shrinks to a small region in the 
middle of the domain of existence of traveling waves 
(see Fig. 4). In such situations, the limits of the Busse 
Balloon can only be found numerically. 

Appedix B. Goss-Newell equation for the single laser Swift-Hohenberg equation 

Pn this appendix, we outline the derivation of the Cross-Newell equation for the laser Swift-Hohenberg equation 

* ff 
(crt l)-$=a(r- i)a/l- (1 +cr)2 -(~+aV*)*~+iaV*$-i&7~-~~$~*+. 

sists in looking for a solution to thisequation in the form of a traveling wave whose wave vector 
slowly in space and time. The solvability condition for the existence of this solution gives the 
uation we are interested in. Details of the method can be found in the original paper by Cross 

and Newell [ 371, and an application to the traveling wave sohttions of the Raman laser is given in [ 351. 
We look for a solution to the iaser-Swift-Hohenberg equation in the form 

JI = Revtie) + ~~4, + _. _ , 

where 

e= $ecx.rT,.m. 

T, =v*t. T2=T4t, x=q*x, y=T*_V, 

and r,r) is a small parameter related to the inverse aspect ratio of the system or the scale at which the 
variations occur. We define the oscillation frequency w and the spatial wave vector k as follows: 

phase 

w=e, 7 VB=V#=k. 

Here Vx means that the spatial derivatives are taken with respect to the slow scales X and Y. With these notations, 

We now plug rhese expressions into the laser 9 ,:ft-Hohenberg equation, and write the corresponding equations at 
cash order in r$_ At ze;-0th order, we get that R exp(i0) is the traveling wave solution to the laser Swift-Hohenberg 

uation. mu&y 

R’ ak2 + aR --_,_(*)*, w=---. 

b 1+(T 

At first order, we have 
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-& (2R2& + R2exp(2i0,h) . 

Letting $41 = $1 exp(iO), we are left with 

CT 

b(1 +CTj 
R2(th +@)=-i R@rz+2a(l+cJj z (2k - VxR+ RVxk) 

(4k3VxR + RVxk3 + kRVxk2 + k2RVxk) g + &( 2k - VxR + RVxk) . 

Since the 1.h.s. of this equation is real, we obtain a solvability condition which gives 6&Z in terms of Rand k. We 
now compute the different terms using the fact that R depends on k2, and that 

since V.@ = k = (k,, k,). We have 

2k. VxR = ;$; (k;Bxx + 2k,k,Rxyy + k;&) , 
RVxk = R Wxx + ew) , 
Vxk3 = k2 (@xx + @WI + 2k$%x + 4k,k,8xv c 2k;t&, 

k . Vxk2 = 2k@xx + 4k,k,8xu + 2k@$y _ 

The solvability condition then reads 

UR ( 2 dR2 
R*fi+2am Rdk2 (k%‘xx + 2k,k,@xr + k;@w) + R (exx + ew) 

> 

ua2 -~ 
(l+uj3 

4k2dR2 (k@xx + 2k,k,8xy + k;&) R dk2 

+R[ k2 (@xx + @YY) + 2k;Oxx + 4k,k,8xy + 2k;f& ] 

+R (2k;@xx + 4k,k,@xr + 2k;@,) + k2R ( exx + t&) > 
= 0. 

If we chic a particular direction for k, i.e. k = (k,(l), we have 
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Rc9~~ = RQxs 
2k’dR’ 2acr 

- -) 7 - 
R- dk- ( I + a)3 =(f2- 3ok2j) + R&y (-$+-nk2J). 

Using 

dR’ 2ab 
dk’= -(a-ak2), 

ii +a)’ 

we obtdn 

@r2 = 6fy.y 
8u2~,k2 

- mW-“k’)‘- 2a(r(f2-3ak2) (I +uP 
--2n(r(fj _ &) 

i I f CT)3 
, 

and the equation for S is 

Ec.k=---$5&R-3aP’) - -$f$&(f2-.,2,2. 
. 

and we have used the fact that ~‘OXX = r128,x = f?,, and IT~@w = r128,r = BY!. 

Appendll C. Derivation of the reduced equations in the stiff limit 

We now give details of the derivation of the two coupled equations which describe the laser behavior in the 
stiff-limit of the Maxwell-Bloch equations. These equations read 

e,-iag’e= -ae+up. ~,+(I+in)p=(r-n)e, n,+bn=i(e*p+ep*). 

As in the derivation of the iaser Swift-Hohenberg equation, we assume that the detuning L? is small, namely 
R = eRt _ In addition, we suppose that the parameter b is now of order c2, i.e. b = e2b2, and that r is still given by 
r = I + ??2. We then iniroduce the spat& scales X = fix, I’ = &y, and the three time scales Tt = et, T2 = ~~1, 
and T3 = e’t, and look for expansions of e, p and n as power series of E, namely 

(e.p.n) =(eo.p~,fzo) +e(el.pt.nt) +c2(e2,p2,n2) +... 

Since the traveling wave solution to the full Maxwell-Bloch equations is such that 

+r- I _ (!5$)2=O(r2). 

we expect r! and e to be of order ~2. At zeroth and first orders in CE, we get 

whose solution is ea = 0, po = 0, and 
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0=-uei+up~. p~=Ci-ng)el, O=O, 

for which we choose et = 0, pi = 0, TV = 0, and nt = 0, as suggested by the scaling of the traveling wave 

At order 2, we get 

0=-ae2+up2, ~2 = et , o=o, 

which gives e2 = p2 = ~9, and the equations at order 3 are 

Je2 -- 
aT, 

iaV2e2 = -ue3 + up3 , @2 an2 
-+f+if2lp2=e3, -=O, 
fll aTI 

which reads in terms of the complex variable 14, 

-ues f up3 = * - iaV2$, 
an2 

aT, 
e3 -p3 =z+if?l*, -=O. 

aTI 

The compatibility of the first iwo equations requires the following solvability condition, which describes t 
variations of $ at the time scale Tt : 

w (a+ I)- = -iuQ& +iaV2$. 
fl, 

(C-1) 

We can then choose 

ti,=Q; p3=--$--Z?,+=- 
I &ffl~ + aV2)+. 

At fourth order, 

Je)e3 t?e2 
- + - - iaV2e3 = -ue4 + up4 _ 
aT, fl2 

g + t$ + p4 + iRlp3 = e4 f e2 - n2e2, 

an, an, 
~+-+banz=f(e;~iezp;), 

aTz 

i.e. 

w 
-ue4+up4=--, 

aT2 

e4 - ~4 =~+~+ia,p3-$+n2$. 
aTz 

an3 ~ $. an:! 
aT2 

= -b;?n2 + jf$j2. 

Again, :;e obtain :hc following sdvability condition: 

(u+*)$+u (&+iG)p3+u$-un29. 

Using the expression of ps+ we get 
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and :fit solvability condition becomes 

* u 
!u+ I!z - - (1 +u)’ --(01 +aV’)2$+u$-un2*. 

We now can choo.se 

pJ=-($+if?~)p3-z+*-n,@ 

= -&‘“, t dw@ + L 
(I +us 

(f4 + aV212fj - &I) + &n2$ + I) - n2tj 

=-~(nl+aV’)‘*+~*-~az~. 

We could stop at this order, and get the two coupled equations for q? and n, which are used in the text. For 
completion, we will push the expansion up to next order so that we can include fifth order corrections in the 
equation for the population inversion n. The Maxwell-Bloch equations read at order 5, 

_p5 + ifC?,pd = e5 + e3 - nze? - n:e2 , 

i.e. 

&,I; ^ 
z + z + 2 = -bm + it&p3 + t,bp; 1 = -bm + 

where I+& is the wmplex conjugate of +. The solvability condition reads 

a@ (utli--37 
fl3 ) 

pd-u* -cm&. 
fl2 

With the expressions of p3 and pa, we get 

+ aV2j2# - a* + aa+ 
I 
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= $=J(O, + av*p~ - $=&?., + av*)+ i i(u- I) -n2(RI + aV*)* 
(1 +c>* 

+ & (2Vn2 . V* + 41iV2nz) , 

where we have used hJtV1 = 0. The fifth order solvability condition is then 

(u-t- l)$+=&, +aV2)3$+ y+2., + aV)$b 
I 

iu(u- 1) ida 
------n2(f4 +uV*)$ - ( I  f(r)2 (1 +ap - (2Vn2 - V+ + *V’nz) - cm+. (C.3) 

We can now collect all the terms and get the equation for $, 

(u+!)$= (u+l) sg+e2g+e3g ( > . 
The spatial derivatives in Eqs. (C-1 ), (C-2) and (C-3) are derivatives with respect to the slow scaks X = &X 
and Y = fiy. _4ny term of the for,z! ~8’ then corresponds to V2 in terms of spatial derivatives with respect te x 
and >‘. Letting n = c2n2 + e3n3 + r4n4, and re-defining r2+ as +, we get 

w (Ir-tI)~=u(‘-l)~+iaV’~~,-j~~_ 
0. 

-(Q+aV2)2$ - aniJ (1 +I+ 
i(T(cT- I) . 2 

--n(f2+aV2)$ - _E-_ 
(I +a)2 (1 +d2 

(2Vn _ ‘J$ I- *V’n) 

-~w+aw@+(r- 1) yg=$fl+ av)+. 

Similarly, the equation for. n is 

=e4(--hn2 + 1$12) + E- \ -h_zn3 + & (w24 - W,)) , 
i.e. in terms of the original variables, 

The equations at order 4 rzad 

(C.4) 

and are the equations we will USP to study the stabili!j; properties of the traveling wave solutions. The expressrosss 
for e and p are, at this order, 

e=*, 
1 



A remark is in order with regard to the derivation of the complex Swift-Hohenberg equation. In Ref. [ 291, the 
authors, when considering the case of positive detuning, could have combined the solvability conditions obtained 
at each order into a single amplitude equation in the original space and time scales as above, in order to construct 
a unifo~iy convergent asymptotic approximation correct to the order considered. 

finally. let us mention that if we had not chosen 111 = 0, we would have obtained the following system of 
equations at order 3 in E: 

Appendix ‘I). Cwss-Newell equation for the two coupled equations 

In this appendix, we compute the phase equation for the traveling wave solution of Eqs. (C.4) above. We will 
use a shghtiy different method than in Appendix B, in order to show how the amplitude of $ and n a-: slaved to 
the phase of $. 

We look for a solution to Bqs. (C.4) in the form I& = A exp( i0) + w, where 

@Z 
E’ r;r=@(X=EX.Y=E_v’,T=Et). A=A(X,Y:T), 

and M’ stands for higher order corrections. Because of the gauge invariance of Eqs. (C.4), It turns out that w is of 
the form Gexp(i0). so that we can redetine A as A = Ao+ 6.~1 + ??“Ai + . . ., and look for a solution in the form 
cjr=A9xp(id),withn=noter?iiEZiz2+.... With these notations, we have 

a,$ = (EAT + it&-A) exp( iP) . 
V’$ = (e’V*A + i:, Jk+VA’+A’V.k) - k*A exp(i0), 

> 

(“V’ +G)‘$= /*Ve[kA’(R &):-t (ak’ -R)*A+OLe2) exp(i0), 
\A 

\ 
> 

and Eqs. (C.4) become 

e(u+ I)Ar=u(r- IfA - yV.(.L;A*) -L il +up (ak* - R)*A - unA + O(e*) , ID.1) 

-ak’A - uf:A - ---?-- -V~[kA’(~4-dk’)]‘+O(~*j, 
2ne 

(l+c)* A 1 
(D.2) 

eilr = A;’ - bn _ (D.3) 

Tbe first wo equations correspond to the real and imaginary parts of the equation for 4. Eq. (D.2) is the phase 
equation (we have assumed A real ). and reads 
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wherew=-(an+ak2)/(I+rr),andwehave.urittenA=Ao+BA,+...,with 

1 
. 

If we take k = (k,O), and use 

we see that the phase equation reads 

Ok=@-__ -@xx + A;( f.? - ak?)& 
I 

+ o(~*) , 

i.e. 

M 2a d [kA;( R - cik”)l $8 
-I 

u 
ar=w--- (1 +c)~A* 

-------~x~+A&2-ak2)~ dk 3Y2 
+... , (D-4) 

0 

w&h is the same as for the laser Swift-Hohcnbeg equation (cf. Appendix B). indeed, the coefficient of @,, is 

Eck=-ti;$ I? 

L‘ 
A&?-ak’)+k~(&zk*) -2ak*A; 1 

2acr ~_-__~ 
(I +a)3 

(n--ak*) + $f$ - &$b+$2~2ak(f2-oL2) 
0 

=-&(R-3ak*) - 
8a2k2bv( 12 - ak*)* 

A;(l+c+ * 
and the coefficient off?!? is 

Zig = -__ 2aa (f2-ak’). 
!I +up 

This means that the Eckhaus and zig-zag boundaries found for the two coupled equaiions are the same as for tk 

laser-Swift-Hohenberg equation. Eq. (II. I ) gives the expression of AO St lowest or&r, and 

(a -I- 1 )f$ = -Aounl -. $V(kA;) 

at order one. Using the fact that 

we get for 111, 

I _4k2 1 i u dAo dto 5 d(kA;) 
1 

a a 
111 = - 

U A0 dk’ dk* A; dk 
@xx - --/” = -; (@xx + SW) . 

Finally, Eq. (D.3) gives no = A$b at lowest order, and 

- = 2AoA; - bn, 
aT: 



at order 1. Using the expression of no, we ohrain 

A1 = - 
46;‘n’(f?- ok’) ab ab 

Ao( 1 + ~1’ 
i- 

ZaAo > 
@xx - ~@W. 

0 
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