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Abstract

We study the irreversible dynamics of nonlinear, nonintegrable Hamiltonian oscillator chains approaching their statistical
asymptotic states. In systems constrained by more than one conserved quantity, the partitioning of the conserved quantitie:
leads naturally to localized and coherent structures. If the phase space is compact, the final equilibrium state is governec
by entropy maximization and the coherent structures are stable lumps. In systems where the phase space is not compac
the coherent structures can be collapsed, represented in phase space by a heteroclinic connection of some unstable saddle
infinity.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The formation of coherent structures by a continuing self-focusing process is a widespread phenomenon in
dispersive nonlinear wave systems. As a result of this process, high peaks of some physical field emerge from &
low-amplitude noisy background. For optical waves in Kerr-nonlinear media this results in a self-enhanced increase
of light intensity in a small sector of a laser beam while the intensity in the neighborhood of this bright spot decreases
[1]. Related phenomena occur in diverse systems from hydrodynamics to collapsing Langmuir waves in a plasma
[2] and in numerical algorithms for partial differential equati¢®gl].

A common feature of the wave dynamics of these systems is the comparable strength of the dispersion and
the nonlinearity. But, self-focusing phenomena are radically different in integrable and nonintegrable systems. In
integrable systen{$], the peaks appear and disappear in a quasiperiodic manner reflecting the phase space structure
of nested tori. This behavior is usually encountered on time scales that are short enough so that generic nonintegrabl
contributions to the dynamics may be neglected. Significant changes occur on time scales where the nonintegrability
is relevan{6,7]. The solution’s shape becomes more irreg{8atl1]and the periodic breathing of the peaks turns
into a more persistent state. These peaks can merge into stronger ones while radiating low-amplitude waves. Th
irreversible character of the system becomes apparent and its behavior is driven by statistical mgéhdritas
the solution’s trajectory tries to explore more of the available phase space. As it does this, it must, at the same time,
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respect the preservation of conserved quantities. The phase space shell of constant conserved quantities determine
the system’s most favorable macrostate and the resulting dynamics can lead to a local gathering of the amplitude

while the system explores the phase space shell. We will see in situations with more than one conserved quantity

that the spatial structure of the state which is statistically preferred now contains coherent peaks. If the phase space
is compact, these peaks can be local, time independent and stable. If the phase space is hot compact, the peaks ca
be collapsing filaments which produce singularities.

In this paper we study three systems which typify the focusing behavior observed in nonintegrable Hamiltonian
systems with more than one conserved gquantity, namely the Landau-Lifshitz equation for a classical Heisenberg
spin chain, various versions of the discrete nonlinear Schrédinger (DNLS) equation, and a leapfrog-discretization
of the Korteweg—de Vries (KdV) equation. Various modifications of these systems help to identify the role of the
conserved quantities in the formation of coherent structures. The spatial discreteness of all these systems avoids
fluctuations on infinitesimal scales.

The first case study investigates the Landau—Lifshitz equation for the classical spin chain in one spatial dimension.
We study the long time behavior of those configurations in which most spins are close to the north pole. The
two conserved quantities are the energy and the magnetic moment. Almost constant states undergo a series of
modulational instabilities and the system begins to oscillate as if it were integrable. Nonintegrability, however, leads
to nonrecurrence as localized peaks appear which merge from time to time leading to even larger peaks and radiating
some energy. The phase space is compact, and one can compute to good accuracy the thermodynamic potential
of the system by separating the low-amplitude spin-waves and the strongly nonlinear components. Depending on
the initial value of the energy and the magnetization, entropy maximization leads to a state where some of the
magnetization must be put into local structures bounded by domain walls for which the spin of each contained
lattice point is close to the south pole. Numerical simulations very clearly support our simple analytical predictions
which are based on thermodynamic considerations.

A close relative of the Heisenberg spin chain is found by taking the small amplitude limit where all spins are close
to the north pole. Deviations are described by the focusing nonlinear Schrédinger equation. A similar dynamics is
observed. In this study, we can also investigate the effects of exact integrability by using the Ablowitz—Ladik algo-
rithm [15]. In these simulations, we find no irreversible behavior, no peak fusion, no relaxation, only quasiperiodic
behavior. Likewise, we get qualitatively different results if we take a model which breaks the rotational symmetry
and because of this the particle number is no longer conserved. As a consequence it is not necessary for the systen
to develop coherent structures in order to maximize its entropy as it no longer has to be concerned about the second
constant of motion when its trajectory explores the accessible phase space.

The last case study concerns the leapfrog algorithm for the numerical integration of the KdV equation. It was
observed in previous worKf8,4] that the leapfrog algorithm for the KdV equation always develops singularities.
After (usually) a very long time, the amplitudes in some local neighborhood rapidly diverges. We demonstrate that
this collapse again takes on an organized coherent form.

How and why does the system develop such local objects? The reason is again statistical. At an early stage,
one can again observe the gathering of one of the conserved quantities in coherent structures. The system’s phas
space is hot compact, however, so that a strong nonequilibrium process prevails finally. We find a rapidly growing
localized ‘monster’ solution (so called because of its likeness in shape to the Loch Ness monster) that has a canonical
structure. This solution can originate from coherent structures or, most frequently, from a long wave instability of
the low-amplitude noisy background. We discuss the similarity of this process to the collapse behavior of the
two-dimensional focusing nonlinear Schrddinger equation, where the conservation laws necessitate a net inverse
particle flux to small wavenumbers.

This paper is arranged as follows. $ection 2 we present the Landau—Lifshitz equation, the DNLS equation
and the leapfrog-discretization of the KdV equation and discuss some of their properestion 3we present
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numerical studies of these equations. In particular, we study thermodynamic quantities during the focusing process
Their significance is also demonstrated by discussing modified equations with either more or with fewer conserved
guantities as well as an equation of defocusing typeSéation 4we will give a statistical interpretation of the
numerical findings. By computing the thermodynamic potentials of the spin system, we find the connections between
global features of the pattern and the conserved quantities. Macroscopic properties of the final state are computec
The discretized KdV equation has no such state of thermal equilibrium. We identify the rapid divergence of the
amplitudes with the exploration of the noncompact phase space shell and we suggest that there is much similarity
between this behavior and the condensation and collapse behavior seen in the focusing nonlinear Schrédinge
equation.

Figures of similar contents are grouped together and their order sometimes deviates from the sequence of theil
references in the text.

2. Nonintegrable systemswith constraints
2.1. Time-continuous systems

2.1.1. The Landau-Lifshitz equation

The anisotropic Heisenberg spin chain is particularly suitable for the study of self-focusing phenomena. This
system contains the generic properties of equations of nonlinear Schrédinger type that lead to self-focusing and it
is easy to investigate from the statistical point of view. The Landau-Lifshitz eqUa&dn

Si =Si X (J(Si—1+ Sur1) + Sne), @)

is a classical approximation of the dynamics of magnetic momgnts: (Sxn, Syn, Szn) at lattice sites:. S, is
perpendicular td5,. Therefore the moduli of the spin vectors are conserved and one mag,set 1. The
phase space of a chain &f spins is a product oV such spheresS, the component o§ along the rotational
symmetry axis. The northern and southern hemispheres are equivalerffi3iséevariant under the transformation
(Sxn, Syn, Szn) = (—Sxn, Syn, —Szn).

There are two trivial homogeneous equilibrium states where all the spins point either to the nothpder
to the south poles, = —1. Throughout this paper we only consider solutions where most of the spins are close to
the north pole.

2.1.2. The DNLS equation
The long-wavelength dynamics of spins which deviate slightly from the north$patel is given by the focusing
DNLS equation

iy = J(Pns1 + Pn1 — 200) + 2l |’ Pn )

for small values of the complex amplituge= (S +iS,)/(14 S;). The spin chain may thus be regarded as a DNLS
which is modified by higher order terms. The north pole correspondisstd® while the south pole corresponds to
an infinite amplitude.

2.1.3. Integrals of motion
The spin chain and the DNLS equation each have two conserved quantities:

1. The Hamiltonian of the DNLS equatidi = >, J2pnd;; — ¢udy, 1 — Spdn+1) — || is again obtained as
the lowest order of the Hamiltonian of the spin chédn= Hy+ Ha= )", J(1 — $,Su+1) + (1 — Szzn)/Z. The
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first contribution is a Heisenberg exchange coupling which is minimal for homogeneous solutions. The second
part is an anisotropic energy that has minima at the p®les £1 and is maximal at the equatSy = 0. The
stationary spin-up or spin-down solutions are the absolute energy minima. Fluctuations about these ground states
give energy contributions per lattice site of the ordeifSyf+ iSy|2. Similarly, small fluctuations near by the
equilibrium statep = 0 of the DNLS contribute a coupling energy proportionalg(f. In contrast to the south

pole state of the spin system, the energy of a soluies oo in the DNLS goes to minus infinity as|¢|*.

2. The second conserved quantity of each system, the total magnetizdtien) _, S;n of the spin chain and the
modulus-square norm (‘particle numbey’), ¢, |2 of the DNLS are related to the system’s rotational symmetry.
The superposition of the Hamiltonian and this integral of motion yields a Hamiltonian in a rotating frame system.
The negative magnetizatiovi — M =Y (1 — Sz;n) = Y [Sxn+ iSyn|2/2 corresponds to the particle number of
the DNLS in the lowest order in amplitude. This ‘particle number’ of the spin chain is zero for the north pole
solution and it is two per lattice site for the south pole solution. In the DNLS, the particle number diverges for
the statg¢| — oo.

In order to contrast the generic behavior of such systems with those of (a) integrable systems and (b) systems
not constrained by a second conservation law, we also consider two modified equations of motion. The first is the
integrable Ablowitz—Ladik discretization of the one-dimensional nonlinear Schrédinger egjid&]omhe second
is an equation where the second integral is destroyed by a symmetry breaking field.

Low-energetic solutions just above the ground states can be characterized by the ratio of the two integrals of
motion, i.e. the energy per particle. This reveals a major difference between the spin chain and the DNLS. For
fluctuations near the north pole or ngae= 0, the particle number is of the order of the energy so that this ratio is
of order one for both systems. Spin-fluctuations near the south pole have the same energy but the second conservec
quantity (‘particle number’) is much higher so that the energy per particle is proportiohiaH;oiSﬂ2 and much
less than 1. Thus the spin chain has two states with low energies per lattice sitg, eng)with a higher energy per
particle and oney, ~ —1) with a low positive energy per particle. This well-defined condensate state of low-energy
and high particle density is a major advantage of the spin chain.

In contrast, for infinitely high-amplitude solutions of the DNLS that corresporf t8 —1 solutions of the spin
chain both the energy and the particle density go to infinity. The energy per particle diverges proportiggid to

2.2. Time-discretized equation of motion

2.2.1. The leapfrog-discretization of the KdV equation
The system of finite difference equations

um+l(”) =vu(n) +twumn +2) — 2up(n + 1) + 2u,y(n — 1) —upm(n — 2)
=2+ 1) 4+ up () + up(n — D) wn@ + 1) — up(n — 1)), (39)

Umt1(n) = um(n), (3b)

is a leapfrog-type discretization in space and time of the completely integrable KdV eguatiag— 6uu, for the

real amplitude:(x, 7). The leapfrog-discretization is characterized by a central differ&nt® — (1,411 — um—1)-

The factort of the spatial derivative is the time step-size. The precuggar; is identified with the additional
variablev,, on the right side of the first equation. This scheme allows the simulation of the partial differential
equation avoiding the amplitude dissipation that occurs in methods with numerical viscosity. Theg, tar#n?2) —

2up(m + 1) + 2u,,(n — 1) — u,,(n — 2) is the standard discretization ofxx. The discretization ofiu, was first
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suggested by Zabusky and Krusk#r]. It involves a central difference in spaeg(n + 1) — u,, (n — 1) and replaces
u by the averagéu,,(n + 1) + u,, (n) + u, (n — 1))/3.

This discretization suppresses fast-acting nonlinear instabilities. Discretizations that do not retain some of the
original conservation laws lead to fast-acting instabilities, since single modes diverge rapidly. For instance, the
mode with the wavenumber = 25/3 is driven by the nonlinear part of conventional discretizations of the KdV
equation. In contrast, this mode is an exact solutio(8pfLinear instabilities of the zero-solution can be avoided
by a sufficiently small step-size< 2/(3/3).

2.2.2. Integrals of motion
The special feature of the spatial discretizat{@jis that it preserves some of the original conserved quantities:

1. (w) = Y, um(n)v,(n) = const corresponds to the conserved quanyit_a/2 dx (‘energy’ for shallow water
waves) in the original KdV equation. The modulus-square n@rfnt v?) = 3" u,, (1) + vy, (n)? is not
conserved.

2. (u) =Y uzm(n) =3, vamyr(n) and(v) = >, vou(n) = Y, uzm41(n) correspond tof u dx (‘mass’ for
shallow water waves).

3. Numerical studies

We examine the formation of coherent structures numerically in various versions of the spin chain and the DNLS
equation as well as the leapfrog integration scheme for the KdV equation. A typical scenario for the spin chain
suggests that the final state mainly depends on the amount of the two conserved quantities provided by the initial
conditions. Simulations of various modifications of the DNLS with either more of less integrals of motion clarify
some more general conditions for this behavior. The simulations of the differential equations apply an Adams routine
to a chain of 512 (and occasionally 4096) oscillators with periodic boundary conditions.

3.1. Dynamics of the spin chain

3.1.1. Benjamin—Feir instability and reversible dynamics

Plane wave solutions of the nonlinear Schrédinger equation are Benjamin—Feir unstable so that self-focusing is
initiated by long-wavelength modulations. Similarly, spin-wave solutions of the Heisenberg spin chain are unstable
under long-wavelength perturbations. For instance, the homogeneously magnetized $pluti@(Fig. 1a) that
processes about the symmetry agiswith the frequencyw = S, is most unstable under perturbations with the

wavenumbek = /1 — $2/J.
As aresult of this instability, small perturbations lead to spatially periodic humps of spins approaching the equator
while most of the spins come closer to the north péley(1b). The trajectory is close to a homoclinic orbit so
that the solution returns to the almost homogeneous state after reaching the maximum anfjidjtdeshows the
profile of thez-magnetization in space and time for this solution which is almost periodic in space anHitnfa
shows the pattern of peaks (the sites of the spins that differ most from the north pole) as a functionfeifti2ee;
is related to box«) of Fig. 3a. Equidistant humps emerge and disappear periodically in time<£d200.

3.1.2. Merging of peaks and irreversible dynamics
The spatially periodic solution arising from the Benjamin—Feir instability is itself phase-unstable. As a result, the
periodic pattern with the wavelength of the initial periodic mode becomes modulated on an even larger length scale
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Fig. 1. Sketch of the spins for the (a) spatially homogeneous solution, (b) spatially periodic solution resulting from a Benjamin—Feir instability,
(c) humps moving towards each other merging into compound peaks of spins pointing down (d).

so that the gaps between the initially equidistant humps start to Fagy1c). Fig. 3a shows tiny variations of the
distances between the humps as the humps start to move @f.

The most important phenomenon following the phase instabilities is the formation of coherent structures through
mergings of peaks. Neighboring humps approaching each other finally merge into single peaks radiating small
fluctuations.Fig. 2o shows the profile of the magnetization during the fusion of humps of Bpin(Fig. 3a.

The original periodic solution is smooth, but the compound peak resulting from the merging has an irregular shape
involving huge gradients both in space and in time. Its amplitude oscillates irregularly in time, but unlike the original
periodic solution, it does not vanish any more completely. Even those humps that are situated remotely from the first
merging processes become more persistent in time immediately so that they are traced by continuo&ggirBes in

Subsequently, more humps fusing into compound peaks increase the average distance between neighboring peaks
The resulting compound peaks again merge with primary humps and with other compound peaks forming even
stronger peaks (see point)(in Fig. 3 with the magnetization profile &fig. 2c).

3.1.3. Final equilibrium state

The increasingly high-amplitude of the compound peaks enables some spins to overcome the energy barrier of
the equator and to flip to the southern hemisphEeig. (1d). Fig. 3o shows that after % 10° time steps all peaks
have merged into six down-magnetized domains that each consist of two or three lattice points. These peaks with
S, ~ —1 are embedded in a disordered state where the spins deviate only slightly from the noth-deThe
final state is a two domain pattern where most of the spins are accumulated in huge up-magnetized domains while a
few spins condense to small down-magnetized domains. The domain of the spin-wave fluctuations near to the north
pole in the final state remains persistent even if the spin-down xenocrysts are removed artificially by flipping the
down-spins up as; — |S;|.

3.1.4. Transfer of energy

The transition from the almost regular dynamics to the irreversible process during the merging of peaks is reflected
in the share of the total energy of the two parts of the Hamiltonian. The coupling ehgrgy Y (1 — S,S,+1)
results from spatial inhomogeneities within each of the two domains and from the domain walls between them. The
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Fig. 2. S, asafunction of the lattice site n and time: (&) portrays the sector («) of Fig. 3a, (b) the sector (B), (c) at (y) of Fig. 3b.

2 ) depends on the distance of the spins from the poles. Fig. 4a shows the

-5

(1/23.Q

transfer of energy between the two parts of the Hamiltonian

anisotropic energy Ha

Theinitial state contains no coupling energy and the

anisotropic term is the only contribution. Some of this energy flows to the coupling part during the formation of
the spatially periodic pattern. This processis reversed while the system approaches the homogeneous state again so

that energy is exchanged periodically between H4 and H; (see the periodic behavior for short timesin Fig. 4a).
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Fig. 3. Integration of 512 spins (J = 0.4) with periodic boundary conditions; lattice sites where the spins deviate significantly from the north
pole (S, < 0.8) aremarked with dots. Integration over (a) 2000 and (b) 200,000 time steps with weakly perturbed homogeneousinitial conditions
(S; ~ +/0.84) (the profile of the z-magnetization at («, B, y) are given in Fig. 2); noisy short wave (k = ) initial conditions with a xenocryst
of spins deviating strongly from the north pole over 2000 time steps (c); defocusing equation (negative sign of the potential), weak coupling
(J = 0.1) and noisy short wave (k = ) initial conditions over 20,000 time steps (d).
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Fig. 4. (a) The evolution of the anisotropic energy E5 and the coupling energy Ej over 2000 time steps for 4096 spins with the initial conditions
of Fig. 3. (b) Numerical (symbols) and thermodynamic (line, see Section 4.4) results of E5/E; after long integration times.
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The transfer of energy from the anisotropy to the coupling becomes irreversible when the humps fuse into
compound peaks. The share of coupling energy increases even more when compound peaks merge and an increasing
number of spinsovercomesthe equator and settles down near to the south pole. In phase space, this processisrelated
to Arnold diffusion. Thetrajectory disappearsfrom theinitia critical torus and explores more and more of the phase
space. Finally, the system reaches an equilibrium state where the proportion of H4 and H j saturates (Fig. 4b). The
bulk contribution to the coupling energy is due to the inhomogeneity within the north pole domains and not the
contribution from the domain walls.

3.2. Modified initial conditions

The systems energy and magnetization per spin given by the initial conditions determines the number of spins
that point down after along time. We study the final state for initial conditions with varying energies and with a
modified magnetization profile. This gives strong numerical indications that the two integrals of motion (energy
and the magnetization) are the key quantities that influence the final state.

3.2.1. Varying energies

Spin-wave like initial conditions Syn + iSyn = /1 — S2 exp(ikn) with a given amplitude provide energies E =
N(1— Sf)(1/2+ J(1— cosk)) depending on thewavenumber k whilethe magnetization M = NS, isk-independent.
The initial condition & = 0 in the simulation described in Fig. 2a and b corresponds to the minimal energy E =
N/2(1 — SZ?)/Z that is possible for a given magnetization. The maximum energy £ = N(1 — Sf)(1/2 + 2J)
corresponds to an excitation at the boundary of the Brillouin zone k = 7 and any energy between these values can
be obtained by a suitable spin-wave.

We find that some of the spins condense near to the south pole eventually only if the energy is below a certain
threshold Eeq within this range. Fig. 5 shows the magnetization of the south pole condensate as a function of the
systems energy:

(i) Oversaturated phase: Below the energy threshold Eeq, the number of down-spins is proportional t0 Eeq —
E. The behavior in this is very similar to the scenario described before. The spatially homogeneous initial

0.15 E/N
Fig. 5. Numerical (symbols) and analytical (line) results for the total magnetization of the spins in the southern hemisphere as a function of
the total energy E5 + E; per spin for the system of Fig. 1a Theinitial conditions are S; = +/0.84, Sxn + iSyn = 0.4exp(ikn) with various

wavenumbers k; waves with wavenumbersfrom k = 0to z providedifferent amounts of coupling energy Ejinitialy. The spin chainisintegrated
over 100,000 time steps. For energies per spin below the threshold (Eq. (18)), some of the spins condense near to the south pole.
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condition in the above simulations just leads to the highest possible proportion of the south pole conden-
sate.

(ii) Overheated phase: For high energies E > Egq, no spins are flipped down so that this magnetization is zero.
There is no south pole condensate beyond this threshold; all spins end up in small fluctuations near the north
pole.

3.2.2. Modified magnetization profile

We have seen that only long-wavelength fluctuations create peaks. In contrast, high energetic initial conditions
with short-wavel engths melt away such peaks of spins deviating significantly from the north pole. This occurs for
aninitial condition of asmall amplitude k = 7 spin-wave (corresponding to the maximum energy in Fig. 5) where
the spins within a small domain are flipped to the southern hemisphere. Fig. 3c shows the destruction of such a
domaininabath of kK = = waves. The system endsup in anirregular state where all spins are near to the north pole.

3.3. Modified equations of motion

Thescenariowehavedescribed iswidespreadin dynamical systemsand not aspecificfeatureof thelL andau—L ifshitz
equation. A comparison of this scenario with self-focusing in related systems indicates that the main conditions for
the emergence of coherent structures are:

(i) thelow-amplitude dynamicsis governed by an NLS-type of equation,
(ii) the system is nonintegrable,
(iii) there aretwo integrals of motion.

Thefirst of these points basically characterizes the dynamics of nonlinear dispersive systems on long scales. The
focusing DNL Sisthe system most closely related to the spin chain. Also the case of adefocusing nonlinearity will be
considered. The importance of nonintegrability will be shown by the comparison to the integrable Ablowitz—L adik
discretization of the NL S equation. On the other side, we will study a system with broken rotational symmetry that
only conserves the Hamiltonian.

3.3.1. Defocusing egquation

The formation of coherent structures in discrete nonintegrable systemsis not an exclusive property of ‘focusing’
types of DNLS or Landau-Lifshitz equations. The Landau-Lifshitz equation S, = S, x (J(Sy—1 + Su+1) — Snz€:)
with anegative (‘ easy-plane’) anisotropy correspondsto thedefocusing DNL Sequation. For weak coupling constants
(J = 0.1), short-wavelength (k = =) initial conditions produce coherent structures with spins condensing in the
equator region where the anisotropic energy has now its minimum. Fig. 3d shows this weak focusing process for
the spin chain.

3.3.2. DNLSequation

Thefocusing nonintegrable DNLSig, = J(¢n+1+dn—1—2¢,) +2|¢,|%¢, hasthe properties (i)—iii) just likethe
Heisenberg spin chain. Fig. 6a shows the spatiotemporal pattern for the DNL S of |attice sites with high-amplitudes
that is very similar to the one described in Section 3.1 (Fig. 248). Again, an unstable periodic pattern emerges from
aphase instability of the homogeneous state that is unstable itself.

Thefirst and the second phase instability are well-known as direct consequences of (i) and (ii). The second phase
instability has been studied in detail in the context of NL S equations. In phase space, it is related to degenerate tori
with less than the maximum dimension. Such critical tori exist in integrable as well as in nonintegrable systems,
they may be stable or unstable. The stability of these tori is related to double points in the spectral transform [10].
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Fig. 6. Integration of the various versions of the DNLS equation (J = 0.4) with 512 lattice sites and periodic boundary conditions. The initial
conditions are ¢, = 0.2 plus noise, lattice sites with |¢| > 0.25 are marked with dots. (a) Integration of the DNLS over 2000 time steps; (b)
integration of the integrable version of the DNLS over 2000 time steps; (c) DNLS with a contribution —2¢,, and a symmetry breaking field
0.2¢;, over 10,000 time steps; (d) DNLS with a symmetry breaking contribution 0.02¢;, over 10,000 time steps.

The spectrum of the Lax-operators has been analyzed both for an integrable and a nonintegrable version of the
DNLS equation.

Thefusions of humpslead to peaks with high-amplitudes (Fig. 6a) and finally high-amplitude xenocrysts emerge
from a low-amplitude turbulent background. The whole process is very similar to the one of the Landau-Lifshitz
equation (Fig. 3a). The correspondence persists even in a domain where the additional nonlinear terms in the
Landau-Lifshitz equation are not small. The DNLS-peaks may have different heights while the spin-peaks are
always south pole states. The radiation of low-amplitude fluctuations during the merging of peaks is related to
homoclinic chaos following the breakup of Kolmogorov—Arnold—-Moser tori. By discussing the M el nikov-function
of thecritical tori [ 11] have detected homoclinic crossingsinthe nonintegrable NL S. The horseshoe of thehomoclinic
crossings creates the disorder following the fusion of two peaks.

A phenomenon similar to the merging of peakswasfound in acontinuous nonintegrable NL S equation [7]. Unlike
solitonsin integrable systems, collisions of solitary solutions of nonintegrable equations |ead to atransfer of power
from the weaker soliton to the stronger one while low-amplitude waves are radiated. The resulting two-component
solution contains a decreasing number of growing solitons immersed in a sea of weakly turbulent waves. In con-
tinuous systems, energy is drained by infinitesimal scales while the spatial discretization defines a minimal length
scale.
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3.3.3. Integrable DNLSequation

Homoclinic chaos as a source of radiation is absent in integrable systems. The comparison with the integrable
DNLS igy = J(pnt1 + dn1 — 20n) + |fn|>(n_1 + ¢nt1) shows this implication of the nonintegrability (ii).
Theintegrable NL S equation exhibits the primary phase instability, but not the fusing of neighboring peaks. While
the dynamics is similar to the nonintegrable system initialy, the peaks do not merge (Fig. 6b). Consequently, no
coherent structures evolve and the system does not settle down in adisordered equilibrium state. The quasiperiodic
appearance of humps with relatively low-amplitudes reflects the phase space structure of nested tori.

3.3.4. Particle nonconserving equation of motion

While the irreversible focusing process is a consegquence of nonintegrability, it also depends on the existence of
some remaining integrals of motion. The generation of coherent structures is very sensitive to perturbations that
destroy one of theremaining integrals. The property (iii) may be changed by breaking the rotational symmetry with
the contribution €Re(¢,) in the NLS equation. The equation is still of Hamiltonian type, but the modulus-square
norm > |é, 12 is not conserved. Additional contributions ~w > | |2 to the Hamiltonian and the corresponding
term ~w¢ in the equation of motionig, = J(¢pi1+ dpn_1— 20,) + wpn + €RE(Pn) + 2| |2h, arenow relevant for
the dynamics (in the symmetric case, thisterm just describes the same dynamicsin different rotating frame systems;
in the symmetry broken system, the external field ¢ is stationary in the system that rotates with the frequency w).
Depending on the sign of w, two different scenarios are observed:

o < 0: The onset of self-focusing for small timesis similar to the symmetric case. However, the peaks emerging
from the fusing process disintegrate eventually into small amplitude fluctuations (Fig. 6¢).

o > 0: The onset of the focusing process is again similar to the one with particle conservation, but after about
5000 time steps growing amplitude fluctuations lead to a disordered state. Unlike the rotationally symmetric
system, high particle densities are not confined to small islands in a sea of low particle density fluctuations.
The nonconservation of the particle number leads to high (but finite) particle density fluctuations everywhere
(Fig. 6d).

In the spin chain, similar effects can be reached with an external magnetic field that is perpendicular to the
anisotropy axis e, and an additional z-field. The Hamiltonian now contains the additional Zeeman termseS, + »S;.
Due to the broken rotational symmetry the total magnetization is no longer an integral of motion.

3.4. The leapfrog-discretization of the KdV equation

Iterations of the leapfrog-discretization of the KdV equation exhibit a scenario of merging peaks that is very
similar to the one found in NLS or spin equations. However, the leapfrog system undergoes a rapid unbounded
growth similar to the blow-up in two-dimensional NL S-systems. Whilethe Heisenberg spin chain hasawell-defined
equilibrium, the leapfrog system allows us to study the conditions for blow-ups in constrained systems. We study
this phenomenon for two initial conditions, the k = 277/3 mode with a strong correlation of » and v, and for white
noise with no correlation of u and v. The system consists of 1020 lattice sites with periodic boundary conditions.

3.4.1. Correlated initial conditions

The monochromatic wave with the wavenumber & = 27r/3 asinitial condition yields an exact but phase-unstable
[18] solution of the leapfrog-iteration (3a) for a sufficiently small step-size. Thismodeis particularly relevant for a
stability analysis since it is the fastest growing mode for astep-size t > 2/(3v/3). Setting u1(n) = v1(n) provides
the maximum correlation of « and v. The pattern of peaks Fig. 7a (lattice sites with high u ()% + v(n)%) emerges
in amanner similar to the spin- and NL S-systems (Figs. 3 and 6):
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Fig. 7. Iteration of the leapfrog-discretized KdV (3) for ak = 27r/3 wave (a) and for white noise initial conditions (b) with periodic boundary
conditions. The amplitude of u(n) = v(n) is0.1initially in (a). Locations with high-amplitudes (the sum of « ()2 over five subsequent stepsis
greater than 0.1) are marked with a dot. (b) The threshold of +/u2 4 v2 is 0.045 while the noise level ~0.01.

(i) Regular behavior: Theinitial low-amplitude wave is below the threshold to be traced in Fig. 7 for m < 400.
(if) Merging humps: A phase instability of the initial k = 27/3 wave leads to a modulational pattern with a

Fig.

wavelength of about 20 lattice sites that reaches the threshold at m =~ 400 so that a spatially periodic pattern
emergesfor 400 < m < 600. These periodic humps are wave-packets of theinitial short wave moving towards
higher n. Similar to the spin- and NL S-systems, this pattern itself is slowly modulated. The humps approach
each other and merge so that adecreasing number of peaksof increasingintensity survive. Solitary solutionsthat
are high and fast sweep away slower ones. The peaks speed and amplitude increase while the width decreases
during this process. They accumulate high amounts of the conserved quantity (uv) just like the spin-down
domains gather magnetization. Fig. 8 shows the cumulated conserved quantity Y ;. ; u,, (1)vy, (1) asafunction
of n (for n = N, itis conserved) at the beginning (m = 1) and at m = 2500 when the solitary waves have
developed. While the conserved correlation Y " u(n)v(n) isequally distributed in space initially, the formation
of solitary wave-packets gathers an increasing amount of the correlation in small xenochrysts immersed in
uncorrelated low-amplitude fluctuations. Up to this point, the process is very similar to the self-focusing
scenario presented in the spin- and NL S-systems.

| n
TEuwe
at g
m=1
3 s
2 e
1 7 m=2500
7
0o 75 S B %0

8. Cumulated energy > um (v, (1) for the simulation of Figs. 7 and 9 asafunction of the lattice siten at thetime stepsm = 1 and 2500.
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Fig. 9. > (u(n) + v(n))? and — 3" (u(n) — v(n))? of the leapfrog-discretized KdV system as afunction of time m for the k = 277/3 wave (a) and
for the white noiseinitial condition (b).

(iif) Rapid divergence: However, despite the fact that for a long time the system appears to reach a statistically
stationary state, in the end it is clear that no equilibrium is attained and the local amplitude rapidly diverges.
At m =~ 2960, two peaks merge at n ~ 420 creating an al-time high of the amplitude that apparently
exceeds acertain threshold locally. Thishighest peak now startsto grow rapidly so that theiteration isderailed
within a few time steps. The features of this rapidly growing ‘monster’ solution will be described in the next
section.

Unlike the modul us-square norm of the continuous KdV equation, 3" u ()2 isnot conserved in thewhol e process.
Fig. 9a shows Y (u(n) + v(n))? and — Y (u(n) — v(n))? as a function of the time m. 3 (u(n) + v(n))? equals
43" u(n)v(n) initially while — 3" (u(n) — v(n))? startsat zero; the sum of both quantities ~ (u(n)v(n)) is conserved.
In the ‘reversible’ range m < 400 (i), both quantities increase and recur to their initial value periodically. As the
merging of peaks starts (i), they settleto almost constant values undergoing only avery slow increase. Thisbehavior
resembles Fig. 4 up to the final blow-up (iii) where both quantities diverge rapidly.

Initial condition with a low amount of (uv) lead to solitary solutions that do not reach the threshold for the
blow-up. Their growth ends when a few of them have absorbed this conserved quantity and move with the same
speed. This state however is also unstable because of an instability to be described in the next section.

3.4.2. Uncorrelated white noiseinitial conditions

Uncorrelated low-amplitude white noise initial conditions (uv) = O lead a creeping nonlinear process that
suddenly ends up in the same sort of local rapid divergence of the amplitude. The time elapsing until the system
blows up isinversely proportional to the square of the noise amplitude. For random white noise initial conditions
with the same amplitude it is Poisson-distributed.

Fig. 7b showsthe spatiotemporal pattern of locations where the amplitude slightly exceedsthe noiselevel. Unlike
the correlated case, there is no spatiotemporal pattern of merging peaks. A change in the amplitude profile of the
noise background is hardly detectable even shortly before the blow-up occurs. Again three phases of the dynamical
behavior can be distinguished:

(i) Regular behavior: For about 32,000 time steps, the amplitudes are at the level of the noise imposed by the
initial conditions. During this time, physical structures such as solitons can be simulated reliably when they
are imposed by the initial conditions.
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Fig. 10. Profile of the peak evolving out of white noise (Fig. 7b). Low-passfiltered amplitudes u(n) (a) and v(n) (b) at m = 33,500, 34,000 and
34,300. (c) u(n) at m = 34,374 two time steps before the iteration breaks down. The dotted lineisthe analytical solution. (d) u(n) at m = 4100,
4300 and 4500 for smooth initial conditions vg(n) = 0, ug(n) = 0.01/ cosh?(n — 510) is very similar to the simulation ().

(if) Creeping focusing process: A weak honmoving maximum emergesat m ~ 33,500, n =~ 550 and grows slowly.
Fig. 10 showsthe low-pass filtered amplitudes of u () (a) and v(n) (b) of this structure at m = 33,500, 34,000
and 34,300. Thelow-pass filtered amplitude changes significantly with each time step, but very little with two
subsequent time steps. Fig. 11 shows the corresponding spectral density.

(iii) Rapid divergence: After a sSlow growing process over about 1000 time steps this structure suddenly starts to
grow rapidly and derails the iteration. Fig. 10c shows u(n) for this solution at m = 34,374. Fig. 11 shows
the spectral density of (uv) at the time steps of Fig. 10. This solution (which we call the ‘monster’ solution
because its spatial structure resembles the Loch Ness monster with several undulations of its tail sticking out
of the water) appearsto be the systems canonical trajectory towards infinite amplitudes.

Monsters are strongly localized: |eft to the highest negative amplitude, the head of the monster, the amplitudes
are close to zero. Right to the head, the amplitude of the zig-zag tail decreases rapidly. The monster moves to the
left by one lattice site with each time step. There are also monsters that move to the right; their shape is related to
left-moving monstersasu(n) — —u(—n). Most significantly, the amplitude of the monster is squared by every time
step so that the monster grows as exp(exp(m)). Fig. 7b shows a delta-shaped broadening zone of high-amplitudes
near the blow-up since the tail is growing while the head moves towards small 7.
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Fig. 11. Spectral density (defined as the Fourier-transform of the correlation (u(n)(v(n +r) + v(n —r)) + v(n)(u(n +r) + u(n —r))), r < 100
for the simulation of Fig. 7b at the time steps of Fig. 10. (8) Shows the slowly growing solution that |eads to the monster. (b) The correlation for
the smooth initial conditions of the simulation (Fig. 10d).

This solution can be calculated anaytically. For a state u,,,(n) = Aa(n) with a high-amplitude A, the linear
terms of Eq. (3) may be neglected. We assume that the structure grows quadratically and moves to the right as
um1(n) = 2tA%a(n — 1). Setting a(n) = 0 for n > 0 and for negative odd n, we get the solutions a(0) = 1,
a(=2) = (1—+5)/2,a(=2n—2) = (1— /1 + da(—2n)?) /2 asthe solution of a(n — 1) = a(n — 1)% —a(n + 1)2.
The right moving solution is obtained by setting a(n) — —a(—n). The dotted line in Fig. 10c shows this solution
where the monster’s head is submerged.

Most significantly, the conserved quantities (1), (v) and (uv) are zero for this solution; the monster needs no
external food source for its growth. On the other side, it rapidly produces high amounts of (12 + v2) (Fig. 9b).

A blow-up with these characteristic features follows from various initial conditions. In the previous section we
have described itsevol ution out of solitary solutionsthat emerge from aBenjamin—Feir type of instability and exceed
a certain threshold after the merging process. It can also grow out of the noise between these solitary solutions or
out of weak white noise through a much more dramatic type of instability.

4, Statistical analysisof thefinal state

In this section we will give a detailed interpretation of these results. The merging of peaks corresponds to an
Arnold diffusion processin phase space that transfers the trgjectory from theinitial critical torusto less distinctive
parts of the shell of constant energy (H) = E and magnetization (M) = M. The numerical findings indicate
that the characteristics of the final solution are determined by the values of the integrals of motion, i.e. that the
system reaches a thermodynamic equilibrium. One can therefore establish thermodynamic connections between
macroscopic observables of thefinal solution and theintegrals of motion. Wewill compute the equilibrium statistics
of the system and compare the results to our numerical findings.

4.1. The partition function
4.1.1. Low-temperature approximation

The numerical findings suggest that for low energies the spins point to small regions near to the poles (Fig. 1a)
and avoid the region nearer to the equator. With o, = 41 one may approximate spins near to the north or south
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pole as
~ 1,¢2 2
Snz ~ O-n(l - ?(Snx + Sny))~ (4)

L ow-amplitude fluctuations near the north pole are represented by o, = 1 and small values of Sny,/. The coherent
structures with spins near to the south pole correspond to o, = —1. This matching height of all peaksisthe main
technical advantage of the spin chain. Assuming that o,,0,,+1 = 1 holdsfor ailmost all » (i.e. the number of domain
wallsissmall), onemay approximate }_ 0,,0,+155/, ~ >, Sk, If @l spinsareclosetothe poles, the approximate
Hamiltonian

Hett = Y 5(Sax+ S) + J(Sac+ Sa) — J(SxSny1x + SnySn+1y) — Jou0n 11, (5)
n
represents a chain of coupled harmonic oscillators (Snx, Sny) and a chain of Ising spins o,,. The approximation
holds if the energy is low and the magnetization is close to the maximum, i.e. > (1 — Sp)/N < 1. It neglects
the coupling between the oscillators Sny/, and the Ising spin o, so that the Hamiltonian splits up into a spin-wave
Hamiltonian Hw(Snx, Sny) and an Ising Hamiltonian #,(c,). Hw contains the lowest order terms of Spy/, and
neglects anharmonic energy contributions of neighboring spins that point to the same hemisphere. #,; accounts for
the coupling between up- and down-spins. In terms of the stereographic projection, #,, contains the terms that
prevail for |¢| <« 1 whileH, alowsfor the contributionsfor |¢| >> 1. The nonlinearity isonly reflected inthe Ising
magnet.
The magnetization as a second integral of motion may be approximated as

1
Met = Mi(@) + Mu(Se, $) = D Jon = Y 5(Six+ Sy, (6)

if most of the spins point to the north pole. Again this approximation neglects higher order terms in Sy, and
contributions o, 2, /y Witha, = —1.
4.1.2. Grandcanonical partition function

The phase space surface on which M and ‘H are constant can be computed most easily using the grand partition
function

Y(B,y) = /e—ﬁ(Heﬁ—}’Meﬁ) dr )

with two parameters 8 and y. Unlike the canonical ensemble[19], the grandcanonical ensemble reflects the second
integral of motion by the parameter y that controls the system’s magnetization. 8 is the inverse temperature while
y is an equivalent of a magnetic field or chemical potential. The exponent in (7) is a sum Heif — y Mgt =
(Hw — yMw) + (Hi — yM,) of aspin-wave contribution

J 1+
Hw = yMu =) 5 (S = $1410% + Sngay = S2)?) + TV(SE,X + S3). ®

n

that depends only on Sy, Sny and an Ising contribution

Hi—yMi=17Y (1=0,0041) =¥ ) 0n, 9)

that depends only on o,,. The partition function (7) of the whole system is the product y = ywyi, where yy is
obtained by an integration over the variables Syx, Sny, while y isasum of the configurations of the Ising spins o;,.
The grand partition function of the N 1sing spins

yi = (cosh (yB) + )™ (10)
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with the abbreviation © = \/sinhz(y,B) + e~4J8 is just the canonical partition function of an Ising magnet in an
external field y. The linear dynamics of Syx and Spy has the symplectic structure Spx/y = £3Hw/3Sny/x SO that a
phase space volume element may be approximated asdI” = [ [ dSx, dSyn. For g >> 1, the grand partition function
of the spin-waves can be obtained by integrating of dI” = []dSx, dSy, from minus to plus infinity. Using the
abbreviation A = /J/2+ (1+ y)/8+ /(1 + y)/8 the Gaussian integrals yield

N
T
yw(B,y) = (A_2,3> . (11)

4.2. Thermodynamic relations

4.2.1. Energy and magnetization
Thethermodynamic propertiesof theequilibrium statemay bederived from thegrand partitionfunction In y(8, y) =
In yw + In y;. The parameters 3, y and the conserved quantities () = E, (M) = M are connected by

M = My + M = =2 (InGy) + |n(y|>)=N<—i+M), (12)
B oy B w
3 _(vad 2 N y 2NJe 4
E=Eyw+E = (55_%>(|n()}w)+ |n(}’|))—g<1—x> W (13)

witha = \/4J(1 + ¥ + (1 + y)2. Thepartition function isvalid for small energies per latticesite E/N « landfor
small meandeviations1— M/N « 1of thespinsfrom the north pole. Low-amplitudeinitial conditionswithout huge
deviationsfrom the north pole correspond to magnetizationsintheinterval 1— E/N < M/N < 1— E/(N(1+4J)).
The lower bound corresponds to a spatially homogeneous initial condition while a wave with k = 7 defines the
upper bound.

M,, E|, My, E\, arethe physically most interesting quantities:

M, is the magnetization of the Ising system and measures the total extent of the coherent structures. At its
maximum M, = N, al spins point up while smaller values N > M| > M indicate the existence of coherent
structures where the spins point down.

E) isthe positive coupling energy of the domain boundaries and determines the number of coherent structures.

M,y isthe negative magnetization of small fluctuations.

E\y isthe positive energy of small fluctuations and comprises a coupling term and an anisotropic term.

These quantities can be found by computing g8 and y as functions of E and M and then plugging g and y in the
expressionsfor E|, M|, Ew, My. (12) and (13) can be solved analytically for the low-energy case E/N <« 1. The
solution (Fig. 12) isqualitatively different in the ‘ oversaturated phase’ with M < Meq and in the * overheated phase’
Meq < M < My With Meqg = N — E//1+ 47,

4.2.2. Oversaturated phase M < Mg

(i) Thetemperature 3~ ~ E/N « 1isamost independent of M.
(i) The chemical potential y ~ Ee 2NE/ /2N(Meq — M) ~ 0is exponentially small unless the magnetization
comes very close to the transition point where this approximation breaks down.
(iii) Almost the total energy Ew =~ E is absorbed by the fluctuations while the surface energy E, ~ e 2NV/E ~ 0
is exponentialy small.
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Fig. 12. The temperature 8~1(My,, Ey) (a) and the chemical potential y(My, Eyw) (b) as obtained from the Egs. (12) and (13). The energy is
fixedas Ey = 0.1in(c)

(iv) Thefluctuations share My, ~ —E/+/1+ 4J N of the magnetization is independent of the total magnetization.
Theremainder of M — N isabsorbed by the spinsthat are flipped down. The share of spinsthat isflipped down
isat most of the order of the energy.

4.2.3. Overheated phase Meqg < M < M,

(i) Thetemperature
1 (E+M—-N)4JM —N)+E+ (M —N))
~ (4J(M —N)+2(E+ (M — N)N
(if) The chemical potential

(E+M — N)?

4IM —NZ+2E+M—-NM—-N)
both have a singularity at My = N — E/(2J + 1). The temperature is positive between M,y = Mg and the
singularity because the number of accessible states growswith the energy in thisrange. Beyond the singularity,
more energy leads to a decreasing number of states so that the temperature is negative.

(iii) The spin-waves Ey, ~ E again absorb the bulk of the energy while E; ~ e 2N/E ~ 0,

(iv) The Ising-magnetization is near to its maximum M, ~ N independently of M. Fluctuations contribute the
magnetization My, ~ —E/A.

(14)

y= 1 (15)
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4.2.4. Transition at Meq

The solution for M, explains the transition behavior of Fig. 5 (Section 3.2.1) and the emergence of coherent
structures quantitatively. While the oversaturated phase corresponds to long spin-wave initial conditions, the ther-
modynamic equilibrium state is characterized by coherent structures, i.e. spins pointing to the south pole. Below
the threshold Meq, the Ising-magnetization M, deviates significantly from its maximum M, = N and the number of
spinsthat point down increases linearly with Meq — M. Above the transition the Ising-magnetization deviates very
little from its maximum M, = N, so there are no coherent structures.

In both phasesamost all energy isabsorbed by low-amplitude fluctuations. The surfaceenergy E| isexponentially
small, so that the spins form avery small number of domains. The higher number of domains obtained numerically
indicates that the system does not thermalize compl etely on reasonable time scales.

Asthe spinsinteract only pairwise with a short range in one dimension, the transition between the two phasesis
of diffuse type and not a genuine phase transition. y and M, are analytic functions. The slope of y increases rapidly
within asmall interval ~e="N/E at Meq so that the transition approaches a phase transition as the energy goes to
zero.

4.3. The entropy

4.3.1. The shape of the entropy function

The thermodynamic reasons for coherent structures are best described in terms of the systems entropy. The
conserved quantities M and E are known from the initial conditions rather than the arguments g, y of the grand
partition function. Consequently, the entropy asafunction of M and E isthe appropriate thermodynamic potential.
The entropy follows from the grand partition function by two Legendre transformations

ad
S=In(y) + B(E — yM) = (1 - ﬂ%) In(y). (16)
Both the spin-waves and the Ising system contribute to the entropy. The two systems can get different shares E|,
M, and Ey,, M,y of the two conserved quantities £ and M. The entropy of the Ising has the form ~—E| In(E|/N).
The spin-wave entropy per lattice site isgiven by Syw/N = In £2, where the total number of accessible microstates
is 2V with

_ (Ew+ 1+ 4)Mw)(Ew + Mw)

B NMyy ‘

2 a7)
Sotheentropy of small fluctuations dependsonthe energy as~ N In(Ey/N). Both systemsare coupled thermally, so
they have matching temperatures 8. Using = 8S/9E wereestablish thefact that the Ising energy E| /N ~ e~2/#
isexponentially small compared to the energy of thefluctuations Ey, /N ~ B~1 for low energies. Theresulting Ising
entropy is again exponentially small S, ~ e~2/# compared to the spin-waves contribution Sy, ~ — In 8 4 const.

Consequently, the main part of the entropy arises from the degrees of freedom of waves with small amplitudes
while the Ising system only provides an almost constant contribution. The Ising system can absorb some of the
systems magneti zation without changing itsenergy and entropy significantly. By doing that, the fluctuations share of
magnetization can also change allowing the fluctuations to maximize their entropy. The maximum of Sy, = N In §£2
asafunction of E\, and My, is approximately the total entropy maximum.

Fig. 13a shows the number of states per lattice site £2 of the fluctuations as a function of My, and Ey,. It hasthe
shape of a crest ascending towards higher energies. All possible small amplitude states corresponding to positive
2 arein atriangular region limited by two highly ordered solutions (Mg = —Eyw and M, = —Ew/(4J + 1)) and
by the systems total energy Ey = E.



182 B. Rumpf, A.C. Newell / Physica D 184 (2003) 162-191

0.03
0.02

0.01

Fig. 13. £2 for the spin chain asafunction of E\, and My,: (a) Focusing equation with J = 0.4. The focussing process correspondsto the arrow on
theleft slope, the arrow on the crest sketches the merging of peaks. The arrow on the right slope represents the destruction of coherent structures
by short-wavelength fluctuations. (b) Defocusing case for J = 0.1 and 0.4. Theline M, crosses Ey, = 0for4J — 1= 0.

Theareabetweenthelines My and Meq again representsthe oversaturated phase. Therim Mo = —Ey with2 =0
corresponds to a monochromatic wave with k = 0. Long-wavelength solutions (which are a so representative for
continuous systems) arelocated at the slope near to thisline. Such fluctuationshavealow ratio E /(N — M). Solutions
that include high peaks may have even smaller values M < N + Mo. However, their inert down-magnetized domains
have little influence on the thermodynamics and these states are similar to the ones at Mg.

The overheated phase is located between the lines Meq and M. Therim M, = —Ew/(4J + 1) with2 =0
represents awave k = m at the boundary of the Brillouin zone. This wave has the highest ratio E/(N — M) of all
solutions.

The systemstotal energy Eyw = E givesathird boundary of the accessible states. The absolute maximum of the
entropy islocated on this boundary at My, = —E/~/4J + 1.

4.3.2. Coherent structures

The formation of peaks (i.e. down-magnetized domains) can be understood as the maximization of the entropy
under the restriction of the conserved quantities. Formation and merging or destruction of coherent structures is
represented by paths from the slopes to the crest and to the entropy maximum typifying the phenomena that have
been observed numerically. While these are noneguilibrium processes since My, and Ey, are changing, Eq. (17)
gives the equilibrium entropy for a system thermalizing at particular constant values of My, Ew:

(i) Formation of coherent structuresinthe oversaturated phase: For M < N+ Meq (or My, < Meg, €.9. for spatially
homogeneousinitial conditionsor long waves), thesystem canincrease My, < Oanddecrease M| > 0by flipping
spins from the north to the south. In the entropy profile this means that the system is allowed to move from the
Mp-side in the direction towards Meq (along the arrow at the left slope in Fig. 13a). This leads to an increase
of the spin-wave entropy S,y for initial condition on the Mp-side of the slope. This process stops when the crest
is reached so that the ideal amount of magnetization Meq is allocated to the spin-waves. For long-wavelength
initial conditions, the formation of coherent structures allows the exploitation of short-wavelength degrees of
freedom to increase the entropy.

An additional increase of the fluctuations entropy may be reached by transferring energy from E| to Ey.
This happens when merging down-magnetized domains reduce the domain wall energy contributing to E;. In
Fig. 3awe can identify the route along the crest Meq with this process. Finally, E\ absorbs almost all energy
at the summit leaving little energy E; « E\ for domain boundaries. The resulting magnetization of the Ising
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magnet is
My =M+ £ (18)
Sy

(i) Destruction of coherent structures in the overheated phase: For M > N + Meq (0r 0 > My > Meg, €0.
ak = m-spin-wave as initial condition), flipping spins down is impossible because this would decrease the
entropy. The opposite movement starting from the M., slope towards the crest Meq is only possible if some
spins are already flipped down so that they may be flipped up now. This type of thermalization process occurs
for initial conditions of spin-down xenochrystsimmersed in short-wavel ength low-amplitude fluctuations. This
process ends if either al spins point up (M, = N) or if the ideal amount of magnetization Mey is allocated to
the spin-waves. The crest of the entropy may be approached from the M -side by melting existing coherent
structures away (arrow at the right slope in Fig. 13c).

Fig. 5 comparesthe numerical and analytical resultsfor the number of down-spinsasafunction of thetotal energy,
while the total magnetization is fixed. For low energies (long wave initial conditions), a relatively big number of
spins points down so that M, is smaller. For higher energies (smaller wavelengths), the number of down-spins
decreases and reaches zero at the transition point. In Fig. 13a, these initial conditions correspond to energies on a
line M = const connecting points on the lines Mg and M. The threshold of Fig. 5 corresponds to the intersection
point of theline M = const and the crest Meq(E). Thisthreshold is obtained for any path that crosses Mey. Below
the threshold, the spin-wave entropy can be maximized by flipping spins down according to Eq. (18)). Above the
threshold only an exponentially small share of spins point down. Again, the transition is analytic but very sharp.

We conclude that the thermalization of energy under the constraint of the second integral of motion produces
high-amplitude peaks emerging from an irregular low-amplitude background. The formation of coherent struc-
tures allows the system to increase its entropy of low-amplitude fluctuations by allocating the right amount of
magnetization to the spin-waves. While the total magnetization M = M\, + M, is constant, the spin-wave part
My = — Z(an + Sﬁn)/z can turn over magnetization to the Ising part M| = ) o, that can attain any value in
theinterval M < M, < N. This enhances the entropy of the spin-waves while the Ising entropy is negligible.
The entropy increases with E\, so that almost al energy is allocated to the fluctuations. This explains the merging
process of the peaks where energy istransferred from E) to Eyy.

4.4. Power spectrum and particle conservation

Spin-waves with a wavenumber k contribute the power

1
B(2J(1 — cosk) +1+p)°

(ng) = (19)
tothe Hamiltonian £ = ), nywi Withng = SixS—_ix + SkyS—ky and wy = 2J(1— cosk) + 1. The ' particle number’
> ny isrelated to the magnetization M,y,. Fig. 14a compares the Rayleigh-Jeans distribution (ng) = T/(y + wx) to
numerical simulations:

(i) Intheoverheated phase below thetransition, the distribution isindependent of M since y isexponentially small.
The energy njwy is distributed equally over the k-space while small wavenumbers have the highest power ny.
The power spectrum Fig. 14ais aimost unchanged throughout the oversaturated phase and the fluctuations
energy per particle is constantly v/4J + 1. The systems surplus of particles condenses at the south pole state
with low energies per particle, i.e. some spins are flipped to the south pole. The Rayleigh—Jeans distribution
is attained during the merging process starting from the peak-like spectrum of the initidl monochromatic
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Fig. 14. Spatial power spectra of the spin chain averaged over 100,000 time steps after a previous integration over 100,000 time steps and the
corresponding Rayleigh-Jeans distributions (19). (8) Was obtained for homogeneous initia conditions, (b) follows from a noisy short wave
(k =~ 27/3) initial condition related to negative g and y.

wave. The fluctuations determine the equilibrium ratio of anisotropic energy and coupling energy (Fig. 4a) as
Ea/Ej= (v/4J +1—1)~1. Fig. 4b compares this formulato the results of simulations with various coupling
parameters J. Deviations are due to the fact that the system does not reach the perfect equilibrium after the
integration. Some additional domain walls lead to dlightly increased values of E).

(ii) Above the threshold, y strongly depends on M and E and the power spectrum is deformed. The temperature
becomes negative in the strongly ‘overheated domain since the entropy as a function of E decreases for
M > M. Inthisrange, most of the energy is due to short waves (see Fig. 14b) with ~1 ~ —0.2, y ~ —2.7).

4.5. Defocusing equation

Thermodynamics of the ‘defocusing’ case (Fig. 3d) with anegative anisotropy % = ), J(1 — S,S,41) — (1 —
S%n)/Z is dightly more complex. We obtain 2 = (E + (4J — 1)My)(E — My)/ M, Where E is negative. We
distinguish two cases:

(i) For weak coupling 47 — 1 < 0, £2 has got amaximum at Meq = E/~/—4J + 1 (see 22-shell for J = 0.1in
Fig. 13b). 2 iszerofor Mg = E < Oand for M, = —E/(4J — 1) < 0. Differently from the system with
a positive sign of the nonlinearity in (1), now M, < Moy, i.e. short-wavelength spin-waves have the lowest
magnetization for a given energy. Starting from M, the system can approach Meq and increase its entropy by
flipping down single spins. In contrast to the process described earlier, it is now favorable to store a maximum
of energy in the domain boundaries.

(i) For strong coupling (4J — 1 > 0), £2 asafunction of M decreasesin thewhole interval of accessible values of
My < Mg or My, < M, andis zero at the homogeneous state My, = My = E and for short waves My, = M,
(see J = 0.4inFig. 13b). The entropy of the spin-waves cannot be increased by decreasing the magnetization.
Thermodynamics allows aweak focusing process by storing energy in domain walls starting from M, but we
have found this process numerically only in the DNLS system.

4.6. NLS-systems versus spin systems

Thermodynamics supports the equivalence of spins and NLS-systems with respect to the formation of coherent
structures. Fig. 15 shows the nonlinear energy —|¢,|* at lattice sites n asafunction of the particle number | ¢, |? and
the corresponding anisotropic spin-energy (1— Srzlz) /2 asafunction of the conserved negative magnetization 1 — Sp;
the pointsindicate typical states of the oscillatorsin equilibrium. The spin system has two states with alow-energy
per lattice site. The north pole state is characterized by high energies per particle E/(N — M) while the specific
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~|of

Fig. 15. Sketch of (a) the anisotropic energy (1 — Sﬁz /2 of the spins as afunction of 1 — Sy, and (b) of the nonlinear energy —|¢, |* asafunction
of the particle number |¢,|2. The symbols indicate the typical equilibrium position. Most lattice sites have low particle densities while small
domains attain high particle densities. In the spin chain, these domains extend over severd lattice sites.

0.5

(a)

energy islow near the south pole. The latter state is more fuzzy for NLS-systems since the potential energy —|¢, |*
and the particle number |¢, |2 per lattice site are unbounded. Any contribution proportional to the second integrals
may be added to the energies; consequently, the ratio of the potential energy and the particle number per lattice site
isrelevant. In the NLS-system, —|¢,,|*/|$. |2 equals the negative particle number at the lattice site. Similarly, the
corresponding ratio (1 — Sﬁz) /(1 — Snz) = 2 — (1 — Spz) decreases linearly with the ‘particle number’ 1 — Sp,.
The only relevant difference is again the maximum ‘particle number’ 1 — S, per lattice site corresponding to the
down-spinsof coherent structures while the peak-amplitude of the NL S-system can obtain various val ues depending
on theinitial conditions. Asaresult of that, each domain with a high-amplitude consist of only one lattice site that
absorbs the particles.

Both systems condense some particles in the low-energetic coherent structures in order to increase the energy
of the remaining particles. In both systems the energy per particle of the condensates decreases linearly with the
particle density per lattice site. This energy becomes available to the coupling part of the Hamiltonian so that the
system can explore degrees of freedom of wave like fluctuations. This disordered state can only absorb a finite
amount of energy per lattice site since the lattice constant limits the shortest wavelength. In contrast, fluctuations
on infinitesimal length scales of continuous systems absorb all the energy in the coupling term ~| V|2 as a zero
energy peak absorbs al particles so that the system blows up in finite-time.

4.7. Particle nonconserving systems

The separation into ahigh- and alow-amplitude state follows from the entropy maximization under therestriction
of the second conserved quantity. This separation of the system into small fluctuations and high peaks does not
occur if the second quantity is not conserved (Section 3.3.4). The system can produce or annihilate particles to
increase the fluctuations entropy and thermalizes on the energy shell without further constraints. The Hamiltonian
H =3, JCput; — but}spy — $ibur1) — @lgn|? — |$u|* (We neglect the small symmetry breaking term) may
be considered asasum E = T + V of a coupling term and a potential term. The sign of w in —w|¢,|% — |¢n|*
decidesif thereis a potentia well or amaximum at ¢ = 0. This explains the two types of thermalization found in
Section 3.3.4:

o < 0. The trajectories change very little under the influence of the weak symmetry breaking field for small
times. A pattern of high peaks emergesinitially, but disappears again since the surplus particles are annihil ated
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(Fig. 6¢). The system finally settles into a state of small fluctuations trapped in the potential well. However,
some oscillators may escape from the local energy minimum and attain high-amplitudes for weaker symmetry
breaking fields.

w > 0. The system thermalizes in a state of high-amplitude fluctuations. In the DNLS-system, the amplitudes
continue to grow without bound since particles are created (Fig. 6d). Energy is transferred from the potential
to the coupling term so that 7 and | V| both grow. This growth stopsfinally so that the amplitudes remain finite.

It is the shape of the potentia that leads to low-amplitude fluctuations by particle annihilation (i) or to particle
creation allowing high-amplitude fluctuations (ii) by thermalization. Interestingly, particle nonconservation does
not led to fluctuations with infinite amplitudesin (ii); the particle production stopsfinally. The reason for thisisthe
mismatch of the orders of the potential energy V ~ —|¢|* and the coupling term that grows only quadratically with
the amplitude. Beyond certain high-amplitudes the coupling energy cannot absorb any more energy that isreleased
by the potential. A further increase of the amplitude would distort the Rayleigh—Jeans distribution towards high
wavenumbers and reduce the systems entropy; particle production hasto stop therefore. In other words, the energy
shell does not contain states with infinite amplitudes.

The Landau—Lifshitz equation with @ < 0 leads to small fluctuations since the anisotropic energy has quadratic
minima at the poles. The potential energy is maximal at the north pole for sufficiently strong values w > 0, so that
large but finite fluctuations emerge.

4.8. Leapfrog-discretized KdV equation

The intermediate dynamics of the discretized KdV equation resembles the spin systems formation of an equilib-
rium state. The blow-up however is an intrinsic noneguilibrium process. We study the phase space volume that is
accessible to the system during this process.

4.8.1. Phase space shell
The leapfrog-discretized KdV (3) isanonlinear, areapreserving mapping inthe N variablesu(n), v(n). Thearea
preserving property can be seen from the Jacobian

(BG(u(n),...)) /
u(l)
1 0

J= =1, (20)

where [ is the identity matrix and O is the zero matrix. G comprises the linear and the nonlinear derivative term
of (3). The phase space that is accessible to the system is restricted by the integrals of motion > u,, (n)v,, (n),
D> upm(n) = voyy1(n) and Y uzmi1(n) = Y va, (n). Introducing the variables P, (n) = uy, (n) + vy (n) and
Om(n) = upy(n) — vy (n), the conserved quantity > u(n)v(n) of (3) may be written as

1 1
2(u) =2 u(m)v(n)/N = o > Pm)? - o > om?, (21)
n n
as the difference of two unbounded positive terms while the nonconserved modulus-square norm is
1 1
2., .2y 2 2 _ = 2, — 2

(W? + %) = > (@m?+ v(m)?)/N = oy Zn:P(n) + 5% Z 0(n)2. (22)

Solutions of (3) which correspond to physical solutions have u(n) ~ v(n) so that Q(n) ~ 0. Roughly speaking,

P(n) isassociated to the physical modes which are solutions of the original partial differential equation while Q(n)
is associated to spurious computational modes. The integrals (P) = > P(n)/N and (Q) = > Q(n)/N arelinked
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to the system’sk = 0 modes. It is useful to consider the phase space only at even (or equivalently only at odd) time
steps since the sign of (Q) changes with each time step.

The modulus-square norm (12 + v2) is almost constant on an intermediate time scale 500 < m < 2800 in
Fig. 9aand until the blow-up (m < 34,000) in Fig. 9b. While the phase space shell defined by constant (), (v) and
(uv) has an infinite volume, the additional constraint of keeping (1> + v?) constant gives afinite phase space shell
v((u? + v?)). Thetotal phase space shell without this constraint is given by £2 ~ [ v((u? + v?)) d(u? + v?).

Themap (3) isagain areapreservingin P(n) and Q (n), and the microcanonical partition function can be rewritten
as

v((u? 4 v / (3" Pav2r2—NeP?2)) s (3 Pon - Nep)) [T dPon
/ (Z Q(m)?/2— N(Q /2) (Z o) — ))]_[dQ(n). (23)

The integrals over dP(n) and over dQ(n) each measure the intersection of a hypersphere with the radius (P?/2)
(and (Q?/2)) and a hyperplane that intersects the P(n)-axes at P(n) = (P), (and Q(n)-axesat Q(n) = (Q)), and
onefinds

v(u? + %) ~ (P?) — (PYHN (0% — (0)HV 1
~ ((U?) + (V%) — @)% — (1)®)? — 4(uv) — () ()>HV L. (24)

This expression growsrapidly with (12 4+ v?). Onthe other side, it decreases with the correlation (uv). Sincethereis
no upper limit for the modulus-square norm, the surface §2 of the conserved quantities phase space shell isinfinite.

4.8.2. Thefocusing process for correlated initial conditions

During the focusing process Fig. 7athe system gathers huge quantities of the correlation (uv) and (12 + v?) into
dense solitary waves so that the remaining space is filled with uncorrelated white noise of u and v. It is tempting
to interpret this phenomenon along the lines of the formation of down-magnetized domains that allowed the spin
chain to maximize the entropy of small fluctuations. The partition function (23) however gives no reason for this
interpretation; (uv) may well be distributed equally in space in (24). The main problem is that (12 + v?) is not
conserved. The system can increase this quantity to increase its entropy. Thisiswhat happensin the first 400 time
stepsin Fig. 9a. The initia reversible process increases and decreases this quantity as the trgjectory is close to a
homoclinic orbit linked to the phase instability of theinitial k = 2r/3 wave. Asthe trgjectory disappears from this
orbit, (u? +v?) reaches aplateau aboveitsinitial valuethat increases slowly during subsequent mergings of solitons
until shortly before the blow-up. The solitons are highly correlated wave-packets of the k = 27r/3 carrier wave, so
they contain both (12 + v2) and (uv). The formation of the solitary waves allows the system to increase (u? + v?)
thereby increasing v.

4.8.3. The focusing process for uncorrelated white noise initial conditions

While nonlinear terms are extremely weak for theinitial noiselevel ~0.01 (Fig. 7), thereisan insidious nonlinear
processthat increasesthe amplitude slowly to the level wherethe rapid growth can occur. Fig. 10 showsthe low-pass
filtered amplitude of u(n) (a) and v(n) (b) long before the blow-up occurs at this site. Its shape changes only slowly
over even (respectively odd) time steps. u;, (1), v2, (n) both grow slowly in time, but they deviate substantially
from each other. Interestingly, the feedback from short waves changes this dynamics very little. Fig. 10d shows
the dynamics for smooth long wave initial conditions ug(n) = 0.01/ cosh2(n — 510), vo(n) = 0. The solution’s
shape is very similar to the solution emerging out of white uncorrelated noise in Fig. 10a and it also initiates the
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‘monster’ solution. The amplitudes may be described by continuousfunctionsin spaceand timeasuz,, (n) = r(z, x)
and vy, (n) = s(¢, x). Their dynamicsis given by two coupled continuous KdV equations

7 = Syxx — 0SSy, 8 = Fyxx — OITy. (25)

These equations describe the long wave dynamics of the leapfrog system where the strength of the physical and
the computational mode is of the same order. Unlike the KdV equation, spatially homogeneous solutions of the
coupled KdV equations can be phase-unstable. Constant solutions » = rp and s = so have the eigenvalues A% =
—ropsok? — (ro + so)k* — k8. They are unstable for roso < 0 and for rg = 0, so < O (or for ro < 0, sg = 0). The
first instability is very similar to the Benjamin—Feir modulational instability and leads to traveling solitary waves
which eventually can grow sufficiently large to access the ‘monster’ solution. The second is new and particularly
interesting as it can initiate the ‘monster’ solution in a region where (uv) is zero. Its unstable mode has a shorter
wavel ength than the Benjamin—Feir mode (although still long compared to the lattice constant) and moreover grows
faster. We argue below that this saddle point in the phase space is accessed readily by an evolving solution because
of an inverse flux of the power spectrum of the u, v correlation towards low wavenumbers. Once the system comes
close enough to this starting point, alocalized solution grows irreversibly until it reaches the size necessary for the
rapidly growing monster solution which is a heteroclinic connection to infinity [20].

4.8.4. The blow-up of amplitudes

As (3) is nonintegrable, it is hardly surprising that the trajectory eventually separates from any orbit shadow-
ing a solution of the original partial differential equation. The trajectory simply can disappear from the original
Kolmogorov—Arnold-Moser torus by Arnold diffusion and explore regions of the phase space that are most likely
connected with high-amplitudes. The amazing finding isthat this process can lead to such arapid and unpredictable
divergence of the amplitude. This feature is absent in the spin system where the phase space itself is compact. In
DNLS-systems, the coupling energy is restricted by the lattice constant and the conserved particle number 3 |2,
The first restriction is absent in the two-dimensional continuous NL S equation, a canonical example of a system
with wave collapses. The fixed energy is the difference of two energies [ |V¢|?dV and [ |¢|*dV that each are
not conserved and that can attain any value in a half-open interval. The corresponding conserved quantity in the
leapfrog schemeis2 Y u(n)v(n) = 1/23", P(n)>—1/2", O(n)?, where}" P(n)?> and Y_ Q(n)? each may grow
indefinitely. This suggests that a blow-up occurs in systems where

(i) the phase space noncompact,
(i) theintegral of motion constraining the phase space is the difference of two positive unbounded quantities.

We conjecture that the blow-up is the generic way of thermalization in such systems. The exploration of the
phase space shell defined by a constant difference of two positive definite energies leads to finite-time singularities
since both energies can grow unrestrictedly at the same rate. This may happen if a solitary structure grows beyond
a certain threshold, or more surprisingly in a sudden eruption out of low-amplitude fluctuations. The analytically
known monster solution serves as the canonical highway to infinity during the blow-up.

Analogous to the collapse in the two-dimensiona nonlinear Schrodinger equation this might be an inevitable
consequence of a condensation process. In that context, the spectral energy whose density is approximately wyny
(where w; = k? isthe frequency or energy of awave vector k and n isthe particle density or waveaction) has a
net flux to high wavenumbers. Because both ) wyny and ny are approximately conserved, this means that there
must be a corresponding flux of particles towards low wavenumbers. This flux leads to the growth of a condensate
as particles are absorbed at k = 0. For the focusing NL S equation, this condensate is unstable and leads to the
formation of collapsing filaments. But the instability is very robust and in fact the collapses begin before ny, is all
concentrated at k = 0. As soon asthereis sufficient n; near k = 0, the collapses begin.
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Collapses are inevitable because of the finite flux of particle density to long waves. In the present context, a
similar scenario occurs. Fig. 11a shows the spectral density of (uv) of the structure that leads to the collapsing
monster. It closely agrees to Fig. 11b which shows the spectral density for smooth initial conditions of Fig. 10d
related to the continuous system (25). The similarity to the collapse in two-dimensional NL S-systems suggests that
anet flow of the spectral density of (uv) towards small wavenumbers moves the system towards a saddle point for
the heteroclinic connection to infinity, but the driving force of this processis not yet understood.

5. Conclusions

The fusing of the peaks that emerge from an initial phase instability is distinctive for the self-focusing in non-
integrable systems. As opposed to integrable dispersive nonlinear systems, it leads to the formation of coherent
structures where peaks of high-amplitude emerge from a disordered low-amplitude background. Small wavelength
radiation emitted by the fusing peaks leads to an irreversible transfer of energy to small scales. This can be under-
stood as homoclinc chaos at the onset of an Arnold diffusion process where the trajectory separates from acritical
torus to less distinctive parts of the energy shell in phase space.

This process can be interpreted as the thermalization of energy of an ordered initial state. Table 1 summarizes
these results. We have discussed the equilibrium thermodynamics of alow-temperature state that is reached after a
long time for a generic model, the anisotropic Heisenberg spin chain. The system reaches a state where most spins
contribute to a disordered state near the north pole while the coherent structures correspond to a few xenochrysts
where the spins point to the south pole (first row of thetable). A similar state is reached in nonintegrable NLS-type
of equationsbut it isabsent inintegrable NL S equations (fourth row of thetable) and in systemsthat do not containa
second integral of motion in addition to the energy (third row of thetable). The latter thermalizein alow-amplitude
state with no coherent structures while integrable systems show continuing quasi periodic motion.

The physical conclusion of thisresult isthat the focusing processis driven by the generation of entropy in a state
of small amplitudewaves. Thelink between the entropy and the emergence of peaksisthe constraint imposed by two
integrals of motion. Starting from a highly ordered state, the system cannot simply increase its entropy by reaching
itsmost likely state of small amplitude fluctuations since it is restricted by a second conservation law. To reach the
entropy maximum, the system has to allocate the right amount of the second conserved quantity to low-amplitude
fluctuations that absorb most of the energy. Whenever there is a surplus of this second conserved quantity, this
maximum can be reached by gathering the surplus of the second conserved quantity in the sites of the coherent
structures (first row of the table). The system cannot thermalize completely and no coherent structures emerge if
there is alack of the second conserved quantity (second row of the table). This leads to the phase transition-like
dependence of the amount of coherent structures on the energy in Fig. 7.

Speaking in terms of Eq. (19), aninitial distribution of particlesn; will not be able to reach the Rayleigh-Jeans
distribution while obeying both the conservation of energy » _ niwy andthe particlenumber Y ny. But therestriction
of particle conservation may be circumvented by gathering low-energy particles in small domains and transferring
their energy to the remaining particles to increase the overall entropy. In that sense, the formation of coherent
structures is reminiscent of the condensation of droplets in oversaturated steam where the entropy is maximized
under the restriction of particle conservation.

The conserved quantities of the leapfrog-discretized KdV equation are insufficient to ensure athermalizationina
well-defined state. This system contains new degrees of freedom since the amplitudes at even and odd times may not
bein step. Theconserved correlation 2 Y u(n)v(n) of thesefieldsisthedifferenceof thephysical 3" (u (1) +v(n))?/2
and computational Y " (u(n) — v(n))2/2 energies that both can grow in an unbounded fashion similar to f |V |2dV
and [ |#|* dV inthe collapse of nonlinear Schrodinger systems. An infinite phase space volume is accessible on the



Table1

Summary of the thermalization processes of the Heisenberg spin chain, the discrete nonlinear Schrodinger equation, and the leapfrog map

Integrals of motion

Initial conditions

Phenomena

Path to maximum entropy

(1) Hamiltonian #, (2) M (magnetization)
or N (particle number) due to rotational
symmetry (Section 2.1.3)

(1) Hamiltonian H, (2) M or N dueto
rotational symmetry (Section 2.1.3)

Hamiltonian H, broken rotational symmetry
(Section 3.3.4)

Hamiltonian #, infinite number of integrals
of motion (Section 3.3.3)

(1) Energy > uv, (2) mass > u, > v
(Section 2.2.2)

(1) Energy > uv, (2) mass Y u, > v
(Section 2.2.2)

Long waves with small amplitudes low

ratio (H)/(N)

Short waves with small amplitudes and
high (H)/(N); coherent structures with

low (H)/(N)
Any
Any

k = 2m/3 waves with nonzero energy

White noise with zero energy

Formation of coherent structures and
low-amplitude fluctuations (Figs. 1-3a, b
and 6a)

Destruction of coherent structures (Fig. 3c)

Disordered fluctuations (Fig. 6¢c and d)

Quasi periodic emergence of coherent
structures (Fig. 6b)

Formation of coherent structures and
low-amplitude fluctuations (Fig. 7a);
‘monster’ (Fig. 10c)

Sudden local growth of the amplitude
(Figs. 7b, 10aand b)

Transfer of (N) into coherent structures
optimum ratio of (#)/(N) influctuations

(Figs. 13aand 14a)

Transfer of (N} from coherent structures
into fluctuations; decrease of (H)/(N) in
fluctuations (Figs. 13a and 14b)

Production or reduction of (A} optimum

ratio of (H)/(N)} in fluctuations

No thermalization

Transfer of ) uv into coherent
structures, heteroclinic connection to
infinity (Fig. 8)

Heteroclinic connection to infinity
(Fig. 10c)
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shells of constant Y u(n)v(n). If Y u(m)v(n) isfinite (fifth row of the table), a modulational instability of usual
Benjamin—Feir type leads to traveling soliton waves which sweep up smaller ones as they travel aong the circle
so that a scenario of merging peaks takes place on intermediate time scales. Finally, the system finds a way to
exploit al of the phase space when along wave instability of the background noise givesrise to the rapidly growing
‘monster’ solution. The same solution can be initiated by a short-wavelength instability for > u(n)v(n) = 0 (sixth
row of thetable). This solution isthe systems canonical way of exploiting the phase space associated with infinitely
high-amplitudes.
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