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Abstract

We demonstrate how phyllotaxis (the arrangement of leaves on plants) and the ribbed, hexagonal, or parallelogram planforms on

plants can be understood as the energy-minimizing buckling pattern of a compressed sheet (the plant’s tunica) on an elastic

foundation. The key idea is that the elastic energy is minimized by configurations consisting of special triads of periodic

deformations. We study the conditions that lead to continuous or discontinuous transitions between patterns, state testable

predictions, and suggest experiments to test the theory.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction and overview

1.1. Overview

Our goal is to understand the processes that lead to
polygonal planforms and phyllotaxis on plants. In this
overview, we set out the main ideas in a narrative form
which uses a minimum amount of mathematical jargon
and symbols. In the subsequent sections, we supply a
historical and descriptive background of the challenge,
the reasons behind our choice of model, a more detailed
analysis of the model, support for the key ideas
introduced in this overview, and a discussion of what
one can reasonably conclude. This work is the promised
extension of the ideas first presented in Shipman and
Newell (2004).
We use the term polygonal planform to connote the

tiling of the plant surface into irregular polygons which
are usually manifested as ribs, parallelograms, hexagons,
e front matter r 2005 Elsevier Ltd. All rights reserved.
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and what we call staircase parallelograms. These cases are
illustrated in Fig. 1. Plant phyllotaxis refers to the
arrangement (taxis) of phylla (leaves, florets, bracts on a
pinecone, or stickers) on the plant surface. In Fig. 2(a),
we show such an arrangement where the phylla, located
at the maxima in the surface deformation, all lie on three
families of spirals, three clockwise, five anticlockwise, and
eight slightly clockwise, but almost radial. The fact that
the integers 3; 5; 8 happen to be a sequential triplet in the
Fibonacci sequence 1; 1; 2; 3; 5; 8; 13; . . . is no accident.
The occurrences of Fibonacci sequences in plants has
intrigued natural scientists since the time of Kepler.
As the plant grows, the pattern will change. Indeed,

we will find that one important parameter is a non-
dimensional measure of the plant’s radius, which we call
G: In Fig. 9 we illustrate transitions between patterns on
plants. Some plants, as they grow, will follow a regular
Fibonacci sequence such as ð2; 3; 5Þ ! ð3; 5; 8Þ !
ð5; 8; 13Þ ! ð8; 13; 21Þ ! � � � (Fig. 9(c–f)). Other plants
will follow a non-Fibonacci sequence such as ð2; 3; 5Þ !
ð3; 3; 6Þ ! ð3; 4; 7Þ ! � � � (Fig. 9(a and b)). We would
like to understand what circumstances lead to the
different kinds of transitions.
Transitions come in four potential types. The first two

types involve what physicists call a first-order (I) phase

www.elsevier.com/locate/yjtbi
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transition, where some parameter (called an order
parameter), which measures the shape of the pattern,
undergoes a sudden and discontinuous change. If that
change involves a transition from one triad to another in
which only one integer is shared (e.g. ð2; 3; 5Þ ! ð3; 3; 6Þ)
we denote the transition as (I,1). If the triads share two
integers, we call the transition (I,2). In a plant which
undergoes a first-order (sudden) phase transition, we
Fig. 1. (a) Ribs on a saguaro cactus, (b) hexagons on a pine cone, (c)

parallelograms on a cactus, and (d) staircase parallelograms on a

cactus.

Fig. 2. The phylla of the cactus (a) and succulent (c) are numbered accord

coordinates, the numbered points form lattices.
will observe the different states will be separated by
point singularities. The second type of phase transition,
called a second-order phase transition (II) is one in
which the order parameter changes continuously as the
plant size G increases, although its rate of change with
respect to G will usually be discontinuous. If the
transition between two triads is continuous and shares
two integers, we denote it as (II,2). Transitions of type
(II,1) seem not to be observed and those of type (I,2) are
rare. There are circumstances, such as the presence of
prior bias (called geometric imperfection by Koiter
(1963)), in which second-order phase transitions can be
smooth, namely involve no discontinuity in the rate of
change. The idea is simple to explain. Suppose that one
were to compress a beam along its vertical axis and
constrain any deformation to be planar. Think of the
beam as having a rectangular cross section, with one
side much longer than the other. At sufficient loading,
the compressed beam will become unstable and bow to
the left or to the right. If there is no initial bias, either
direction is equally likely. But, if the beam is slightly
bowed to begin with, say to the left, then the leftward
deformation will be amplified continuously as soon as
the load is applied, although the amplification will
accelerate significantly near the critical buckling load,
namely that load at which the uniformly compressed
beam becomes unstable to a left or right deflection in the
unbiased case. Bias will be one of the important
ingredients in our overall picture.
In recent years, there have been two directions of

inquiry which have attempted to provide quantitative
rationales for plant phyllotaxis. These are discussed in
detail in Section 2; here, we sketch the main ideas and
ing to their distance from the center. (b,d) In radial s and angular a
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the roles they have had in our thinking. In a series of
papers in the 1990s, Douady and Couder (1992,
1996a–c) (DC), motivated by the rules of Hofmeister
(1868) of a century before, created an ingenious
magneto-mechanical paradigm accessible to experiment.
The experiment involved configurations of mutually
repelling dipoles introduced at regular intervals to the
pattern in an applied magnetic field which meant that
the dipole, once placed, would travel radially outwards
at an exponential rate. DC showed how energy-
minimizing configurations followed Fibonacci rules.
The second direction of inquiry was pioneered by the
late Paul Green and colleagues C. Steele, J. Dumais,
S. Rennich and L. Hernández (GSDRH) at Stanford.
Their idea was that compressive stresses are set up
due to differential growth in the plant’s tunica (the skin)
and its corpus (the squishy fibrous material of the
body). They argued that these stresses, more circumfer-
ential than radial, are sufficiently large in an
annular region circumscribing the plant’s shoot apical
meristem (SAM) to cause buckling of the tunica. Their
picture was that the buckling configuration would give
rise to the plant’s pattern. However, their model only
exhibited patterns similar to those observed when they
forced the boundaries in special ways (Green et al.,
1998).
The model we suggest was informed and inspired by

both of these approaches. On the one hand, we agree
with GSDRH that induced mechanical forces and
compressive stresses are the mechanisms for producing
plant surface deformations near the SAM. What we
suggest that is new, however, and how our idea connects
with that of DC, is that the observed plant patterns and
phyllotaxis occur naturally, intrinsically, as those
deformations which minimize the elastic energy of
the annular region of the tunica supported by the
corpus, which plays the role of an elastic foundation.
These deformations will form naturally, independent of
boundary conditions. The key realization, and a fact
known to Koiter (1963) many years ago, is that the
shapes of surface deformations of curved elastic shells
on elastic foundations are determined to a large extent
by quadratic nonlinear interactions in the Föppl–von
Kármán–Donnell (FvKD) equations. These terms
emerge from the strain energy of the shell and, in
particular, from terms which are cubic in the amplitude
of the deformation and arise as the product of the Airy
stress F (a tensor potential for the in-plane stresses) and
the Gaussian curvature, which is quadratic in the
normal deformation w to the surface.
The argument in its simplest form goes like this. If the

annulus is big enough (the jargon is spatially extended)
so that the ratios of its width and circumference to the
intrinsic buckling wavelength are large, then deforma-
tions wðr; aÞ (r radial, a circumferential coordinates) can
be written as linear combinations of periodic functions
(cosines) in the form

oðr; aÞ ¼
X

aðl;mÞ cosðlr þ maÞ, (1)

where the summation goes over all vectors ~k ¼ ðl;mÞ

which live in the active set, and the circumferential
wavenumber m is an integer. The active set is the set of
all such shapes which are either amplified or only weakly
damped. Quadratic products of such terms will produce
cosines and sines of sums and differences of the phases,
namely ð�l1 � l2Þr þ ð�m1 � m2Þa: Most of these new
shapes will be heavily damped, but a few will belong to
the active set. This leads to the identification of
wavevector triplets

~km ¼ ðlm;mÞ; ~kn ¼ ðln; nÞ,

~kmþn ¼ ~km þ ~kn ¼ ðlm þ ln;m þ nÞ, ð2Þ

each of which belongs to the active set, which strongly
reinforce each other. For plants, it turns out that the
magnitudes of these quadratic interactions is directly
proportional to C, a non-dimensional measure of the
curvatures of the tunica surface before buckling. It is
such interactions which are responsible for the appear-
ance of hexagonal planforms near the threshold of
instability in many pattern-forming systems (which
share the common symmetry of rotational invariance)
from convection in the horizontal layers of fluids (Busse,
1967) to the buckling patterns seen on collapsing
spherical shells subject to radial inward pressure (Lange
and Newell, 1971, 1974). For these situations, the
magnitude of the quadratic interaction is directly
proportional to a parameter which measures how close
the system is to an up-down (o ! �o) symmetry.
The further from this symmetry that the system is,
the stronger is the quadratic interaction. In our model,
this distance is measured by C.
The first key idea is that deformations oðr; aÞ of the

tunica surface consist of linear combinations of triads or
sets of triads whose normal deformation oðr; aÞ is
given by

oðr; aÞ ¼
X

ðam cosðlmr þ maÞ þ an cosðlnr þ naÞ

þ amþn cosððlm þ lnÞr þ ðm þ nÞaÞÞ, ð3Þ

where the symbol
P
denotes that there may be more

than one such set. Already we see a hint of Fibonacci
rules. The circumferential wavenumbers m; n;m þ n;
namely the numbers of spiral arms in the deformation
(3), add according to the Fibonacci rule ðmÞ þ ðnÞ ¼

m þ n: But, of course, this is not the whole story,
because, for example, 2þ 5 ¼ 7 and ð2; 5; 7Þ is not a
triplet in the regular Fibonacci sequence.
The second key idea uses the fact that, for reasons we

discuss in Section 2, the circumferential stress in the
annular region is larger than the radial stress. There-
fore, when the stress exceeds a critical value, the
most unstable shape is purely circumferential, with
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wavevector ~k ¼ ðO;GÞ; where G; you recall, is the radius
of the annular region. Now, it could be that the shape
cosðGaÞ simply grows until it reaches a saturation level
determined, for example, by the hard spring properties
of the plant’s corpus. However, for situations in which
quadratic products are important, this configuration is
unstable to an r-dependent deformation which consists
of modes with wavevectors

~km ¼ ð�l;mÞ; ~kn ¼ ðl; nÞ; ~kmþn ¼ ð0;m þ nÞ,

where m þ n ’ G: So, for plants whose tunicas in the
compressed region have large values of C—that is, large
curvature—the purely circumferential mode gives way to
a deformation involving a triad of modes. For low-C
plants, such as the saguaro cactus, the quadratic terms are
small and circumferential ridges dominate the pattern.
For simplicity of argument, let us take G to be an

integer. If G ¼ 2N; then we show that the energy
associated with the deformation w ¼ am cosð�lr þ

maÞ þ an cosðlr þ naÞ þ amþn cosð2NaÞ is minimized at
the choices m ¼ n ¼ N; the radial wavenumber l is a
chosen value of order one and the amplitudes are
roughly equal. Such deformations look roughly hex-
agonal (see Fig. 5(b)). For G ¼ 2N þ 1; the correspond-
ing radial wavenumber and amplitudes are
approximately the same, but this time m ¼ N and n ¼

N þ 1: So, imagine that we begin with G ¼ 2N and
denote the resulting energy-minimizing deformation by
its circumferential wavenumber triplet ðN;N; 2NÞ: Such
objects are known as N-whorls, the most prevalent of
which in nature is the 2-whorl (or decussate) pattern. As
the plant size increases (we will imagine it does this in
integer steps) to 2N þ 1; the N-whorl ðN;N; 2NÞ will
undergo a (I,1) transition to a ðN;N þ 1; 2N þ 1Þ-spiral
pattern. For example, it is often observed that an
alternating 2-whorl (2,2,4) becomes a ð2; 3; 5Þ pattern
whose phylla lie on families of two, three, or five spirals.
The question is: what happens next? What happens as G
increases beyond 2N þ 1 (here 5)?
The third key idea draws on observations of what

actually happens as a plant grows. Its tunica (skin)
grows because of new material emanating from the
SAM. As it moves away from the SAM, it hardens (a
process which may also add to the induced stress) and
buckling takes place in an annular hardened region. The
rates at which the tunica spreads and at which the
overall plant grows may be different. If the former is
larger, then the buckled pattern formed in the annular
region moves radially outwards relative to the growing
plant (and the radial distance G to the center of the
compressed band) into a subcritically compressed
region. Subsequent buckling in the compressed region
will be different. Firstly, the plant size G is larger, so,
potentially, slightly different shapes can be amplified.
Secondly, there is bias because the previously produced
pattern, which is now on the outer fringes of the
buckling region, will discriminate amongst several
possible choices of minimizing configurations for the
next buckling pattern. The key again is quadratic
interactions. Suppose the ðN;N þ 1; 2N þ 1Þ pattern
has moved to the outer fringe of the new buckling
region. The possible quadratic interactions will produce
the following possibilities: (i) N þ ðN þ 1Þ ¼ 2N þ 1;
which is already present; (ii) N þ ð2N þ 1Þ ¼ 3N þ 1;
and (iii) ðN þ 1Þ þ ð2N þ 1Þ ¼ 3N þ 2:What we show is
that, of the latter two possibilities, (iii) is more
important. The reasons for this depend on the structure
of the parameters sðl;mÞ; tðm; n;m þ nÞ of our model,
which measure linear growth and the strength of
quadratic interactions. For simplicity, let us look at
which modes in a f2; 3; 5; 7 ¼ 2þ 5; 8 ¼ 3þ 5g-sequence
will lead to energy minimization. The quadratic inter-
action producing the 7 involves the product a2a5; but, at
this stage, the 2-mode is already quite heavily damped.
Also, its coefficient tð2; 5; 7Þ peaks at a different radial
wavenumber than does tð3; 5; 8Þ; which multiplies the
product a3a5: The upshot is that the latter wins. The
new energy-minimizing configuration will be a linear
combination of the four modes with circumferential
wavenumbers N, N þ 1; 2N þ 1 and 3N þ 2 with
appropriately chosen amplitudes and radial wavenum-
bers. As G continues to increase, and as this configura-
tion moves to the outer edge of the pattern-generating
region, it will provide a bias for the next buckling
pattern. The bias will favor the existing modes with
circumferential wavenumbers N;N þ 1; 2N þ 1; 3N þ 2
which are already present, and the new possibilities
3N þ 1; 4N þ 2; 4N þ 3 and 5N þ 3: For reasons
similar to those given earlier for choosing the 3N þ 2
(¼ 8 for N ¼ 2) mode over the 3N þ 1 mode, it is the
last, namely 5N þ 3; which enters the next energy-
minimizing buckling configuration. This is exactly the
recipe for the regular Fibonacci sequence. The preferred
next circumferential wavenumber to be excited as G
increases is the sum of the last two. Continuing this rule,
we obtain that, as the plant grows, its dominant
circumferential (spiral) wavenumbers run through
the Fibonacci sequence fN;N þ 1; 2N þ 1; 3N þ 2; . . . ;
f nþ1N þ f ng; where f n is the nth Fibonacci number. We
shall also see in Section 4 that this leads to a choice of
golden divergence angle.
Moreover, our analysis allows us to compute more

than energy minima. This is important because there are
typically many minima in the energy landscape function
and the task is to determine not just which states
minimize the energy, but which among them can be
dynamically realized beginning from various configura-
tions. What we find is that the minimum realized is
not always the one with lowest energy, but the one in
whose basin of attraction the starting configuration
lies; this is a point which Douady and Couder (1996b, c)
also make. We can follow the dynamics by solving the
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time-dependent amplitude equations for the modes
involved; we include the effects of bias by adding to
those equations calculable constants. Using this ap-
proach, one can readily see why it is that the system
tends to land in the minima corresponding to circumfer-
ential wavenumbers of the Fibonacci sequence.
Consider next the envelope of corresponding ampli-

tudes

faN ; aNþ1; a2Nþ1; a3Nþ2; a5Nþ3; . . . ; af nþ1Nþf n
g (4)

as G grows. At first, the envelope is supported on the
first three, i.e. aN ’ aNþ1 ’ a2Nþ1; and ar ’ 0 for
r42N þ 1: This leads to irregular hexagonal shapes.
As we move up the sequence, however, the envelope is
more likely to contain four or five non-zero amplitudes;
this will produce parallelogram or staircase-parallelo-
gram planforms. For reasons that we shall later explain,
it is unlikely for the envelope to support more than five
sequential modes at any one value of G: In fact, the
shape of the envelope is more or less the same for all
GX5 (see Fig. 4).
This analysis assumes, of course, that the quadratic

coefficient tðm; n;m þ nÞ which is proportional to the
original tunica curvature C, is of order one. For C very
small, the triads are ridge-dominated, and the plant
evolves by adding a new ridge every time G increases by
an integer. The dislocations joining these ridge patterns
can be seen on all saguaro cacti.
In summary, then, the template which forms the

patterned surface of plants is provided by the buckling
of a compressed and curved annular region of the tunica
near the SAM into its intrinsic energy-minimizing
configurations. The normal deformation to the plant
surface consists of linear combinations of overlapping
triads of cosines with phases lr þ ma; where the sequence
of chosen circumferential wavenumbers m often follows
Fibonacci rules, and where radial wavenumbers also
follow a triad addition rule lnþ2 ¼ ln þ lnþ1:
But, a glance at a mature plant will show that the

story cannot end there. The primordia (bumps) and
phylla (stickers) at their maxima are far larger than the
tunica skin thickness which, according to the buckling
shell theory, is the magnitude of the surface deforma-
tion. To reach the mature state, we surmise that the
plant pattern which has moved away from the com-
pressed region undergoes further growth due to the
combined influences of local stress and local growth. We
shall show that, after buckling, the stress field is non-
uniform and largest at the maxima of the surface
deformation. It is documented that there is a close and
symbiotic relationship between growth and stress in
plants; thus, we suggest that this extra local stress will
lead to a non-uniform distribution of the growth
hormone auxin and lead to a local amplification of the
deformations. This, in turn, will increase the stress there
and create an even more non-uniform distribution of
auxin. But, we emphasize again that the character of the
deformation has already been set by mechanical forces.
Before going into more details, it is important to

emphasize another crucial point. Patterns are macro-
scopic objects whose behaviors are governed more by
common symmetries that systems share and less by their
microscopic details. Pattern textures, both the plan-
forms (ribs, hexagons, parallelograms) and their defects
(dislocations, penta–hepta pairs) are canonical and
universal. For this reason, one has to be careful about
falling victim to looks-like science. Any microscopic
model we might propose to explain plant patterns which
shares the overall symmetry properties of the model we
shall introduce will produce macroscopically similar
results. Therefore, we must be cautious about making
the inference that because our model produces patterns
which appear to have a similar character to those
observed, it must be correct. What we have to do is to
look at the details. In our case, the signatures of the
microscopic model are contained in the growth rate
sðl;mÞ and quadratic coupling coefficient tðm; n;m þ nÞ:
It is their structures, peculiar to our elastic buckling
model, and their dependence on plant size and
curvature, which make our case plausible.

1.2. Phyllotactic parameters and coordinates: The

physical and Fourier space dual lattices

In the previous section, we described both the
positions of phylla on the plant surface and the
polygonal tiling of the plant surface. The purpose
of this section is to develop natural coordinates in
which to state the positions of phylla, and then to
establish the relationship to the polygonal shapes.
In Figs. 2(a and c), phylla are numbered according to

their distance from the centers of the plants. This allows
us to illustrate the following three standard parameters
used to describe phyllotactic patterns:
1.
 The whorl number g: Each phyllo on a plant is a
member of a whorl of g phylla that are evenly spaced
about a circle centered at the center of the plant. The
number g is locally constant. For the example of
Fig. 2(c), g ¼ 2; as one sees pairs of phylla that are
equidistant from the center of the plant. For the
cactus of Fig. 2(a), g ¼ 1:
2.
 The divergence angle D ¼ 2pd: The angle between
consecutively numbered phylla is taken to be the
angle between the rays from the center of the plant to
the centers of those phylla; see Fig. 2(a). It is an
observation that the angle between any two consecu-
tively numbered phylla is locally constant on any
plant; this constant is called the divergence angle, D ¼

2pd: There is a natural ambiguity in the measurement
of the angle, as one can either measure clockwise or
counterclockwise. If the two measurements are not
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equal, the plant shows a handedness and D ¼ 2pd is
taken to be the smaller of the two measurements;
thus, 0odp 1

2
: In our Fig. 2(a) example, the

divergence angle is roughly D ¼ 2pð0:382Þ measured
clockwise, and for the example of Fig. 2(c), D ¼ 2p

4

measured either counterclockwise or clockwise.

3.
Fig. 3. (a) Parallelograms on a pine cone giving families of 8

counterclockwise and 13 clockwise spirals. (b) Hexagons on a cactus,

giving familes of 8 counterclockwise and 13 clockwise spirals, and a

third family of 21 ¼ 8þ 13 counterclockwise spirals (marked by

thinner lines).
The plastochrone ratio l: Call the length of the ray
from the center of the plant to the center of the nth-
numbered phyllo Ln; see Fig. 2(b). The standard
claim of the phyllotactic literature is that on most
plants, at least for phylla close the center, the ratio
Lnþ1

Ln
is locally independent of n. That ratio is called

the plastochrone ratio. It seems that on many cacti it
is the difference Lnþ1 � Ln that is constant. For such
plants that difference we shall call the plastochrone

difference. We will denote this parameter by l:

The observations leading to parameters g; d and l tell
us that the arrangement of phylla on plants is a lattice.
To see this pictorially, put radial and angular coordi-
nates ðr; aÞ on the cactus of Fig. 2 and then transfer the
result to Fig. 2(b), where dots represent the centers of
phylla, and the vertical axis is s ¼ logðrÞ if the plant
exhibits the plastochrone ratio and s ¼ r if the plant
exhibits the plastochrone difference. We choose the
direction of increasing a to be the direction determined
by the clockwise or counterclockwise handedness. If the
plant has whorl number g, divergence angle D ¼ 2pd

and plastochrone ratio l; in the ðs; aÞ-plane the plant’s
phylla are part of a lattice Oð~ol;d ; ~ogÞ that is the integer
span of the vectors ~ol;d ¼ ðl; 2pdÞ and ~og ¼ ð0; 2p

g
Þ

where l equals logðlÞ or l if l is a plastochrone ratio
or difference, respectively. The bases of Oð~ol;d ; ~ogÞ are
exactly the linear combinations

a~ol;d þ b~og ¼ al; 2p daþ
b
g

� �� �

¼
1

g
ðgal; 2pðgad þ bÞÞ,

g~ol;d þ d~og ¼ gl; 2p dgþ
d
g

� �� �

¼
1

g
ðggl; 2pðggd þ dÞÞ, ð5Þ

where a; b; g; and d are integers such that ad� bg ¼ �1:
Setting m¼

:
ga; n¼

:
gg; p¼

: d; q¼
: b; we have that all of the

bases of the lattice Oð~ol;d ; ~ogÞ are given by

~om ¼
1

g
ðml; 2pðmd � qÞÞ,

~on ¼
1

g
ðnl; 2pðnd � pÞÞ, ð6Þ

where m, n, p, q are any integers such that pm � qn ¼

�g ¼ � gcdðm; nÞ; gcdðm; nÞ means the greatest common
divisor of m and n.
There are an infinite number of possible choices for
ðm; nÞ that give generators (6) for a lattice determined by
g, d and l: Typically, however, there is a natural choice
for a given plant; this choice is called the parastichy pair.
Consider, for example, the pine cone in Fig. 3(a). The
white lines connect the centers of bracts that touch each
other. Each bract is parallelogram-shaped and touches
four other bracts; one thus obtains two families of
spirals, (eight) 13 emanating (counter)clockwise from
the center of the cone. With the choice of d ’ 0:378; we
choose m ¼ 8; n ¼ 13 in stating the lattice generators
and say that the cone exhibits the parastichy pair ð8; 13Þ:
The lattice generators describing the plant’s phyllotaxis
are thus

~o8 ¼ ð8l; 2pð8d � 3ÞÞ,

~o13 ¼ ð13l; 2pð13d � 5ÞÞ ð7Þ

with d ’ 0:378: Now consider the cactus of Fig. 3(b). In
this case, the plant is tiled by hexagons, and there are
thus three families of spirals that connect neighboring
groups of stickers (called aeroles). Thus, we will describe
the plant with three generators

~o8 ¼ ð8l; 2pð8d � 3ÞÞ,

~o13 ¼ ð13l; 2pð13d � 5ÞÞ,

~o21 ¼ ð21l; 2pð21d � 8ÞÞ, ð8Þ

where again d ’ 0:378: Looking closely at the pine cone
of Fig. 3(a), seen again in Fig. 4, one notices that besides
the strongly marked families of 8 clockwise and 13
counterclockwise spirals that mark out the parallelo-
grams, ridges along the diagonals of each bract mark
out families of 5 ¼ 13� 8 counterclockwise and 21 ¼
13þ 8 clockwise spirals. Thus, one may desire to state
instead of just the two generators (7), the four lattice
generators ~o5 ¼ ~o13 � ~o8; ~o8; ~o13; and ~o21 ¼ ~o8 þ ~o13;
the shape of the bracts, however, indicates that the two
vectors ~o5 and ~o21 have somewhat less weight than their
middle colleagues.
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The discussion has thus led us to a description of the
shape of the plant surface deformations and a need to
assign weights to the descriptive lattice generators. To
further establish the connection between the shapes and
positions of phylla, examine Fig. 5, where functions of
the form

oðs; aÞ ¼
XN

j¼1

aj cosð~kj � ~xÞ (9)

for wavevectors ~kj ¼ ðlj ;mjÞ; ~x ¼ ðs; aÞ and ~kj � ~x ¼ ljs þ

mja are plotted for various choices of the amplitudes aj

and wavevectors ~kj : We will show in Section 4 how our
model dictates the choices of wavevectors and corre-
sponding values of the amplitudes; we will find that
(i)
Fig.

spira

paral

clock

Fig.

funct

large

paral
patterns with dominant ridges are produced by
a sum oðs; aÞ ¼

P3
j¼1aj cosð~kj � ~xÞ in which ~k1 þ

~k2 ¼ ~k3 and a34a1 ’ a2 (Fig. 5(a)),
4. Besides the families of 8 counterclockwise and 13 clockwise

ls marked in (a), one notes ridges along the diagonals of the

lelogram-shaped bracts. These mark out familes of 13� 8 ¼ 5

wise and 8þ 13 ¼ 21 counterclockwise spirals.

5. A preview of the results of Section 4. (a) The result of the experime

ion of the form (9) is large; this results in a rib pattern. (b) The result of

. (c,d) The results of the experiment of Fig. 21 show (c) a parallelogra

lelogram planform when five amplitudes of (9) are large.
(ii)
nt of

Secti

m pl
hexagonal planforms are produced by a sum
oðs; aÞ ¼

P3
j¼1aj cosð~kj � ~xÞ in which ~k1 þ ~k2 ¼ ~k3

and all amplitudes aj are approximately equal
(Fig. 5(b)),
(iii)
 parallelogram planforms are produced by a sum
oðs; aÞ ¼

P4
j¼1 aj cosð~kj � ~xÞ in which ~k1 þ ~k2 ¼ ~k3;

~k2 þ ~k3 ¼ ~k4 and a1 ’ a4oa2 ’ a3 (Fig. 5(c)), and

(iv)
 staircase parallelogram planforms are produced by

a sum oðs; aÞ ¼
P5

j¼1aj cosð~kj � ~xÞ in which ~k1 þ
~k2 ¼ ~k3; ~k2 þ ~k3 ¼ ~k4; ~k3 þ ~k4 ¼ ~k5; and a1 ’

a5oa2 ’ a4oa5 (Fig. 5(d)).
For each of the functions plotted in Fig. 5, the
wavevectors ~kj are integer combinations of two wave-
vectors ~km ¼ ðlm;mÞ and ~kn ¼ ðln; nÞ; and the maxima of
each function lie on a lattice determined by the choice of
~km; ~kn: Indeed, the maxima of Eq. (9) lie at the
intersections of the families of the lines in the ðs; aÞ-
plane (spirals in the ðx; yÞ-plane) lms þ ma ¼ 2pQ; lns þ

na ¼ 2pP; where P and Q are integers; that is, the
maxima lie at the points

ðs; aÞ ¼ P~o0

m � Q~o0

n

¼
2p

nlm � mln

ðPm � Qn;Pln � QlmÞ, ð10Þ

where

~o0
m ¼

2p
nlm � mln

ðm; lmÞ; ~o0
n ¼

2p
nlm � mln

ðn; lnÞ. (11)

The numbered points in Fig. 2(b) correspond to the
maxima of the plant in Fig. 2(a) and therefore to
the points (10). Fig. 6 demonstrates the description
of the plant in Fig. 2 as a sum of the form (9) and
the lattice (10) in the ðs; aÞ plane. To establish the
relationship between lm and ln and the phyllotactic
coordinates g; d; l; we solve ~o0

m ¼ ~om and ~o0
n ¼ ~on;

where ~om; ~on are given by Eq. (6), for lm and ln and
obtain that

lm ¼
2p
l

ðq � mdÞ; ln ¼
2p
l

ðp � ndÞ,

nlm � mln ¼
2pg

l
. ð12Þ
Fig. 22 gives a configuration in which only one amplitude in a

on 4.4 gives a hexagonal pattern when three amplitudes of (9) are

anform when four amplitudes of (9) are large or (d) a staircase
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Fig. 6. (a) A deformation of the sphere given by the function wðr; aÞ ¼
a3 cosðl3 lnðrÞ þ 3aÞ þ a5 cosðl5 lnðrÞ þ 5aÞ þ a8 cosðl8 lnðrÞ þ 8aÞ;
where l3 þ l5 ¼ l8 ’ 0: (b) The same deformation plotted in the ðs; aÞ-
plane, where s ¼ r:
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Thus, the maxima of the deformation (9), where each
wavevector is an integer combination of

~km ¼ ðlm;mÞ ¼
2p
l

ðq � mdÞ;m

� �
,

~kn ¼ ðln; nÞ ¼
2p
l

ðp � ndÞ; n

� �
, ð13Þ

for given choices of d; l;m; n and p; q such that pm �

qn ¼ �g; occur on a lattice spanned by the generators of
phyllotactic lattices given by Eq. (6), namely

~om ¼
1

g
ðlm; 2pðmd � qÞÞ,

~on ¼
1

g
ðln; 2pðnd � pÞÞ. ð14Þ

The relationship between a pair of wavevectors (13) and
the dual pair (14) of lattice generators can be expressed
by defining the matrices

K ¼

~kn

~km

 !
¼

2p
l

ðp � ndÞ n

2p
l
ðq � mdÞ m

0
BB@

1
CCA,

O ¼ ð~om; ~onÞ ¼
1

g

lm ln

2pðmd � qÞ 2pðnd � pÞ

 !
such that

KO ¼ �2pI .

There is an important difference between stating the
phyllotactic lattice generators or the dual wavevectors
that is central to this paper and is illustrated by the
difference between Figs. 2(b) and 6(b). These figures
show the same phyllotactic lattices, but only Fig. 6(b)
also describes the shape of the phylla. Recall that a
choice of g; d; l determines a lattice, and the infinite
number of bases of this lattice are given by Eq. (6) for
any choice of m; n and p; q such that pm � nq ¼ �g:
Although a different choice of m; n; p; q determines the
same phyllotactic lattice, a different choice of m; n; p; q in
the statement of the wavevectors (13) yields a different
orientation and shape (side lengths) of the (possibly
irregular) hexagons or parallelograms. Also, given m; n;
there is a preferred choice of integers p; q such that pm �

qn ¼ �gcdðm; nÞ: The point 1 in Fig. 2(b) is a point in
the set (10) with the minimal s-coordinate and thus the
minimal value of jPm � Qnj; which is the greatest
common division g ¼ gcdðm; nÞ of m and n. Of the
infinitely many pairs ðP;QÞ such that Pm � Qn ¼ �g;
we define ðp; qÞ to be that pair such that the point 1 is
located at ðs; aÞ ¼ ðl; 2pdÞ ¼ p~om � q~on (there may be
two such points, as in Fig. 2(c,d), but the two points
yield the choices ðp; qÞ ¼ ð0; 1Þ or ð1; 0Þ). For this choice
of p; q; 0o pþq

mþn
p 1
2
; we will see how this ratio is related

to the choice of divergence angle d.
Consider the spiral lms þ ma ¼ 2pq: We have chosen

ðp; qÞ so that its intersection with lns þ na ¼ 2pp is
ðl; 2pdÞ (see Fig. 6(b)). The intersection of lms þ ma ¼

2pq with the next spiral lns þ na ¼ 2pðp � 1Þ in the
second family has s-coordinate snext ¼ lð1� m

g
Þ: The next

phyllo on the lms þ ma ¼ 2pq spiral is therefore m
g
l units

away. For example, if m ¼ 3; n ¼ 5; as in Fig. 2, then
g ¼ 1 and the three clockwise spirals join the points
1; 4; 7; . . . ; 2; 5; 8; . . . ; 3; 6; 9; . . . in the ordering scheme.
Likewise, the spiral lns þ na ¼ 2pp joins the phylla n

g

apart in the ordering scheme.
A description of the plant in terms of these deforma-

tions allows us to assign amplitudes to the periodic
cosines, each having an argument ls þ ma; where m is a
parastichy number. The amplitude sizes determine the
relative importance of each mode. However, the
amplitudes can be difficult to determine just by looking
at the plant; we will show how they naturally emerge
from the theory.

1.3. The formation of the patterns and the area of a new

primordium

As a plant grows, most new material is added at
regions of active cell growth and division called
meristems. Meristems are found at the tip of a plant
shoot (called the apex) and at the tips of roots. Here, we
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Fig. 8. Schematic representation of the SAM.
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will be primarily interested in the meristems found at the
plant tip, called the shoot apical meristem. The SAM at
the tip of a cactus is illustrated in Fig. 7, where one sees
the inside (Fig. 7(c)) and outside (Fig. 7(b)) of a cactus.
The inside of the plant, the corpus, is wet and porous.
This squishy part is covered by a stiffer, more organized,
outer layer called the tunica. Both the tunica and the
corpus grow during plant growth, but growth occurs
differently in different regions of the growth tip.
Hernández et al. (1991) provide a description of the
growth behavior of epidermal cells in the flower of
Anagallis, and Dumais and Kwiatkowska (2001) have
developed a non-destructive technique for following
patterns of cell expansion and division in the tunica and
used it to study the geometry and expansion of a shoot
apex surface (Kwiatkowska and Dumais, 2003). These
and similar studies lead to thinking of the SAM as
having three zones as depicted in the schematic
representation of Fig. 8. The SAM consists of Regions
1, 2, and 4 in the diagram. The tunica region of the SAM
(Regions 1 and 2) is distinguished from the corpus
(Region 4) is that tunica cells divide primarily in the
plane of the plant surface, whereas corpus cells divide in
any direction (Sachs, 1991). The tunica Regions 1 and 2
are distinguished from each other in that cells of
Region 1 grow slowly and divide infrequently, whereas
cells of Region 2 grow relatively quickly and divide more
frequently.
It is in the Region 2 that phylla form as bumps (or

localized regions of oriented cell division; see Section
2.3) called primordia; thus, we will call Region 2 the
generative region. After their formation, these primordia
develop further in shape so that they become, for
example, leaves or florets; that is, they become phylla.
Meanwhile, new material emanating from the inner part
of the SAM becomes the material of the generative
region and new primordia form. The relative positions
of the phylla do not change as the plant grows; that is,
the angular coordinate of a phylla and the difference
between the radial coordinates of any two phylla remain
constant. Thus, the phyllotactic pattern is set by the
positions at which primordia form in the generative
Fig. 7. What a cactus with an alternating 3-whorl (g ¼ 3; d ¼ 1
6
) patte
region. We will henceforth refer to those phylla located
in the generative region as primordia.
It is essential to emphasize that the pictures that we

show in this introduction are not microscopic images
restricted to the generative region. Although the
phyllotactic pattern is set in the generative region, the
polygonal planform that one observes on these plants is
a product of both the original shape formed in the
generative region and subsequent morphological
changes as the phylla mature. We discuss this important
point in more detail in Section 5.
It will be convenient to determine the area of a

primordium in terms of the phyllotactic lattice para-
meters. For this, we call the mean radius of the annular
generative region R (see Fig. 8). Then, approximating
the radial distance of any primordium from the
center by R, the area of the parallelogram determined
by the two vectors om ¼ 1

g
ðlm; 2pRðmd � qÞÞ; on ¼

1
g
ðln; 2pRðnd � pÞÞ is the area of a primordium. This
area is the determinant of the matrix

O0 ¼ ðo0
m

to0
n

t
Þ

¼
1

g

lm ln

2pRðmd � qÞ 2pRðnd � pÞ

 !
, ð15Þ
rn looks like (a) from the top, (b) from the side, and (c) inside.
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that is, the area of a primordium is given by A ¼

det O0 ¼ 2p l
g

R: Notice that this area is independent of
the divergence angle.
1.4. The parameters found in nature

We have described phyllotactic patterns as lattice
patterns that form at the boundary of the SAM
and have introduced natural lattice parameters, the
whorl number g, the divergence angle D ¼ 2pd;
the plastrochrone ratio l: Also, we have defined the
parastichy pair ðm; nÞ and the area A ¼ 2p l

g
R of a

primordium. It turns out that some values and
combinations of these parameters are more prevalent
in nature than others. There are two key observations in
this regard.
The first observation relates the divergence angle to

the parastichy pair. Given a triad of lattice generators
(and the dual triad of wavevectors)

~om ¼
1

g
ðml; 2pðmd � qÞÞ;

~on ¼
1

g
ðnl; 2pðnd � pÞÞ;

~omþn ¼
1

g
ððm þ nÞl; 2pððm þ nÞd � ðp þ qÞÞÞ;

~km ¼
2p
l
ðq � mdÞ;m

� �
;

~kn ¼
2p
l
ðp � ndÞ; n

� �
;

~kmþn ¼ ð2pððp þ qÞ � ðm þ nÞdÞ;m þ nÞ;

ð16Þ

where pm � nq ¼ �g ¼ gcdðm; nÞ; the divergence angle
is observed to be equal to or approximately equal to the
value D ¼ 2pd ¼ 2p pþq

mþn
that makes the third radial

wavenumber zero; that is, the triads read

~om ’
1

g
ml; 2p

�g

m þ n

� �
;

~on ’
1

g
nl; 2p

�g

m þ n

� �
;

~omþn ’
1

g
ððm þ nÞl; 0Þ;

~km ’
2p
l

�g

n þ m
;m

� �
;

~kn ’
2p
l

�g

n þ m
; n

� �
;

~kmþn ’ ð0;m þ nÞ:

(17)

For the example of Fig. 2(a), choosing m ¼ 3; n ¼ 5; we
find that 2ð3Þ � 1ð5Þ ¼ 1; so that d ’ 1þ2

3þ5
¼ 3
8
: Indeed, 3

8

is approximately the value 0.378 introduced earlier as
the divergence angle. An example of a cactus that shows
the same lattice parameters as the cactus of Fig. 2(a)
except that d is exactly equal to the value 3

8
that makes

the third family of spirals purely radial is shown in
Fig. 9(c); note the eight radial ridges.
The second observation concerns the area A ¼ 2p l
g

R

of a newly formed primordium. As a plant grows from a
seedling to a big adult plant, the parameter R will
increase. The area A, however, is often observed to
remain constant (Rutishauser, 1998; Kwiatkowska,
1995; Kwiatkowska and Florek-Marwitz, 1999). This
can be achieved either by increasing the number g of
primordia in a whorl or by decreasing the plastochrone
ratio l: Both of these approaches are found in nature,
and both lead to changes in the parastichy numbers
ðm; nÞ as described below. Thus, the pattern that is
observed at any time on a plant is the result of the initial
pattern formed when the plant begins to develop phylla
and the transitions from this pattern that occur as the
plant grows in size. Note that, as g is an integer, it
cannot be continuously changed to counteract changes
in R; in contrast, the plastochrone ratio l is a
continuous parameter. This difference will be apparent
as we discuss transitions between patterns.
For some plants, most notably the sunflower, the

parameter R decreases during a portion of the pattern
formation, but the area A is still constant. Thus, on
a sunflower head, one often observes, for example, a
(8,13,21)-spiral pattern on the outer edge of the disk and
a (5,8,13)-spiral pattern in the more recently formed
center of the disk. Transitions involve moving up the
Fibonacci sequence as a function of G but down the
Fibonacci sequence as time evolves.

1.5. Transitions between patterns

It is well known that under the change of stress
parameters, patterns can undergo bifurcations or phase
transitions. In the most typical phase transition, as the
stress parameter is increased above a certain critical
value, the pattern makes a discontinuous jump from one
state to another. Decreasing the same stress parameter
leads to a reverse jump from the new to the original
state, but this occurs at a different value of the stress
parameter. The difference is called hysteresis. This type
of bifurcation is referred to as a first-order phase
transition; examples include the change from ice to
water at 0�C; or the onset of a hexagonal pattern from
the uniform state in Rayleigh–Bénard convection. In
contrast, second-order phase transitions, such as the
onset of a roll pattern in Rayleigh–Bénard convection,
are continuous. Both first (I) and second (II)-
order phase transitions are observed in plant
patterns (Meicenheimer and Zagorska-Marek, 1989;
Meicenheimer, 1998).
Transitions between patterns on various cacti

are exhibited in Fig. 9. In Fig. 9(a–d) one observes
defects as new ridges are added; these are examples
of sudden transitions and are thus Type I transitions.
In Fig. 9(e and f) a cactus with a parastichy pair (3,5)
grows continuously into a cactus with parastichy pair
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Fig. 9. Transitions between patterns. (a,b) An Argentinian saguaro with (a) 12 ribs adds (b) a new rib, producing a dislocation defect. This is a Type

(I,1) transition. (c,d) A barrell cactus with (c) eight ribs adds (d) five new ribs, as marked by the five dislocations. This is a (I,2) transition. (e,f) A

cactus with (e) a (2,3,5)-spiral pattern evolves into one with a (3,5,8)-spiral pattern as the cactus grows larger. No defect is observed; this is a (II,2)

transition.
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(5,8); no defect is observed, so this is a Type II
transition.
These transitions can be described using the frame-

work of the triad

~om ¼
1

g
ðml; 2pðmd � qÞÞ,

~on ¼
1

g
ðnl; 2pðnd � pÞÞ,

~omþn ¼ om þ on

¼
1

g
ððm þ nÞl; 2pððm þ nÞd � ðp þ qÞÞÞ ð18Þ
of lattice generators and its wavevector dual

~km ¼
2p
l

ðq � mdÞ;m

� �
,

~kn ¼
2p
l

ðp � ndÞ; n

� �
,

~knþm ¼ ~km þ ~kn ¼
2p
l

ðp þ q þ ðm þ nÞdÞ;m þ n

� �
.

ð19Þ
1.5.1. Type (I,1) transitions

The cactus of Fig. 9(a) exhibits a pattern with m ¼

n ¼ 6 and d ¼ 1þ0
6þ6

¼ 1
12
so that the descriptive triads are
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~o6 ¼
1

6
ð6l;pÞ;

~o0
6 ¼

1

6
ð6l;�pÞ;

~o12 ¼
1

6
ð12l; 0Þ;

~k6 ¼ �
p
l
; 6


 �
;

~k
0

6 ¼
p
l
; 6


 �
;

~k12 ¼ ð0; 12Þ;

(20)

the third members of the triad telling us that the cactus
exhibits 12 ridges. In Fig. 9(b), the cactus has added a
new ridge, so that it now has a 13th ridge, added where
one sees a dislocation in the lower left of the picture. The
new pattern is described by the parameters m ¼ 6; n ¼ 7;
d ¼ 2

13
; so that the triads describing the new pattern

read

~o6 ¼ 6l0;
2p
13

� �
;

~o7 ¼ 7l0;�
2p
13

� �
;

~o13 ¼ ð13l0; 0Þ;

~k6 ¼
2p
13l0

; 6

� �
;

~k7 ¼ �
2p
13l0

; 7

� �
;

~k13 ¼ ð0; 13Þ:

(21)

This is a first-order transition (as there is an abrupt
change in the number of ribs), and one angular
wavenumber was retained. We thus call it a (I,1)
transition, the first numeral denoting the type of
phase transition, and the second number denoting the
number of angular wavenumbers in a triad that are
retained. For a (I,1) transition, it is, in fact, observed
that it is not just an angular wavenumber that is
retained, but an entire wavevector. This is illustrated in
Fig. 10, which shows the side view of a cactus that has
undergone a (I,1) transition. As the cactus increases its
number of ribs by one, two families of spirals, including
the family of purely radial spirals, form dislocations,
Fig. 10. A penta–hepta defect on a cactus is formed by two dislocations; o

hexagonal planform, except that (b) there is a penta–hepta defect. (c) Connec

form the hexagonal pattern. Two sets (marked in black and gray) have dislo
and where the dislocations meet a defect is seen. This
defect is called a penta–hepta defect as it consists of a
heptagon and a pentagon in the otherwise hexagonal
planform. However, the third family of spirals does not
change, indicating that the transition has not affected
the associated wavevector. In the example of the
transition from Eq. (20) to Eq. (21), the vector ~k

0

6 of
Eq. (20) equals the vector ~k6 of (21); that is, pl ¼

2p
13l0 ; or

l0 ¼ 2l
13
: This is consistent with the second observation of

Section 1.4; if the transition from Eq. (20) to Eq. (21)
occurs as the mean radius changes slightly from R ¼ 12
to R0 ¼ 13; then l0 ¼ 2l

13 implies that the area A ¼ 2p l
g

R

associated with the pattern (20) equals the area A0 ¼

2pl0R0 associates with the pattern (21). We will discuss
this in more detail in Section 4.
The Argentinian saguaro of Fig. 11 has made a

sequence of (I,1) transitions, changing from having N ¼

10; 11; 12; 13 ridges. This sequence of transitions is
commonly observed on cacti that show strong ridge
configurations.
Plants that follow a sequence of Type (I,1) transitions

exhibit an alternating whorl configuration when they
have an even number of ribs. The alternating g-whorl

consists of groups of g leaves that alternate in angle. In
general, an alternating g-whorl is described by the lattice
generators

~og ¼
1

g
ðgl; 2pðgd � 1ÞÞ;

~o0

g ¼
1

g
ðgl; 2pðgd � 0ÞÞ;

~o2g ¼ og þ o0
g ¼

1

g
ð2gl; 2pð2gd � 1ÞÞ;
ne wavevector is retained in this (I,1) transition. (a) The cactus has a

ting opposite sides of hexagons, one obtains the three sets of ridges that

cation defects; the third set (marked in white) has no defect.
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Fig. 11. This Argentinian saguaro has (a) 10 ridges, (b) 11 ridges, (c) 12 ridges, and (d) is about to form a 13 ridge, thus obtaining a defect (e).
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~kg ¼
2p
l
ð1� gdÞ; g

� �
;

~k
0

g ¼
2p
l
ð�gdÞ; g

� �
;

~k2g ¼
2p
l
ð1� 2gdÞ; 2g

� �

with d ¼ 1
2g
; that is,

~og ¼
1

g
ðgl;�pÞ;

~o0
g ¼

1

g
ðgl;pÞ;

~o2g ¼ og þ o0
g ¼

1

g
ð2gl; 0Þ;

~kg ¼
p
l
; g


 �
;

~k
0

g ¼ �
p
l
; g


 �
;

~k2g ¼ ð0; 2gÞ:

Examples of alternating 1-, 2- and 3-whorls are shown in
Fig. 12, and the example of Fig. 13(e) is an alternating
6-whorl. A much more rare pattern is the superposed

g-whorl; this pattern consists of groups of g leaves that
do not alternate in angle. An example of a superposed 2-
whorl is shown in Fig. 12(b).

1.5.2. Type (I,2) transitions

The cactus of Fig. 9(c) exhibits a pattern with m ¼

3; n ¼ 5 and d ¼ 1þ2
3þ5

¼ 3
8
so that the descriptive triads are

~o3 ’ 3l;
p
4


 �
;

~o5 ’ 5l;�
p
4


 �
;

~o8 ’ ð8l; 0Þ;

~k3 ’ �
p
l
; 3


 �
;

~k5 ’
p
l
; 5


 �
;

~k8 ’ ð0; 8Þ;

(22)
the third members of the triad telling us that the cactus
exhibits 8 ridges. In Fig. 9(d), the cactus has added five
new ridges, so that it now has a thirteen ridges, a new
ridge added at each of the five dislocations. The new
pattern is described by the parameters m ¼ 5; n ¼ 8;
d ¼ 2þ3

5þ8
¼ 5
13
; so that the triads describing the new

pattern read

~o5 ’ 5l;
2p
5

� �
;

~o8 ’ 8l;�
2p
8

� �
;

~o13 ’ ð13l; 0Þ;

~k5 ’ �
p
4l

; 5

 �

;

~k8 ’
p
4l

; 8

 �

;

~k13 ’ ð0; 13Þ:

(23)

In this transition, two angular wavenumbers (5 and 13)
are retained and the corresponding radial wavenumbers
are slightly changed. Thus, we will refer to this type of
transition as a (I,2) transition; it is a discontinuous
(Type I) transition in which 2 angular wavenumbers are
preserved.
1.5.3. Type (II,2) transitions

In contrast to the rational divergence angles values of
d in the first two cacti of Fig. 9, the cactus of Fig. 9(e and
f) exhibits irrational values of d. In Fig. 9(e), the cactus
exhibits the values m ¼ 2; n ¼ 3; and d, although
irrational, is approximately equal to 1þ2

2þ3 ¼
2
5 : At this

point, we describe the normal deformation of wðs; aÞ of a
plant as the sum

wðs; aÞ ¼
X

j¼2;3;5;8

aj cosð~kj � ~xÞ; ~x ¼ ðs; aÞ, (24)
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Fig. 12. Whorls. (a) An alternating 1-whorl, (b) a superposed 2-whorl, (c,d) alternating 2-whorls, (e,f) alternating 3-whorls.
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where

~k2 ¼
2p
l
ð1� 2dÞ; 2

� �
,

~k3 ¼
2p
l
ð1� 3dÞ; 3

� �
,

~k5 ¼ ~k2 þ ~k3,

~k8 ¼ ~k3 þ ~k5,

where d ’ 2
5
is irrational. As the plant increases in size,

so that the radius R increases, the amplitude a2 of the
mode with radial wavenumber 2 decreases continuously
as the amplitude a8 of a mode with wavevector ~k8
increases in amplitude; the divergence angle d changes
slightly, moving closer to the value d ’ 3

8
that makes the

wavevector ~k8 ’ ð0; 8Þ:
This type of transition involves the continuous change
in the divergence angle 2pd and plastochrone ratio l so
that as the pattern dominated by the spiral families
(2,3,5) evolves into that dominated by the spiral families
(3,5,8). The two angular wavenumbers 3 and 5 are
invariant in the transition, and the associated radial
wavenumbers only change slightly. We will show in
Section 4 how l changes so as to keep the primordium
area A ¼ 2p l

g
R constant, and also how the amplitudes

a2; a3; a5; a8 also change smoothly, a2 decreasing and a8
increasing with increasing R. As this is a continuous
(Type II) transition in which two angular wavenumbers
are preserved, we will call it a (II,2) transition.

1.5.4. (I,1) vs. (II,2) transitions and (I,0) transitions

What determines the type of transition that a plant
will undergo? One clue lies in the following observation
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Fig. 13. As it grows up, this cactus of the genus Matucana shows (a) an alternating 2-whorl pattern, (b) a transition to (2,3,5)-spiral pattern, (c) a

(2,3,5)-spiral pattern, (d) a (3,5,8)-spiral pattern, and (e) an alternating 6-whorl pattern.
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of cacti: cacti that show strong rib configurations (such
as saguaro cacti) tend to undergo (I,1) transitions, while
cacti that show parallelogram or staircase parallelogram
configurations tend to undergo (II,2) transitions. Cacti
with hexagonal configurations may undergo either type
of transition. (These are the authors’ observations; we
suggest in Section 5 a closer experimental study of the
relationship between shape and transition type.) In
Section 4, we will show how the surface curvature of the
plant tunica in the generative region may determine the
choice between the various planforms and transition
types; larger curvature will be shown to favor triad
configurations with more than one large amplitude.
Plants may exhibit (I,1) or (II,2) transitions at

different points in their lives. An example is given by
the cactus of Fig. 13. The alternating 2-whorl pattern is
observed in Fig. 13(a). The cactus begins a transition to
a different pattern in Fig. 13(b), the pattern is eventually
seen in Fig. 13(c) to be the Fibonacci pattern with
generators o3;o4 of the SPLGS evaluated at d ’ 2

5
: This

is a (I,1) transition. The pattern later gradually shifts to
one with generators o4;o5 of the SPLGS evaluated at
d ¼ 3

8
and as pictured in Fig. 13(d). This is a (II,2)

transition. Eventually, the Fibonacci sequence is lost
again as the cactus begins to make Type (I,1) transitions;
in Fig. 13(e) the cactus has 12 (not a Fibonacci number)
ribs; the triads of angular wavenumbers moved up the
sequence ð3; 5; 8Þ; ð4; 5; 9Þ; ð5; 5; 10Þ; ð5; 6; 11Þ; ð6; 6; 12Þ:
This behavior of eventually shifting back to Type (I,1)
transitions is particularly prominant in cacti in which
radial ridges become the prominant feature. There is no
published data giving answers to questions that we have
here—for example, what percentage of plants that
exhibit the Fibonacci sequence start out with the
alternating 2-whorl pattern? Nevertheless, the alternat-
ing 2-whorl is a common originating pattern, and the
transition from the alternating 2-whorl to (2,3,5) spiral
phyllotaxis stated by Meicenheimer (1998) to be the
most common Type I transition.
Kwiatkowska (1995) studies the changes of phyllo-

taxis in Angagallis Arvensis L. She shows that the
alternating 2-whorl (decussate) phyllotaxis is always the
initial pattern and is typically followed by (I,1) transi-
tions. However, in rare cases, instead of this ð2; 2; 4Þ !
ð2; 3; 5Þ ! ð3; 3; 6Þ ! � � � sequence, the plant undergoes
a transition ð2; 2; 4Þ ! ð3; 3; 6Þ: In the terminology
presented here, this would be a ðI ; 0Þ transition.

1.6. Outline

The outline of this paper is as follows: in Section 2, we
discuss the historical background of attempts to under-
stand plant forms, describe the more recent ideas of DC
and Green and his colleagues, and formulate our model.
Section 3, which may be skipped on a first reading,
contains the details of the elastic energy of the
compressed zone, the FvKD equations, the linear
stability analysis of the uniformly compressed state,
and the weakly nonlinear analysis describing the
competition between planforms. Section 4 discusses
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the properties of important coefficients and shows how
and why certain energy-minimizing configurations are
preferred. This section can be read without having first
read Section 3. Section 5 addresses three questions;
(1) What postdictions, namely explanations of behaviors
already observed, and what predictions are consistent
with and arise from our theory? (2) What observations
should we encourage experimentalists to make? (3) How
could, and to what degree should, our picture, and the
model used to capture its essential ingredients, be
improved? Finally, in the appendix, we give more details
on the wavevector description of (II,2) transitions.
2. Historical background and models

In this section, we present a short background of
phyllotactic investigations which have dealt with ob-
servations and mathematical descriptions of plant
patterns, kinematic descriptions of the formation of
these patterns over time, and studies into possible
mechanisms for the formation of phylla. Finally, we
present our model. More information on the history of
phyllotactic research and observations can be found in
Barabé et al. (1997).

2.1. Observational phyllotaxis and mathematical

description

The occurrence of Fibonacci numbers—those in the
sequence 1; 1; 2; 3; 5; 8; . . .—on plants has long been
noted. The first recorded observation of the prevalence
of Fibonacci numbers on plants is due to Johannes
Kepler, who explained his observation of the number 5
as so (Livio, 2002):

‘‘I see the number five in almost all blossoms which
lead the way for a fruit, that is, for creation, and
which exist, not for their own sake, but for that of the
fruit to follow. Almost all tree blossoms can be
included here; I must perhaps exclude lemons and
orange; although I have not seen their blossoms and
am judging from the fruit or berry only which are not
divided into five, but rather into seven, eleven, or nine
cores. But in geometry, the number five, that is
the pentagon, is constructed by means of the divine
proportion which I wish [to assume to be] the
prototype for the creation.’’

The ‘‘divine proportion’’ is the Golden Ratio; that is,
the positive root of the quadratic equation x2 � x � 1 ¼
0 which describes the condition on the ratio x of the
sides of a rectangle so that, upon removing a square
from the rectangle, the sides of the remaining smaller
rectangle have the same ratio of lengths.
Kepler’s observations of numbers on plants were

extended into a account of various types of phyllotactic
patterns by Charles Bonnet in his 1754 treatise
Recherches sur l’Usage des Feuilles dans les Plantes

(Bonnet, 1754). Further mathematical descriptions of
phyllotaxis were made in the 1830s by Schimper (1830,
1836), who defined the divergence angle and Braun
(1831) who noted Fibonacci numbers on pine cones.
Also in the 1830s, the Bravais brothers (Bravias and
Bravais, 1837) showed that if a spiral of phylla is a
member of a family of n spirals, then the numbers
associated to those phylla (as in Fig. 2) increase by n as
the spiral proceeds from the center of the plant out. The
idea of the plastochrone ratio took longer to appear; it
was introduced by Richards in 1948 (Richards, 1948,
1951). This set of works allows us to describe the
phyllotactic pattern that we may find on a plant. The
pattern, however, is formed over time, with phylla closer
to the tip of the plant having been formed later than
those far from the tip.

2.2. Dynamical description and electromechanical

paradigm

As far back as 1868, Hofmeister (1868) proposed a set
of rules that provide a kinematic description of the
formation of phyllotactic patterns. As quoted from
Douady and Couder (1996a), these rules read
1.
 The stem apex is axisymmetric.

2.
 The primordia are formed at the periphery of the
apex (Region 2 in Fig. 8), and, due to the shoot’s
growth, they move away from the center with a radial
velocity V ðrÞ which may depend on their radial
location.
3.
 New primordia are formed at regular times intervals
(the plastochrone time T).
4.
 The incipient primordium forms in the largest
available space left by the previous ones.
5.
 Outside of a region of radius R there is no further
reorganization leading to changes in the angular
position of the primordium.

Motivated by the Hofmeister rules, Douady and
Couder (1992,1996a, b, c) built an ingenious experi-
mental device in which ferromagnetic droplets choose a
divergence angle and therefore a phyllotaxis-like lattice.
Earlier theoretical work of Levitov (1991a, b) showed
that phyllotactic patterns and Fibonacci sequences can
arise in layered superconductors that minimize a global
interaction energy. Energy minimization also played a
central role in the experiment of DC. The basic device is
a plate with a small central dome in the middle; this is to
represent to the plant with the apex at the tip. The plate
is placed in a vertical magnetic field that is stronger at
the edges of the plate than in the middle, and
ferromagnetic drops (representing primordia) are peri-
odically dropped onto the center of the central dome
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(representing the apex). The drops fall to the perimeter
of the central dome and then move radially outward,
following the gradient of increasing magnetic strength.
The magnetic field is chosen so that the velocity V ðrÞ in
an exponentially increasing function of the radius. After
choosing a radial direction in which to fall from the top
of the central dome, the drops do not change their
angular coordinate. How the drops initially choose their
angular coordinate is of interest, and here the central
point is that the drops form repelling magnetic dipoles.
A drop that falls on the central dome moves to the
position on the boundary of the dome as determined by
the repulsions of the drops that recently formed and are
moving away from the center, and the experimental
result is that a there is constant divergence angle
between the angular coordinates of successively dropped
drops. Denoting the radius of the central dome by R, the
initial speed of the drops after falling to the boundary of
the dome by V 0; and the time period in which drops are
dropped onto the central dome by T, the plastochrone
ratio of the resulting pattern is G¼

: V0T

R
: G is a parameter

chosen by the experimenter. As DC decrease G, the
resulting divergence angle approaches the golden angle,
and the pattern appears as one with a Fibonacci
parastichy pair. The suggestion of this experiment is
that simple dynamical rules as suggested by Hofmeister
are at the center of the phyllotactic process.
As it only allows one drop to form at a time, the

electromechanical paradigm does not allow for the
formation of whorl patterns. In subsequent numerical
simulations, Douady and Couder (1996b, c), following a
modification of Hofmeister’s rules as suggested by Snow
and Snow (1952), replaced the T-periodic formation of
primordia with a new parameter—the space needed for
a new primordium to form. In these experiments,
primordia are represented as disks that form at a
generative circle of radius R surrounding the pole of a
parabolic shape representing the apex. The disks then
move radially outward. DC define an energy function on
the generative circle which is designed so that the energy
decreases below a threshold value whenever a new
primordium of fixed radius d0 can form without
overlapping with previously formed primordia. Primor-
dia that have formed and moved away from the
generative circle thus have an inhibitory action on the
generative circle that decreases as the primordia move
radially outward. The role of G ¼

V0T

R
was taken by a

parameter G ¼
d0
R
(equivalent to the inverse of the

parameter G we introduce below); Douady and Couder
refer to G as van Iterson’s parameter, as van Iterson
(1907) used a similar parameter in a description of plant
patterns. In these numerical paradigms, phyllotactic
lattice patterns form, with increasing parastichy pair
parameters as G decreases. Furthermore, the parastichy
pairs may change in either (I,1) or (II,2) transitions.
Douady and Couder (1996c) show that (I,1) transitions
are preferred unless the parameter G is decreased quickly
enough so that the system does not have enough time to
adjust and shift to the next mode in a Type I transition,
in which case (II,2) transitions occur.
As a way of understanding the results, Douady and

Couder (1996b) offer an explanation in terms of
optimization of ‘‘packing compacity.’’ The idea is as
follows: All of the primordia (disks) that form at the
generative circle and move radially outward in a given
time interval DT will be contained in an annulus of inner
radius R and width depending on DT : The ratio b of the
area of this annulus to the sum of the areas of the disks
gives a measure of how compactly the primordia are
arranged on the apex, and DC calculate that the
most stable modes in their model are those that
minimize b—i.e., those that optimize the packing.
The DC paradigms rely on the positions of previously

formed primordia of a given size and shape to form an
energy functional on the generative circle, and Douady
and Couder (1996c) suggest that the crucial components
of the physiological process that it (i) creates primordia
of a well-defined, finite size, and (ii) gives the primordia
a repulsive or inhibitory interaction. As described
above, however, phyllotaxis is intimately related to
polygonal planforms, and, as it assumes that primordia
will form, the DC model does not encompass the
spectrum of shapes that range from ridges (with no or
poorly defined primordia) to hexagons and parallelo-
grams. In the mechanical model that we present below,
we will show the determination of a finite area
for primordia is essential and how the interaction of
elementary periodic deformations instead of primordia

allows us to consider polygonal planforms and phyllo-
taxis in one picture.

2.3. Mechanisms for primordia formation

So far, we have described plant patterns and the
kinematics of how they form. Why do patterns form at
all? What is the mechanism for the formation of
primordial bumps at SAMs? The answer is not clear,
but there is experimental evidence that both chemistry
and biophysics play some role—both chemical signals,
such as growth hormones, and physical signals, such as
growth forces on the apical material, have been linked to
primordium formation.
The role of biophysics was first studied in the late

1800s by the Swiss botanist Simon Schwendener (the
predecessor to Hofmeister as the curator of the
botanical garden at Basel) (Schwendener, 1874, 1878,
1883, 1909). Schwendener studied the material proper-
ties of plants with the aim of building a foundation upon
which to understand how these properties may affect
plant form. His work, however, did not directly
demonstrate a connection between pattern formation
and the material properties. In the 1980s and 1990s,
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Green (1992a, b) and Green et al. (1998), Hernández et
al. (1991) and Steele (2000) investigated the possibility
that the growth forces that lead to buckling of the plant
tunica are primarily responsible for determining phyllo-
taxis. Various papers suggest observations indicating
that the mechanics of the plant plays a role in the
pattern-forming process. Some of these are as follows:
1.
Fig

by
Hernández and Green (1993) grew a sunflower head
between two fixed parallel bars. This resulted in an
amplification of undulations parallel to the bars, and
phyllotaxis followed this pattern. This external
mechanical influence also changed the identity of
the sunflower bracts.
2.
 Green (1999) induced a new row of leaves to form on
an expanding meristem by using a glass frame to
apply a mechanical constraint.
3.
 Steele (2000) noted that the turgor pressure inside
plant cells is between 7 and 10 atmospheres, and that
this large pressure can hardly be ignored in the
phyllotactic process. Also, in this paper, Steele notes
a linear relationship between the size of primordia
and the thickness of the tunica.
4.
 Dumais and Steele (2000) showed sunflowers cut
along a diameter. The two sides of the cut stick
together only in the region of the surface where the
pattern formation is occurring, indicating that the
compressive force keeping the cut closed is related to
the pattern formation.
5.
 Fleming et al. (1997) were able to induce primordia
on tomato plants by locally applying the protein
expansin; some of these primordia then developed
into leaf-like structures. The known effect of the
extracellular expansin proteins is to increase cell wall
extensibility, thus changing the mechanical properties
of the plant material.

An overview of the role of mechanics in leaf initiation
and development is found in Green’s review (1999).
Green points out that pattern formation is occurring at
different space scales on a plant, and that these
processes interact with each other. On the large-scale,
there is the formation of primordia in special phyllo-
tactic lattices and the determination of primordia shape.
On the small-scale—that is, at the level of the individual
. 14. (a) Spherical (Ra;Rr40), (b) inverted spherical (Ra;Rro0), and (c)
light shading.
cells—there are patterns of cell division and reinforce-
ment of cell walls by cellulose. Green’s overall picture of
biophysical effects in plant pattern formation is this:
compressive physical stresses that arise during plant
growth leads to large-scale buckling of the tunica. This
provides curvature variation in the tunica, and
both curvature and strains influence the orientation of
cellulose microfibrils in the cell walls. This alters the
mechanical properties of the cell walls, reinforcing the
pattern and influencing the direction of further growth
and cell divisions, and thus influencing the pattern of
growth stresses that develops. The resulting stress fields
then in turn reinfluence the cellulose orientation. There
is thus a feedback mechanism that generates form.
Dumais and Steele (2000) review two possible sources

of compressive stress in the tunica that could lead to
buckling. One possibility is that of differential growth—
either the tunica is growing faster than the inner corpus,
as suggested by Schüpp (1914) and Priestly (1928), or, as
proposed by Green (1992b), there is a variation of
growth intensity within the tunica layer. The excess
growth of the tunica, in this theory, leads to compressive
stresses and ultimately results in buckling. The second
possibility, as suggested by Selker et al. (1992), Steucek
et al. (1992), and Steele (2000), views the tunica as a
pressurized shell. In this case, it is the corpus that is
growing faster than the tunica shell upon which it exerts
pressure. If the tunica is a spherical shell as depicted in
Fig. 14, the tunica would then be under tensile stress
rather than the compressive stress that is necessary to
induce buckling. However, the geometry of the apex in
the generative region is observed to be an inverted
sphere or hyperbolic, as discussed in Section 2.4. For
these geometries, there would be compressive stress in
the pressurized shell.
Other work suggests that chemical signals play an

important role in primordium formation. For example,
the work of Reinhardt et al. (2003) demonstrates the
relation of the plant hormone auxin to the formation of
new primordia. The distribution of auxin, according to
this work, is influenced by existing primordia, which act
as auxin sinks, thus depleting the surrounding region of
auxin. This work suggests a reason for Hofmeister’s
fourth rule—a new leaf forms in the largest space
available as this space is least deprived of auxin.
hyperbolic (Ra40;Rro0) geometries of the generative region, denoted
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These sets of observations involving chemical and
biophysical mechanisms do not contradict each other.
The study of Fleming et al. (1997), for example, suggests
that chemical signals are involved in producing the
biophysical properties that can lead to shell buckling.
The question, however, is this: what mechanism or
mechanisms set the pattern? Does, for example, a
pattern of varying expansin concentration develop and
thus set the phyllotactic pattern, or is the pattern set first
by the buckling tunica? Or, are these two mechanisms
linked together? This question has not been clearly
answered by experiments or observations. It is possible
that one mechanism may play a larger role for some
plants and another mechanism for other plants.
Various mathematical models have attempted to show

that various mechanisms are possible sources of the
patterns. Until the early 1990s most models of phyllotaxis
were based on chemical diffusion and reaction in the
plant. Examples of these models are, for example, in
Meinhardt et al. (1998), Harrison (1987) and Turing
(1952). Green et al. (1998) have studied the von Kármán
equations to demonstrate that shell buckling can produce
primordial bumps, but were only able to produce spiral
patterns by the imposition of special boundary condi-
tions. These models have not addressed (i) primordia
shape (i.e., ridges, hexagons, or parallelograms) or (ii)
what conditions can give rise to (I,1) or (II,2) transitions.
The biophysical model that we present below will test the
ability of shell buckling to produce phyllotactic patterns,
transitions between these patterns, and the various ridge
or polygonal configurations. A similar shell-buckling
model for the formation of fingerprint patterns was
studied by Kücken and Newell (2004).

2.4. Biophysical model

In Section 1.3, we described how patterns in plants
form at SAM where phylla first form as bumps called
primordia in the annular generative region at the
boundary of the SAM. We now formulate a model to
test the hypothesis that it is the buckling of the tunica
due to forces from plant growth that produce the
primordia and thus set the phyllotactic pattern. This
Fig. 15. Microscopic images of the generative region of a sunflower reveal eit

geometry (taken from Steele (2000)).
model only deals with the large-scale determination of
the pattern; the interaction of biophysics with biochem-
istry is not included; see Section 5.
It is essential for our model to consider the geometry of

the plant apex. Three possible geometries are shown in
Fig. 14; the light-colored annular region in each picture
represents the annular generative region, which we will
henceforth denote by the letterM. In Fig. 14(a),M is part
of a sphere, the corpus being attached to the inner part of
the sphere. This, however, is not the typical shape of the
region M; examining, for example, Fig. 1(c), one sees, at
the plant tip, a geometry as depicted in Fig. 14(b). In this
picture, M is again part of a sphere, but the corpus is
attached to the outer part of the sphere. Another
possibility is as depicted in Fig. 14(c); the region M

surrounds a central dome. A comprehensive study of
these various geometries is not available in the plant
literature, although we observe the geometry of Fig. 14(b)
on cacti, and microscopic images of sunflowers reveal
either the geometry of Fig. 14(b) (Palmer, 1998)
(Fig. 15(a)) or the geometry of Fig. 14(c) (Fig. 15(c))
(Steele, 2000). Our model will include all possibilites.
We model the generative region as a thin elastic shell

of mean radius R (the tunica) attached to an elastic
foundation (the corpus) and under compressive stress
(due to plant growth and/or the hardening of the tunica
material). The various geometries are described via
signed radii of curvature that give the direction and
magnitude of the shell’s curvature. For this, we
introduce a coordinate system on M by giving at any
point the radial and angular coordinates of the shell’s
projection onto the plane, as depicted in Fig. 16, and
state the radii of curvature Rr and Ra along the r and a
coordinate lines. Choosing the normal vector to the
surface to always point away from the inner corpus, we
take the radius of curvature to be positive (respectively,
negative) if the surface curves away from (respectively,
towards) the normal vector. Thus, the spherical geome-
try is described by two positive radii of curvature
(Ra;Rr40), the inverted sphere is described by
two negative radii of curvature (Rr;Rao0), and the
hyperbolic geometry is described by Ra40 and Rro0;
see Fig. 17.
her (a) an inverted disk (taken from Palmer (1998)) or (b) a hyperbolic
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As a consequence of the compressive stresses induced
by growth, the annular shell M buckles. In this initial
model, we assume that the shell is elastic so that the
configuration into which the shell buckles is that which
minimizes the elastic energy. Elastic materials are those
for which deformations are reversible. A true plant will
have plastic or viscoelastic influences that produce an
irreversibility. In this model, we include irreversibility by
simply treated the elastic shell as being strongly over-
damped. Our goal now is to identify those buckling
configurations which minimize the elastic energy.
Once we have identified the energy-minimizing con-

figurations, we will have expressions for the normal
deflection oðr; aÞ of the tunica shell in the generative
region and the corresponding stress distribution. The
deformation o is our theoretical computation of the
primordial ridges or bumps that subsequently develop
into phylla. The primordial deformation o will be
periodic in the radial coordinate r. If we assume that
the pattern formed in the generative region remains the
same as the buckled tunica hardens and moves away
from the plant tip, then the pattern that develops on the
plant is given by plotting the function oðs; aÞ over
numerous periods. Here, s is defined to be s ¼ r or s ¼

lnðrÞ; depending on whether the movement of the phylla
from the apex is constant or exponential. If s ¼ r; the
plant exhibits the plastochrone difference, and if s ¼

lnðrÞ; the plant exhibits the plastochrone ratio. We will
henceforth use r to represent the radial coordinate if we
Fig. 16. Projecting the generative region to the plane, we define radial

r and angular a coordinates.

Fig. 17. The radii of curvature. The sign of the radius is taken to be positive

away from the inner corpus. Hence, (a) for the sphere Ra40; Rr40; (b) fo
Ra40; Rro0:
are restricting our attention to the generative region (i.e.,
in Section 3) and use s when we are considering the
pattern beyond the generative region.
Besides the growth that leads to the movement of

phylla away from the apex, there is another growth that
is essential to our model—the growth in the width of the
apex, as measured by R, the inner radius of the
generative region. Thus, a graph of oðs; aÞ will only
represent the pattern formed on a plant if R remains
constant. Otherwise, oðs; aÞ will also depend on R;
typically, R increases as the plant gets older, so the
larger values of s correspond to lower values of R.
Finally, we emphasize, as do Dumais and Steele (2000),
that, although the energy-minimizing buckling config-
uration can serve as a guide to the patterns we expect to
see, it is not correct to equate this configuration with the
plant pattern. The amplitude of o is of the order of the
tunica thickness, and, as the primordial bumps grow
into phylla, the stress distributions change and other
biological processes come into play. For some plants
more than for others, the primordia formed in the
generative region will continue to develop further in
shape. We will discuss this further in Section 5. A larger
discussion of factors that are involved in SAM
development is found in the well written review of
Kwiatkowska (2004).
3. Analysis of the shell-buckling model

This section presents mathematical details, the ex-
pression for the elastic energy of a curved annular shell
tied to an elastic foundation, the FvKD equations, the
linear stability analysis of the uniformly compressed
shell solution, and finally the weakly nonlinear analysis
governing the competition between all feasible plan-
forms in which we identify energy-minimizing config-
urations. The reader may wish to skip this section on a
first reading of the paper. The following Section 4, in
which we present arguments for our picture of plant
patterns, should be accessible without having digested
the details of Section 3. The outline of this section is as
follows: In Section 3.1, we state the elastic energy and
if the surface curves towards the inner corpus and negative if it curves

r the inverted sphere, Rao0;Rro0; and (c) for the hyperbolic region,
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the FvKD equations which are the Euler–Lagrange
equations for this energy. We then find, via linear
stability analysis in Section 3.2, the set of active modes

which are unstable or weakly damped for large enough
compressive stress. Finally, in Section 3.3, we study the
nonlinear competition between the active modes. This
allows us to reduce the elastic energy to a polynomial
function of the amplitudes of the active modes; it is this
reduced energy that we study in Section 4 to find energy-
minimizing configurations.

3.1. The elastic energy and the FvKD equations

In Section 2.4, we described our model of the region
of pattern formation on a plant as a thin annular shell
M of mean radius R attached to an elastic foundation
and under compressive stress due to growth. We
coordinatized M with radial r and angular a coordinates
and described the curvature of the shell via radii of
curvature Rr and Ra: The elastic energy is a functional of
in-plane stresses and the normal deflection oðr; aÞ of the
shell. Assuming that the stresses are constant through
the width of the shell, we solve for the tensor Nij ¼ hsij ;
where sij is the tensor of in-plane stresses and h is the
width of the tunica shell. We can introduce a potential
F ðr; aÞ for the tensor Nij ; called the Airy stress function,
and defined so that

Naa ¼
q2F
qr2

; Nar ¼ �
1

R

q2F
qrqa

; Nrr ¼
1

R2
q2F
qa2

. (25)

Assuming that the radius R is large compared to the
buckling wavelength, we approximate the Laplacian
on the manifold M by the Euclidean Laplacian D �

q2r þ
1

R2
q2a: Working with this translationally invariant

approximation does not compromise the results
and greatly simplifies the analysis because the eigenfunc-
tions of the Euclidean Laplacian are sines and
cosines. The elastic energy as a functional of o and F

then reads

E ¼

Z
M

D

2
fðDoÞ2 � ð1� mÞ½w;w�g þ V ðoÞ

�
1

2Eh
fðDF Þ

2
� ð1þ mÞ½F ;F �g

þF Dco�
1

2
½o;o�

� �

2
66666664

3
77777775

Rdrda,

(26)

where Dc �
1

Ra
q2r þ

1
Rr

1
R2

q2a; and R2½F ;o� ¼ F rroaa þ

Faaorr � 2F arora: The energy consists of the following
terms: the first term in Eq. (26) resists buckling and is
the bending energy of the shell. The bending modulus is
D ¼ Eh3

12ð1�m2Þ
; where E is Young’s modulus and m is

Poisson’s ratio. V ðoÞ is a potential energy coming from
the elastic foundation and an applied stress from tunica
growth; we take V ðoÞ ¼ k

2
o2 þ g

4
o4 � po for spring
constants k and g and applied pressure p. The third term
is the energy of the in-plane stresses, and the remaining
term is a strain energy which is equal to the product of
the Airy stress function and the change in Gaussian
curvature of the shell due to buckling.
We assume that the tunica is an overdamped shell and

thus ignore the inertial accelerations ott compared to the
damping ot: The variation zot ¼ � dE

do (where z is an
inverse time constant) of the energy with respect to o
yields the force equilibrium equation

zot þ DD2oþ V 0ðoÞ þ DcF � ½F ;o� ¼ 0 (27)

and the variation 0 ¼ dE
dF

yields the compatibility
condition

1

Eh
D2F � Dcoþ

1

2
½o;o� ¼ 0. (28)

We call Eqs. (27) and (28) the overdamped FvKD
equations; see, for example (Atanakovich, 2000; Gould,
1999) for further details.

3.2. Linear stability analysis and non-dimensionalization

We now study the linear stability of the prebuckling,
stressed tunica, given by the stationary solution

os ¼ constant, (29)

F s ¼
1
2

Naar2 þ 1
2

NrrR
2a2 (30)

of Eqs. (27) and (28), where Naa and Nrr are such that
1

Ra
Naa þ

1
Rr

Nrr ¼ �V 0ðosÞ: The variations of o about os

and F about F s are found by substituting

o ¼ os þ w, (31)

F ¼ Fs þ f (32)

into Eqs. (27) and (28), and obtaining

zwt þ DD2w þ V 0ðwÞ þ DcF

� ½F s þ f ;os þ w� ¼ 0, ð33Þ

1

Eh
D2f � Dcw þ

1

2
½os þ w;os þ w� ¼ 0, (34)

where

½Fs þ f ;os þ w� ¼ ½Fs;w� þ ½f ;w� ¼ Naa
1

R2
waa

þ Nrrwrr þ ½f ;w�. ð35Þ

Defining w¼: Nrr
Naa

; Dw¼
: wq2r þ

1
R2

q2a; r¼
: Ra

Rr
; Dr¼

: q2r þ
r

R2
q2a;

and N¼
:
� Naa; the equations (33),(34) read

zwt þ DD2w þ V 0ðwÞ þ NDww

� ½f ;w� þ
1

Ra
Drf ¼ 0, ð36Þ

1

Eh
D2f �

1

Ra
Drw þ

1

2
½w;w� ¼ 0. (37)
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We test the stability of the w ¼ f ¼ 0 solution by setting

w ¼ ŵestei
~k�~x, (38)

f ¼ f̂ estei
~k�~x, (39)

where ~k ¼ ðl;mÞ; ~x ¼ ðr; aÞ; in (33),(34) and retaining
only the linear terms. We obtain

zŵsþ DD̂
2
ŵ � ND̂wŵ þ kŵ �

1

Ra
D̂r f̂ ¼ 0, (40)

1

Eh
D̂
2
f̂ þ

1

Ra
D̂rŵ ¼ 0, (41)

where D̂ ¼ l2 þ 1
R2

m2; D̂r ¼ l2 þ r
R2

m2; and D̂w ¼ wl2 þ

1
R2

m2: Solving (41) for f̂ and replacing the result into

Eq. (40) yields the dispersion relation

zsðl;mÞ ¼ �DD̂
2
þ ND̂w � k�

Eh

R2a

D̂
2

r

D̂
2

(42)

which gives the growth rate sð~kÞ ¼ sðl;mÞ of a
perturbation (38),(39). Only for N above a critical value
Nc are there modes ðl;mÞ with positive growth rates. To
find the value Nc; note that Nc is the smallest value of N

for which there is a set of modes ðl;mÞ for which
sðl;mÞ ¼ 0: That is, Nc is the minimum of

N ¼
1

D̂w
DD̂

2
þ kþ

Eh

R2a

D̂
2

r

D̂
2

0
@

1
A (43)

as a function of ~k ¼ ðl;mÞ: In the isotropic case

w ¼ 1; r ¼ 1; the minimum value Nc ¼ 2
ffiffiffiffi
D

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ Eh

R2a

q
is

achieved for D̂ ¼

ffiffiffiffiffiffiffiffiffi
kþEh

R2a
D

r
: We call the modes with zero

growth rates for N ¼ Nc the critical modes, and kc;

where k2c ¼

ffiffiffiffiffiffiffiffiffi
kþEh

R2a
D

r
the critical wavenumber. Thus, as the

stress parameter N increases above Nc; it is modes of
wavelength 2pL ¼ 2p

kc
that are first excited. The natural

wavelength is 2pL; where

L4 ¼
D

kþ Eh

R2a

. (44)

In subsequent analysis, we will work with non-dimen-
sionalized FvKD equations with scales determined
by the natural wavelength for the isotropic case w ¼ 1;

r ¼ 1: We define n2¼: 1
12ð1�m2Þ

; G¼: R
L ; C¼

: L2
Rahn ; P¼

:
�

NaL2

Eh3n2
; and T ¼ L4z

Eh3n2
and write f ¼ nEh3f 0; w ¼ hw0; r ¼

Lr0; t ¼ Tt0; k ¼ Eh3n2

L4
k0; g ¼ Ehn2

L4
g0: Upon dropping the

primes, the FvKD equations are

wt þ D2w þ kw þ gw3 þ PDww

þ CDrf �
1

nG2
½f ;w� ¼ 0, ð45Þ
D2f � CDrw þ
1

2nG2
½w;w� ¼ 0, (46)

where D ¼ q2r þ
1
G2

q2a; Dr ¼ q2r þ
r
G2
q2a; and Dw ¼ wq2r þ

1
G2

q2a: Note that the parameter G can be hidden in
the equations by scaling a 7! 1

G a: Also, by definition,
C2 þ k ¼ L4

Eh3n2
ðkþ Eh

R2a
Þ ¼ 1: The equations in Section 3.2

are the variational equations zwt ¼ � dE
dw
; 0 ¼ � dE

dF
of

the energy

Eðw; f Þ ¼

Z 1

2
ðDwÞ2 þ V ðwÞ �

1

2
P wqrw þ

1

G2
qaw

� �2

þ f CDrw �
1

2nG2
½w;w�

� �
�
1

2
ðDf Þ2

2
66664

3
77775

�drda, ð47Þ

where V ðwÞ ¼ k
2

w2 þ g
4

w4: The dispersion relation for
the non-dimensionalized equations (Section 3.2) reads

sðl;mÞ ¼ �D̂
2
þ PD̂w � k� C2

D̂
2

r

D̂
2
, (48)

where now D̂ ¼ ðl2 þ 1
G2

m2Þ; D̂w ¼ ðwl2 þ 1
G2

m2Þ; and
D̂r ¼ ðl2 þ r

G2
m2Þ: For the isotropic case w ¼ r ¼ 1; s

first becomes positive on the locus

l2 þ
1

G2
m2 ¼ 1 (49)

at the stress value P ¼ Pc ¼ 2: For the case that we are
most interested in, namely r ¼ 1 and wo1; sðl;mÞ first
becomes positive for ~kc ¼ ð0;GÞ at the value P ¼ Pc ¼ 2:
For P4Pc; there is a set of modes in the ðl;mÞ-plane for
which sðl;mÞ40: We shall call the set of modes for
which sðl;mÞ is greater than a small negative number the
set A of active modes; see the discussion in Section 4.3.
In Section 4 we will describe how the set of active modes
depends on the parameters. In particular, we distinguish
between two cases, namely r positive, corresponding to
M’s being elliptic, as in Fig. 14(a and b), and r negative,
corresponding to M’s being hyperbolic, as is Fig. 14(c).
If, for the linearization of the equations (36),(37),

we write

w ¼
X
~k2A

ðA~kðtÞe
i~kj �~x þ c.cÞ; ~k ¼ ðl;mÞ,

f ¼
X
~k2A

�C
ðl2 þ r

G2
m2Þ

ðl2 þ 1
G2

m2Þ2
AðtÞei

~k�~x þ c.c

 !
, ð50Þ

we obtain the linear equations

dA~k

dt
¼ sð~kÞA~k (51)

for the amplitudes A~kðtÞ; where sð
~kÞ ¼ sðl;mÞ is as given

by Eq. (48). To see this, write the linearization of the
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equations (36),(37) as

L
w

f

 !
¼

D2 þ kþ PDw CDr

�CDr D2

0
@

1
A w

f

 !

¼ �
wt

0

 !
. ð52Þ

For each wavevector ~k ¼ ðl;mÞ 2 A; define Pcð
~kÞ to be

the minimum value of P for which sðl;mÞ is zero. Note
that Pc ¼ min~k Pcð

~kÞ: For example, when r ¼ 1; wo1;
the mode ~kc ¼ ð0;GÞ has a corresponding Pcð

~kcÞ ¼ Pc ¼

2: Now write ŵ~k ¼ A~k and f ~k ¼ �C
D̂r

D̂
2 A~k; and note that

L̂~k

ŵ~k

f̂ ~k

0
@

1
A ¼

D̂
2
þ k� Pcð

~kÞD̂w �CD̂r

CD̂r D̂
2

0
B@

1
CA ŵ~k

f̂ ~k

0
@

1
A

¼
0

0

 !
, ð53Þ

where ~k ¼ ðl;mÞ; D̂ ¼ ðl2 þ 1
G2

m2Þ; D̂r ¼ ðl2 þ r
G2

m2Þ; and

D̂w ¼ ðwl2 þ 1
G2

m2Þ: The right eigenvector of L̂~k corre-

sponding to the eigenvalue 0 is ð1;�C
D̂r

D̂
2Þ: The left

eigenvector is ð1;C
D̂r

D̂
2Þ: Now, for each mode e

i~k�~x; write

Eq. (53) as

L̂~k

ŵ~k

f̂ ~k

0
@

1
A ¼

ðP � Pcð
~kÞÞD̂w 0

0 0

 !
ŵ~k

f̂ ~k

0
@

1
A

�
ŵ~kt

0

 !
. ð54Þ

Multiply by the left eigenvector of L~k to obtain

ðP � Pcð
~kÞÞ wl2 þ

1

G2
m2

� �
A~k ¼ A~kt

(55)

with growth rate sð~kÞ ¼ PD̂w � Pcð
~kÞðwl2 þ 1

G m2Þ; which,
by definition of Pcð

~kÞ; is sðl;mÞ:

3.3. Nonlinear analysis

We now ask what happens when the compressive
stress P is supercritical;

P ¼ Pcð1þ �P0Þ,

where 0o�51; P040; and several of the active modes
begin to interact with each other via the quadratic and
cubic terms in Section 3.2. The important quadratic
interactions are those between triads of modes ei

~kj �~x; j ¼

1; 2; 3; ~kj ¼ ðlj ;mjÞ for which ~k1 þ ~k2 þ ~k3 ¼ 0: These
interactions lead to a set of nonlinear equations for the
amplitudes AjðtÞ of those modes e

i~kj �~x which we include
in the representation of the deformation wðr; a; tÞ: The
included modes ~kj belong to the set A of modes for
which the corresponding growth rate sð~kjÞ is greater
than a small (order �) negative number. This means that
A includes amplified, neutral and weakly damped
modes. The reason the latter should be included is
that sometimes, because of quadratic nonlinear interac-
tions which involve excited modes, these weakly
damped modes can be nonlinearly driven and play a
role in determining the final configuration of the
deformation.
The analysis proceeds formally as follows: we define a

slow time-scale t1 ¼ �t; and represent w and f by
asymptotic series in � as

wðr; a; t1Þ ¼ �w0 þ �2w1 þ �3w2 þ � � � ,

f ðr; a; t1Þ ¼ �f 0 þ �2f 1 þ �3f 2 þ � � � , ð56Þ

where w0 and f 0 are given by Eq. (50). The equations for
the iterates w1; f 1 are determined by substituting the
expansions (56) in Section 3.2 and equating powers of �:
To order �2; we find that

L
�w0 þ �2w1

�f 0 þ �2f 1

 !
¼ �

�2wt1

0

 !

þ �2

1

nG2
½f 0;w0�

�
1

2nG2
½w0;w0�

0
BBB@

1
CCCA. ð57Þ

Noting that, for each ~k 2 A;

D2 þ kþ Pcð
~kÞDw CDr

�CDr D2

0
@

1
A

�

1

�C
D̂r

D̂
2

0
B@

1
CAei~k�~x ¼

0

0

 !
, ð58Þ

we can rewrite Eq. (57) as

L
w1

f 1

 !
¼
X
k2A

1

�
ðP � Pcð

~kÞÞDwðA~ke
i~k�~xÞ � ðA~kt1

ei
~k�~xÞ

0

0
@

1
A

þ
1

2nG2
2½f 0;w0�

�½w0;w0�

 !
. ð59Þ

Since P is within � of Pcð
~kÞ for all ~k 2 A; the solution to

Eq. (59) will be of order ��1 unless we apply a solvability
condition to the RHS of Eq. (59). That solvability
condition is that, for all terms of the form ~v~ke

i~k�~x on the
RHS of Eq. (59), the vector~v~k must be orthogonal to the

left eigenvector of L̂~k; namely ð1;C
l2þ

r
G2

m2

ðl2þ 1
G2

m2Þ2
Þ: The
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quadratic terms in Eq. (59) are computed to be

½f 0;w0� ¼ �C

�

terms ðlrms � lsmrÞ
2

l2rþ
r
G2

m2r

ðl2rþ
1
G2

m2r Þ
2
ArAse

iðkrþksÞ�x

of the ðlrms � lsmrÞ
2 l2rþ

r
G2

m2r

ðl2rþ
1
G2

m2r Þ
2
ArA

n

s e
iðkr�ksÞ�x

form ðlrms � lsmrÞ
2 l2rþ

1
G2

m2r

ðl2rþ
1
G2

m2r Þ
2

2

An

r An

s e
ið�kr�ksÞ�x

r; s 2 f1; 2; 3g

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
,

½w0;w0� ¼

terms ðlrms � lsmrÞ
2ArAse

iðkrþksÞ�x

of the ðlrms � lsmrÞ
2ArA

n

s e
iðkr�ksÞ�x

form ðlrms � lsmrÞ
2An

r An

s e
ið�kr�ksÞ�x

r; s 2 f1; 2; 3g

0
BBBBB@

1
CCCCCA.

ð60Þ

Applying the solvability condition to Eq. (59), we
therefore obtain

A~kt1
¼
1

�
sð~kÞA~k þ

X
~krþ

~ksþ
~k¼0

tð~kr; ~ks; ~kÞA
n

r An

s , (61)

where

tð~k1; ~k2; ~k3 ¼ �~k1 � ~k2Þ ¼ �
C

nG2
ðl1m2 � l2m1Þ

2

�
X3
j¼1

l2j þ
r
G2

m2j

ðl2j þ
1
G2

m2j Þ
2
. ð62Þ

Since ~k1 þ ~k2 þ ~k3 ¼ 0; l1m2 � l2m1 ¼ l2m3 � l3m2 ¼

l3m1 � l1m3: Eq. (61) have no finite attracting fixed
points. The reason for this is that the quadratic terms
only transfer energy delivered to the deformation by the
supercritical stress. Saturation is achieved by cubic
terms, principally from the term gw3 from the nonlinear
foundation. We take g sufficiently large so that �g is of
the same order as 1

� s; namely of order unity. Then
additional terms must be added to Eq. (61) to give (after
scaling Aj 7!

1
� Aj)

A~kt
¼ sð~kÞA~k þ

X
~krþ

~ksþ
~k¼0

tð~kr; ~ks; ~kÞA
n

r An

s

� 3gA~k jA~kj
2 þ 2

X
~kla~k

jAlj
2

0
@

1
A. ð63Þ

The amplitude equations (63) are a gradient system;

qA~k

qt
¼ �

dE
dA~k

, (64)
where the scaled and non-dimensional elastic energy,
projected onto the modes ei

~k�~x; ~k 2 A; is

Eð~k 2 A;A~kÞ

¼ �
X
~k2A

sð~kÞA~kAn
~k
�

X
~krþ~ksþ~kj¼0

tð~kr; ~ks; ~kjÞ

� ðArAsAj þ An

r An

s An

j Þ

þ 3g
X
~kj2A

1

2
jAjj

2 þ 2
X

klakj

jAjj
2jAlj

2

0
B@

1
CA. ð65Þ

As Eq. (63) is a gradient flow, all the attracting solutions
are fixed points. These fixed points are minimizers of the
elastic energy (65). We will discuss these fixed points and
the elastic energy landscape as a function of the physical
parameters and the phyllotactic coordinates 2pd; l; m,
and n in Section 4. Here, we will simply recall some
properties of Eq. (63) in the case where A contains three
modes ~k1; ~k2; ~k3; where ~k1 þ ~k2 þ ~k3 ¼ 0 or four modes
~k1; ~k2; ~k3; ~k4; where ~k1 þ ~k2 ¼ ~k3 and ~k2 þ ~k3 ¼ ~k4:

3.4. Solutions of the amplitude equations

3.4.1. Amplitude equations including three modes

In this section, we discuss stability of solutions of the
amplitude equations (63) in the simplest case in which
there are only three active modes A1e

i~k1�~x; A2e
i~k2�~x; and

A3e
i~k3�~x such that ~k1 þ ~k2 ¼ ~k3: The amplitude equations

then read

z
qA1

qt
¼ sð~k1ÞA1 þ tð~k1; ~k2; ~k3ÞAn

2A3

� 3gA1ðA1A
n

1 þ 2A2A
n

2 þ 2A3A
n

3Þ,

z
qA2

qt
¼ sð~k2ÞA2 þ tð~k1; ~k2; ~k3ÞAn

1A3

� 3gA2ðA2A
n

2 þ 2A1A
n

1 þ 2A3A
n

3Þ,

z
qA3

qt
¼ sð~k3ÞA3 þ tð~k1; ~k2; ~k3ÞA1A2

� 3gA3ðA3A
n

3 þ 2A1A
n

1 þ 2A2A
n

2Þ. ð66Þ

The system (66) has the following stationary solutions in
the case sð~k1Þ ¼ sð~k2Þ ¼ sð~k3Þ¼

: s that are stable for
certain choices of the ratio x ¼

sg
t2
:

I. Zero solution: A1 ¼ A2 ¼ A3 ¼ 0;

stable for xo0; unstable for x40.

II. Ridge solutions: A1 ¼ �
ffiffiffiffi
s
3g

q
; A2 ¼ 0 ¼ A3;

A2 ¼ �

ffiffiffiffiffi
s
3g

r
; A1 ¼ 0 ¼ A3,

A3 ¼ �

ffiffiffiffiffi
s
3g

r
; A1 ¼ 0 ¼ A2,

stable for x41; unstable for xo1.
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III. Hexagon solutions: Aj ¼ aefj ;f1 þ f2 þ f3 ¼ np;

n 2 Z; a� ¼
t�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þ60sg

p

30g

for even n; aþ is stable for xo4
3
,

for odd n; a� is stable for xo4
3
.

In the following, we will be interested in the case sð~k1Þ ¼

sð~k2Þosð~k3Þ so that x1 ¼ x2¼
: xox3; where xj ¼

sðkj Þg

t2
:

The stability of ridge and hexagon solutions in this case
is as follows; details can be found in (Kücken, 2004):
I. Ridge solution type I: A1 ¼ �

ffiffiffiffi
s
3g

q
;A2 ¼ 0 ¼ A3;

A2 ¼ �

ffiffiffiffiffi
s
3g

r
; A1 ¼ 0 ¼ A3,

stable for x4
1þ x3
2

.

This solution is of little interest as it is not reached in the
context of plants.
II. Ridge solution type II: A3 ¼ �

ffiffiffiffi
s3
3g

q
;A1 ¼ 0 ¼ A2;

stable for xo2x3 �
ffiffiffiffiffi
x3

p
.

This is one of the two most interesting solutions. It
corresponds to a purely circumferential mode a3 cos Ga;
where G is an integer. It is stable if the quadratic
coupling coefficient t is small, a situation which is
obtained when the tunica curvature is small.
III. Hexagon solutions: Aj ¼ aje

fj ;f1 þ f2 þ f3 ¼ 0;

a2 ¼
sþ ta3 � 2ga23

3g
,

5g2a33 � 6tga23 þ ð3gs3 � 4gsþ t2Þa3 þ ts ¼ 0,

stable for 10a33 � 6a
2
3oxo2a23 þ a3.

This is the second interesting solution. It corresponds to
the case when the quadratic coupling coefficient is
strong enough to destabilize the purely circumferential
mode which is, linearly, amplified the most. The solution
has a deformation which is shown in Fig. 5(b) and is
hexagonal in shape.

3.4.2. Amplitude equations including four modes

We have argued in the overview, and will expand our
discussion in Section 4, that bias will lead to solutions
consisting of two (or even three) overlapping wavevector
triads ~k1; ~k2; ~k3 ¼ ~k1 þ ~k2 and ~k2; ~k3; ~k4 ¼ ~k2 þ ~k3 (and
~k3; ~k4; ~k5 ¼ ~k3 þ ~k4). The amplitude equations (65) for a
deformation which is a linear combination of four
modes read

z
qA1

qt
¼ sð~k1ÞA1 þ t1An

2A3 � 3gA1ðA1A
n

1 þ 2A2A
n

2

þ 2A3A
n

3 þ 2A4A
n

4Þ,
z
qA2

qt
¼ sð~k2ÞA2 þ t1An

1A3 þ t2An

3A4 � 3gA2ðA2A
n

2

þ 2A1A
n

1 þ 2A3A
n

3 þ 2A4A
n

4Þ,

z
qA3

qt
¼ sð~k3ÞA3 þ t1A1A2 þ t2An

2A4 � 3gA3ðA3A
n

3

þ 2A1A
n

1 þ 2A2A
n

2 þ 2A4A
n

4Þ,

z
qA4

qt
¼ sð~k4ÞA4 þ t2A2A3 � 3gA4ðA4A

n

4 þ 2A1A
n

1

þ 2A2A
n

2 þ 2A3A
n

3Þ. ð67Þ

In the case sð~k1Þ ¼ sð~k2Þ ¼ sð~k3Þ ¼ sð~k4Þ; this system
has a solution in which the outer modes have equal
amplitude A1 ¼ A4 which are roots of 63g2x3 � 36gtx2þ

ð2t2 � 3sgÞx þ ts and the inner two modes have equal

amplitudes A2 ¼ A3 ¼ � 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ2tA1�2gA2

1
g

r
; an example of

such a deformation is shown in Fig. 5(c).
The exact solutions discussed here serve as guides. In

most cases, however, the growth rates sð~kjÞ are not
equal, and we must solve Eqs. (66), (67) using a
Runga–Kutta 4 scheme. For example, we will be
interested in the case s2 ’ s34s1 ’ s4 in Eq. (67), in
which case we will find numerically solutions of the form
jA2j ’ jA3j4jA1j ’ jA4j:
4. Energy-minimizing configurations

In the previous section, we analysed the elastic energy
associated to a deformation w ¼

P
~kA~ke

i~k�~x þ c.c. of the
tunica surface in the generative region, where, for radial
r and angular a coordinates, ~x ¼ ðr; aÞ and ~kj ¼ ðlj ;mjÞ;
and ~kj belongs to a set A of active modes to be
determined in Section 4.2 (recall that we use the
coordinate r when our attention is restricted to the
generative region and s otherwise). That energy, when
averaged over the compressed annular band of the
tunica, has the form of a real polynomial in the complex
amplitudes Aj whose coefficients depend on certain
dimensionless material and geometric parameters intro-
duced in Section 3.2;

Eð~k 2 A;A~kÞ

¼ �
X
~k2A

sð~kÞA~kAn
~k

�
X

~krþ~ks¼~kj

tð~kr; ~ks; ~kjÞðArAsA
n

j þ An

r An

s AjÞ

þ 3g
X
~kj2A

1

2
jAjj

2 þ 2
X

klakj

jAjj
2jAlj

2

0
B@

1
CA. ð68Þ

The goal now is to find those deformations (that is,
those wavevectors and associated amplitudes) that
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minimize this elastic energy and how the minimizing
deformations depend on the parameters. The relaxa-
tional dynamics of the amplitudes Aj and how they
reach their energy-minimizing states is governed by the
amplitude equations

dAj

dt
¼ �

qE
qAn

j

¼ sð~kjÞAj þ
X

~krþ
~ks¼

~kj

tð~kr; ~ks; ~kjÞArAs

� 3g jAjj
2 þ 2

X
laj

jAlj
2

 !
Aj. ð69Þ

The effects of the bias of a previous pattern which has
moved out of the generative region on the pattern about
to form is captured by adding constants Āj to the
amplitude equations for those modes which share
circumferential wavenumbers with those of the previous
pattern. These terms arise from the projection of the
outer edge boundary conditions onto the set of active
modes. They will add terms ĀjA

n

j þ Ā
n

j Aj to the elastic
energy (68). We use the dynamical equations (69) to
follow the evolution of the amplitudes in order to be
able to confirm that a particular minimizing configura-
tion is accessible from the initial conditions. The pattern
history, captured by the initial bias and the initial
conditions which reflect the fading presence of the
former pattern, determines which of the many possible
minima the new pattern will realize. It will be a local
minimum but may not be the absolute minimum. We
will find, for example, that whereas configurations
involving triads with angular wavenumbers ðN ;N; 2NÞ

or ðN ;N þ 1; 2N þ 1Þ have the lowest minima, other
combinations of triads are often realized.
Before we begin, we remind the reader of the warning

issued in the overview. The expressions (68) and (69) are
generic in the sense that almost every near-onset model
sharing some overall symmetries with the picture we
propose will give similar normal forms. From the
pioneering work of Koiter (1963) on shell buckling
and Busse (1967) on convection, it is known that, in
overdamped situations, the system will relax to minima
of an energy functional which is a polynomial in the
amplitudes Aj of the fundamental shapes e

i~kj �~x common
to translationally invariant (read large aspect ratio; the
wavelength to macroscopic length scale ratio is small)
systems. It is also widely appreciated that, barring
symmetries, such as w ! �w; which make the coupling
coefficient t zero, the triad interactions will dominate.
For example, in systems which are also locally
rotationally invariant, the preferred planform near onset
consists of regular hexagons. Therefore, if we are to
connect our model, based on the elastic deformation of
an annular region of the tunica, to what is observed, we
have to show that the particular coefficients sð~kjÞ

and tð~kr; ~ks; ~krþs ¼
~kr þ

~ksÞ have the properties which
lead to the choices of phyllotactic lattices, transitions
between lattices, and phylla shapes that are observed in
nature.
As an outline of how the model gives rise to the

various polygonal planforms and phyllotaxis, we
summarize the results of the following subsections.
4.1: We begin by discussing the dimensionless para-

meters, which include material parameters describing
properties of the tunica and corpus, stress parameters,
and geometric parameters describing the shape of
the apex.
We describe how the coefficients s and t depend on

the parameters in 4.2 (s) and 4.3 (t).
4.2: The coefficient sð~kÞ gives both the most linearly

unstable planform and the set of active modes.
As the circumferential stress due to growth is larger

than the radial stress, the most linearly unstable mode
has the form ac cosðmcaÞ ¼ Ace

i~kc�~x þ An

ce
�i~kc�~x (~kc ¼

ð0;mcÞ; ac ¼ 2jAcj; phase of Ac ¼ 0), where mc is the
closest integer to the ratio G ¼ R

L of the mean radius R of
the generative region to the natural wavelength L;
determined by material properties of the tunica. Thus,
purely circumferential ridges (as seen, for example,
on a pumpkin) constitute the most linearly preferred
planform.
The set A of active modes is defined after examining

the constant growth rate curves sðl;mÞ in the ðl;mÞ-
plane. This set must be allowed to include all modes
which can possibly participate in the nonlinear competi-
tion. Some will even be linearly damped; that is, their
growth rates will be weakly negative. They can still play
vital roles as they can be nonlinearly driven via triad
interactions with modes that are linearly amplified.
4.3: The cubic coupling coefficient tð~k1; ~k2; ~k3Þ is

proportional to a parameter C measuring the curvature
of the apex. Also, writing the wavevectors ~kj in terms of
the phyllotactic parameters d and l; we show that t is a
sensitive function of d and a decreasing function of l:
4.4: For curvature C above some critical value, the

purely circumferential mode with wavevector ~kc ¼

ð0;mcÞ is unstable to a triad of modes ~kN ¼ ðl;NÞ; ~k
0

N ¼

ðl;NÞ; ~kc ¼ ð0;mc ¼ 2NÞ or ~kN ¼ ðl;NÞ; ~k
0

N ¼ ðl;N þ 1Þ;
~kc ¼ ð0;mc ¼ 2N þ 1Þ and positive amplitudes; this
choice of wavevectors and amplitudes depends on the
coefficients s and t: The case m ¼ 2N gives rise to the
alternating N-whorl in which whorls of N primordia
alternate in angle; for N ¼ 2 this is the commonly
observed decussate phyllotaxis (Fig. 2(c)).
For C just above the critical value at which ridges

become unstable, the amplitude ac of the mode with
wavevector ~kc is much larger than the amplitudes of the
remaining two modes. In this case, the planform is
almost that of purely circumferential ridges with small
undulations; see Figs. 1(a) and 5(a). For larger C, the
amplitudes of all three modes are close to the same
value, and the planform is that of hexagons; see
Figs. 1(b) and 5(b).



ARTICLE IN PRESS
P.D. Shipman, A.C. Newell / Journal of Theoretical Biology 236 (2005) 154–197180
As G increases, the energy-minimizing triad config-
uration moves up the sequence of triads with radial
wavenumbers ðN;N; 2NÞ ! ðN ;N þ 1; 2N þ 1Þ !
ðN þ 1;N þ 1; 2ðN þ 1ÞÞ ! � � � : These are sudden, Type
I, transitions involving dislocations and penta–hepta
defects (Fig. 24) in which only one radial wavenumber is
preserved.
4.5: For large enough stress and curvature, more than

one triad may be involved in the energy-minimizing
configuration which is realizable. Imagine that we begin
with a triad of modes with circumferential wavenumbers
ðm; n;m þ nÞ (e.g., (2,3,5)). We show how bias, namely
the influence that a forming pattern feels from a
previously formed pattern that has moved to the edge
of the generative region favors the choice of the fourth
mode m þ 2n over the mode 2m þ n so that a config-
uration with amplitudes jAmj; jAnj; jAmþnj; jAmþ2nj is
favored over one with amplitudes jAmj; jAnj;
jAmþnj; jA2mþnj: This has the important consequence of
giving rise to Fibonacci-like sequences as G increases. As
G increases, the amplitude jAmj in a sequence
jAmj; jAnj; jAmþnj; jAmþ2nj decreases as the amplitude
jAmþ2nj increases and a fifth amplitude jA2mþ3nj becomes
positive. Thus, for increasing G; the sequence of
amplitudes moves up a Fibonacci-like sequence and
usually contains four or five modes with the inner modes
with larger amplitudes than the left, respectively, right-
most, modes diminishing (respectively, increasing) with
G: This leads to Type II imperfect transitions, resulting
in parallelogram shapes (Figs. 1(c) and 5(c)) when four
modes are involved and staircase parallelograms
(Figs. 1(d) and 5(d)) when five modes are involved.
Thus, we present a picture of how both bias and the

presence of more than one triad are essential for Type II
transitions. Without either of these effects, Type I
transitions are preferred. Notice that this picture suggests
that plants in which the dominant planform is that of
ridges should undergo Type I transitions, whereas Type
II transitions should be seen on plants that have
overlapping triads and thus parallelogram planforms.
4.1. The parameters

The parameters introduced in Section 3 describe the
material properties of the tunica and the corpus founda-
tion, the stresses in the tunica, and the geometry of the
prebuckling, stressed tunica shell. More experimental
work is needed to find the values of these parameters for
plants; here we review the information that is available.
A number of the non-dimensionalized parameters

derived in Section 3.2 are expressed in terms of the
natural wavelength 2pL of the shell, where

L4 ¼
Eh3n2

kþ Eh

R2a

. (70)
In this expression, E is the Young’s modulus and h the
thickness of the tunica shell, and n2 ¼ 1

12ð1�m2Þ
; where m is

the Poisson’s ratio of the shell. The parameter k is a
linear spring constant measuring the strength of the
corpus foundation. Dumais and Steele (2000) gathered
the following experimentally determined values for these
material parameters from the literature:

� Young’s modulus E: Cellulose (the main component
of cell walls) has a Young’s modulus of 100GPa.
Wainwright et al. (1976) give a value of 1GPa for Nitella

cell walls. For their numerical calculations of stress
distributions, Dumais and Steele adopt a value of
1GPa, which equals 10�3 N=mm2: For comparison, the
Young’s modulus values (in GPa) for various other
materials are as follows:
Soft Cuticle of a Locust:
 0.21

Rubber:
 6.9

Shell Membrane of an Egg:
 7.58

Human Cartilage:
 24.13

Human Tendron:
 551.6

Wood (along the Grain):
 6895

Iron and Steel:
 206,850
� Poisson’s ratio m: Hejnowicz and Sievers (1996)
measured values of Poisson’s ratio ranging from 0.15 to
0.5 in the sunflower capitulum. Dumais and Steele adopt
values ranging from 0.3–0.5. A range of m ¼ 0:3–0.5
gives a range of n ¼ 0:3–0.333.

� The tunica thickness h: Steele (2000) cites data
collected from the literature by C. Schmid and J.
Dumais that give tunica thicknesses ranging from a
few micrometer to close to 60mm: For calculations, we
take the value of h to be 10mm:

� There is no experimentally determined value for k:
A summary of the non-dimensional parameters in the

FvKD equations that we analysed is as follows:
� Corpus foundation parameters:

k0 ¼
L4k

Eh3n2
,

g0 ¼
L4g
Ehn2

.

Positive values of these parameters mean that the corpus
foundation provides a damping for unstable modes. In
what follows, we will take these parameters to be
positive, but we do not have good estimates for their
exact values. In analysing the averaged energy, however,
these parameters will get further absorbed into another
ratio that determines the strength of the nonlinear
interaction between active modes. In deriving Eq. (68),
we have taken g to be dominated by the hard spring
response of the corpus foundation and large enough so
that gðP � PcÞ is of order unity, thereby ensuring a
balance between all three terms in the energy.
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� Stress parameters:

P ¼ �
NaL2

Eh3n2
,

w ¼
Nr

Na
.

The analysis of Section 3 assumes that the stress
parameter P is only slightly above the critical value at
which unstable modes appear. There is no experimen-
tally obtained value of this parameter, but it is reason-
able to assume that plant patterns are initially produced
once the stress becomes supercritical and that the
resulting deformation relieves the system of excess
mechanical stress. The results of Dumais and Steele
(2000) indicate that it is in the circumferential, i.e., a;
direction that stress is negative—that is, P40-and that
Nr is either positive or negative with a magnitude less
than that of Na: Therefore, we take wo1:

� Geometric parameters:

C ¼
L2

Rahn
,

r ¼
Ra

Rr

.

These two parameters describe the intrinsic curvature of
the plant apex in the region of pattern formation, as
depicted in Fig. 14. The choice r40 describes an elliptic
region, with r ¼ 1; C40 describing the spherical apex of
Fig. 14(a) and r ¼ 1; Co0 describing the inverted
sphere of Fig. 14(b). The choices C40; ro0 describe
the hyperbolic geometry of Fig. 14(c).

G ¼
R

L
.

This parameter, expressing the ratio of the radius of the
region of pattern formation to the natural wavelength,
grows larger as the plant apex grows in size (so that R

increases) while the material properties of the plant
remain constant (so that L remains constant). We
remind the reader, however, that R, and therefore Gmay
decrease in size during a pattern-forming process, such
as in the formation of a sunflower.
There is a constraint C2 þ k0 ¼ 1:We thus have seven

parameters (g; P, w; C, r; G; and n) that remain in the
FvKD equations. We will show below how the analysis
of the averaged elastic energy (65) allows for a further
reduction in the number of parameters. In particular, for
the case r ¼ 1; we will be left with four parameters.
To express the area of a newly formed primordium in

terms of these parameters, recall that we approximated
this area by the parallelogram determined by the vectors
o0
1 ¼

1
g
ðlm; 2pRðmd � qÞÞ;o0

2 ¼
1
g
ðln; 2pRðnd � pÞÞ; and

note that we have now scaled the radial coordinate by L:
The area is thus approximated by the parallelogram
determined by the vectors o00

1 ¼
1
g
ðlLm; 2pRðmd �
qÞÞ;o00
2 ¼

1
g
ðlLn; 2pRðnd � pÞÞ; that is, it is the absolute

value of the determinant of the matrix

O00 ¼
1

g

lLm lLn

2pRðmd � qÞ 2pRðnd � pÞ

 !
, (71)

the area is A ¼ j det O00j ¼ 2p
g

RLl ¼ 2p
g
GL2l: (As de-

scribed in Section 1.5, after their formation, primordia
leave the region of pattern formation and mature into
phylla as the plant shoot continues to grow. The size of
the primordium/phyllo will then increase either expo-
nentially if the radial plant growth is exponential, or at a
constant rate if the radial plant growth is constant. The
formula A ¼ 2p l

g GL
2 describes primordium size, not

the size of developed phylla.)
Our next goal is to determine how the coefficients s

and t of the averaged elastic energy (68) depend on
the above parameters. In the following, we again drop
the primes on the non-dimensionalized parameters k0

and g0:

4.2. The linear growth rates and the set of active modes

In this section, we examine how the linear growth
rates sðl;mÞ depend on the parameters and determine
the set A of active modes. Recall that, in terms of the
non-dimensionalized parameters, the linear growth of a
mode with wavevector ~k ¼ ðl;mÞ is

sðl;mÞ ¼ D̂
2
þ PD̂w � k� C2

D̂
2

r

D̂
2
, (72)

where D̂ ¼ l2 þ 1
G2

m2; D̂w ¼ wl2 þ 1
G2

m2; and D̂r ¼ l2 þ
r
G2

m2: The analysis of Section 3 assumed that the stress
parameter P is slightly above a critical value Pc; which is
the minimum value of P for which there are modes with
nonnegative linear growth rates. For P4Pc; there is a
set of modes with positive linear growth rates. However,
the nonlinear generation of weakly damped modes
means that some of them must also be included in the
active set. We define the active set A to be the set of all
modes ~k ¼ ðl;mÞ such that sðl;mÞ4� 3sðlc;mcÞ; where
~kc ¼ ðlc;mcÞ is the (a) wavevector of the mode(s) with
the largest positive linear growth rate. The choice of 3 is
not important to the outcome; the factor must be large
enough to include all relevant modes.
We begin by studying the case r ¼ 1 (describing the

sphere or the inverted sphere). For this case, the
growth relation simplifies, upon using the constraint
C2 þ k ¼ 1; to

sðl;mÞ ¼ �D̂
2
þ PD̂w � 1, (73)

which only depends on P, w and G: For w ¼ 1; the modes
with the largest linear growth rates are those on the
ellipse l2 þ 1

G2
m2 ¼ 1 marked in Fig. 18(a and b). The

growth rate of modes on this ellipse is given by sðl;mÞ ¼

P � 2: For P4Pc ¼ 2 there is an annulus of modes with



ARTICLE IN PRESS

Fig. 18. The positive and active modes for the elliptic shell with r ¼ 1

and 0ow: For (a,b) w ¼ 1 and (c,d) w ¼ 1
2
; and (a,c) P ¼ 2:2 and (b,d)

P ¼ 2:7; the sets of modes with positive growth rates (bounded by thin
lines) and the sets of active modes (bounded by thick lines) are shown.

For w ¼ 1; the modes with the largest growth rates are those that are
on the middle ellipse that runs through the points ð0;GÞ and ð1; 0Þ:
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positive growth (Fig. 18(a and b)), and any mode ðl;mÞ

with sðl;mÞ4� 3ðP � 2Þ is included in the active set
(Fig. 18(c and d)). For wo1; the only neutral mode at
P ¼ Pc is ~kc ¼ ð0;GÞ; and for P4Pc the sets of positive-
growth and active modes are parts of annuli concen-
trated about ~kc; see Fig. 18 for w40; details of wo0 are
given in (Shipman, 2004). In summary, then, the
parameter G determines the center ellipse l2 þ 1

G2
m2 ¼

1; and the stress parameter P determines the width of the
annulus of active modes (in the case w ¼ 1) or part of an
annular of active modes (in the case wo1). Note that,
for a fixed value of m and any wp1; the maximum
growth occurs for l such that ðl;mÞ is on the middle
ellipse.
For the hyperbolic shell described by ro0; a mode
with wavevector ~k ¼ ðl;mÞ is a neutral mode for

P ¼
1

wl2 þ 1
G2

m2

� l2 þ
1

G2
m2

� �2
þ kþ C2

l2 þ r
G2

m2

l2 þ 1
G2

m2

 !20
@

1
A. ð74Þ

For the case w ¼ 1 of isotropic stress, P is minimized on

the intersection of the loci l2 þ r
G2

m2 ¼ 0; l2 þ 1
G2

m2 ¼ffiffiffi
k

p
; that is, Pc ¼ 2

ffiffiffi
k

p
and ~kc ¼ ðkÞ

1
4ð� 1ffiffi

2
p ; Gffiffiffiffiffiffiffi

�2r
p Þ: For

0owo1; the results are qualitatively similar. The critical
stress value Pc ¼ 2

ffiffiffi
k

p
o2 for a hyperbolic shell is thus

less than that for an elliptic shell. The regions of
wavevectors of modes with positive linear growth rates
and of active modes for the hyperbolic shell described by
w40; r ¼ �1 and k ¼ 1

2
;C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
are shown in

Fig. 19.
For r ¼ �1; w40; the hyperbolic shell differs from

the elliptic shell in that the critical wavevector has a non-
zero radial component. However, for w ’ ro0; the
critical wavevector for the hyperbolic shell is ~kc ¼

ð0;G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ C2r

p
Þ: Thus, for wo0; the regions of positive

and active modes for the hyperbolic shell are qualita-
tively similar to the regions for the elliptic shell
(Shipman, 2004).

4.3. The coefficient tð~kr; ~ks; ~krþs ¼
~kr þ

~ksÞ

The cubic coefficient

tð~kr; ~ks; ~krþs ¼
~kr þ

~ksÞ ¼ tðr; s; r þ sÞ

¼ �
C

nG2
ðlrms � lsmrÞ

2

�
X

j¼r;s;rþs

l2j þ
r
G2

m2j

ðl2j þ
1
G2

m2j Þ
2

ð75Þ

of the averaged energy has the following properties:
1.
 As lrms � lsmr ¼ lrmrþs � lrþsmr ¼ lsmrþs � lrþsms;
tð~kr; ~ks; ~krþsÞ is a symmetric function of the wave-
vectors.
2.
 What values of the radial wavenumbers maximize t?
For a fixed value of mj ; the fraction

l2j þ
r
G2

m2j

ðl2j þ
1
G2

m2j Þ
2

is maximized for lj ¼ 0: If, however, two radial
coordinates are equal to zero, then t also equals 0
due to the factor ðlrms � lsmrÞ

2: For fixed

angular wavenumbers, the coefficient t achieves local

maxima at where exactly one of the radial coordinates

is zero. Writing the wavevectors in terms of the
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Fig. 19. The positive and active modes for the hyperbolic shell; r ¼ �1; k ¼ 1
2
; C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
: For w ¼ 1; and (a) P ¼ 2:3

ffiffiffi
k

p
; (b) P ¼ 2:7

ffiffiffi
k

p
; the

modes with positive growth rates are bounded by the thin lines, and the active modes by the thick lines. (c) For w ¼ 2
3
; and P ¼ 2:7

ffiffiffi
k

p
; the modes with

positive growth rates are bounded by the thin lines, and the active modes by the thick lines.
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τ

Fig. 20. The coefficient t as a function of d for the inverted sphere. t is
evaluated at ~km ¼ ð2pl ðq � mdÞ;mÞ; ~kn ¼ ð2pl ðp � ndÞ; nÞ; ~kmþn ¼ ~km þ
~kn for m ¼ 6; n ¼ 6; l ¼ 3

5
; G ¼ 12; r ¼ 1; and C

n ¼ �1:
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phyllotactic coordinates as ~km ¼ ð2pl ðq �

mdÞ;mÞ; ~kn ¼ ð2pl ðp � ndÞ; nÞ; ~kmþn ¼ ð2pl ðp þ q �

ðm þ nÞdÞÞ; this means that tðm; n;m þ nÞ; as a

function of d, achieves local maxima at the three

values d ¼
p
n
; q

m
; pþq

mþn
that make one of the radial

coordinates equal to zero. In fact, t is a very sensitive
function of d, with a Dirac delta-function-like
nature, with extrema at the values of d that make one
of the radial wavenumbers equal to zero, as
illustrated in the graphs of t for r ¼ 1 (Fig. 20).
This last expression is maximized at jtj ¼ 1 for l ¼

0 or d ¼
q
m
; p

n
; pþq

mþn
: The coefficient t is larger for

smaller l; or, equivalently, for larger values of the
radial wavenumber.
We can also write tðm; n;m þ nÞ as a function of the
phyllotactic coordinates d; l;m; n and G as follows:
for r ¼ 1;

t ¼ �
C

n
ð2pÞ2

1

2pðG q�md
g Þ2þm2 l2

g2

þ 1

2pðGp�nd
g Þ2þn2 l2

g2

þ 1

2pðGpþq�ðmþnÞd
g Þ2þðmþnÞ2 l2

g2

2
664

3
775.

This last expression is maximized at jtj ¼ 1 for l ¼

0 and d ¼
pþq
mþn

or p
m
or q

n
: The coefficient t is larger for

smaller l–that is, for larger l1; l2:

3.
 What values of the angular wavenumbers maximize

t? Writing ~k1 ¼ ðl1;m3 � mÞ; ~k2 ¼ ðl2;mÞ; ~k3 ¼ ðl1 þ

l2;m3Þ; for r ¼ �1; fixed m3 and arbitrary values of
C and G; t is maximized at m ¼

jl2jm3
jl1jþjl2j

: In particular,
we will be interested in the case l1 ¼ �l2; ~k3 ¼
ð0;m3 ¼ GÞ; for which t is maximized at ~k1 ¼ ðl; m3

2
Þ;

~k2 ¼ ð�l; m3
2
Þ:
4.
 t is proportional to the curvature constant C;
when C ¼ 0 the quadratic coefficient in the ampli-
tude equations vanishes. This means that rolls
are the only stable solutions of the amplitude
equations when C ¼ 0: Note that the appearance
of C in the amplitude equations comes from there
being non-zero curvature in the original, unbuckled
shell.
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4.4. Three-mode minimizers
1.2

1

0.8
We first analyse the simplest case, namely that when
the active set A contains just three modes

~km ¼
2p
l

ðq � mdÞ;m

� �
; ~kn ¼

2p
l

ðp � ndÞ; n

� �
,

~kmþn ¼ ~km þ ~kn.

Writing tðm; n;m þ nÞ ¼ t; the amplitude equations are

qAm

qt
¼ sð~kmÞA1 þ tAn

nAmþn � 3gAmðAmAn

m þ 2AnAn

n

þ 2AmþnAn

mþnÞ,

qAn

qt
¼ sð~knÞA2 þ tAn

mAmþn � 3gAnðAnAn

n þ 2AmAn

m

þ 2AmþnAn

mþnÞ,

qAmþn

qt
¼ sð~kmþnÞAmþn þ tAmAn � 3gAmþnðAmþnAn

mþn

þ 2AmAn

m þ 2AnAn

nÞ. ð76Þ

The critical points of EðAm;An;AmþnÞ are given by the
stationary solutions of Eq. (76). The important results are
/A
3 0.6
1.
A
1

0.4

0.2

-0.2
-0.4 -0.2 0.2 0.4 0.6 0.80 1

0

For wo1 (as is experimentally determined for plants),
the purely circumferential mode ~kc ¼ ð0;GÞ max-
imizes sðl;mÞ: For convenience of presentation, we
will consider values of the size parameter G which are
either even 2N or odd 2N þ 1 integers. Therefore, the
most amplified mode is ~kmþn ¼ ð0;m þ nÞ; which, in
the absence of ~km and ~kn would grow to an amplitude
Amþn ¼

ffiffiffiffiffiffiffiffiffi
smþn
3g

q
for m þ n ¼ G ¼ 2N or 2N þ 1:
χ(a)
2.
1.5

1.25

0.866

1

m
be

r 
I

However, near onset the ridge solution Amþn ¼ffiffiffiffiffiffiffiffiffi
smþn
3g

q
; Am ¼ An ¼ 0; can be linearly unstable to a

triad of modes, namely an approximately hexagonal
planform. The stability of ridge or hexagonal plan-
forms is determined by the parameters xj ¼

3sð~kj Þg

t2
(see

Section 3); for small values of xj (i.e., for large values
of the interaction coefficient t), hexagons are the
preferred planform.
vn
u
3.
0.5
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di
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 w

a

χ
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(b)

Fig. 21. For the parameters C
n ¼ 3; g ¼ 1; P ¼ 2:3 and angular

wavenumbers 3,3,6, G ¼ 6; the energy-minimizing choices of the
amplitudes and the radial wavenumber l were found. (a) Plotted is the

ratio
A1
A3

¼
A2
A3
as a function of w ¼ � 1

4
::1: (b) The energy-minimizing

choice of the radial wavenumber as a function of w ¼ � 1
4
::1: For small

w; the choice is very close to
ffiffi
3

p

2
’ 0:866:
For G ¼ 2N; the triad which minimizes E is ~km ¼

ð�lðlÞ;m ¼ NÞ; ~kn ¼ ðlðlÞ; n ¼ NÞ; ~kmþn ¼ ~kc ¼

ð0;m þ n ¼ G ¼ 2NÞ; where lðlÞ is of order 1, and
the amplitudes of the minimizer are such that
Amþn4jAmj ¼ jAnj: The reasons for this follow from
the properties of t stated in Section 4.3. From ~k3 ¼
ð2pl ðp þ q � ðm þ nÞdÞ;m þ nÞ ¼ ð0; 2NÞ one sees that
d ¼

pþq
mþn

; this is an optimal choice of d (Property 2).
Also, the choice m ¼ n ¼ N is optimal according to
Property 3. In Fig. 21, we plot the ratio

jA1j

jA3j
and the

radial wavenumber lðlÞ as functions of w: Note that
lðlÞ ’ 1 is chosen as a compromise between the
choices of l that maximize s and t: For small w; s is
maximized at l ¼ 0 (l ¼ 1). It is therefore essential
that tdepend on l, and (Property 2), t is, in fact,
maximized at l ¼ 1 (l ¼ 0). Smaller values of w yield
smaller choice of l and also, due to smaller values of

sð~k1Þ; sð~k2Þ and t; smaller values of the ratio jA1j

jA3j
:

Thus, the purely circumferential deformation cosð~k3 �
~xÞ (corresponding to radial ridges) is more dominant
for smaller w: We also note that the chosen
wavevectors ð�lðlÞ;NÞ lie well within the active range
sðl;mÞ4� 3sc so that the choice of the number 3 in
defining the active region plays little role. We could
have chosen the factor to have been 4 or 5 and
obtained the same results. Recalling Property 4, the
linear dependence of t on C, we plot in Fig. 22 the

graph of
jA1j

jA3j
against Q ¼ Cffiffiffiffi

3g
p

n
: Note that, for Qo1;

the purely circumferential ridge solution is stable,
but, as Q grows, the ratio approaches unity; the
planform becomes approximately hexagonal.
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Fig. 22. (a) Parameters: Q ¼ 1::5; w ¼ 2
3
; P ¼ 2:4 modes 6,6,12, G ¼ 12: Plotted is the ratio jA1 j

jA3 j
; which, as sð~k1Þ ¼ sð~k2Þ; equals the ratio

jA2 j

jA3 j
: (b–d)

For the values (b) Q ¼ 1:25 and (c) Q ¼ 1:5 the configurations determined by the experiment of (a) are plotted as deformations of a sphere. As Q gets

large, the optimal configuration approaches that in which all three amplitudes are equal (d).

Table 1
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4.

Energy-minimizing parastichy numbers for small values of G

G m n m þ n Type of pattern

2 1 1 2 Alternating 1-whorl

3 1 2 3 Fibonacci spirals

4 2 2 4 Alternating 2-whorl

5 2 3 5 Fibonacci spirals

6 3 3 6 Alternating 3-whorl

7 3 4 7 Lucas spirals

8 4 4 8 Alternating 4-whorl

9 4 5 9

10 5 5 10 Alternating 5-whorl

11 5 6 11

12 6 6 12 Alternating 6-whorl
For G ¼ 2N þ 1; the energy-minimizing triad is ~km ¼

ð�lðlÞ;NÞ; ~kn ¼ ðlðlÞ;N þ 1Þ; ~kmþn ¼ ð0; 2N þ 1Þ; and
results similar to those plotted in Fig. 21 are
obtained.

Our conclusions are that, depending on the curvature
C and the ratio of radial to circumferential applied stress
w; an approximately hexagonal planform is preferred.
For increasing G; we list in Table 1 the possibilities.
To use these results to produce a picture of a plant

surface, we assume that the pattern formed in the
generative region remains the same as the buckled tunica
hardens and moves away from the shoot tip. (This is
more accurate of an assumption for some plants (e.g.
cacti) than it is for others (e.g. leafy plants); see Section 5.)
Then, the graph of the function w ¼ jA1j cosðl1s þ
m1aÞþjA2j cosðl2sþm2aÞþjA3j cosðl3sþm3aÞ; 0osorm

if s ¼ r or s ¼ lnðrÞ; depending on whether the radial
growth of the plant is constant or exponential, gives the
deformation of the plant surface after the plant tip has
grown a length rm (if s ¼ r) or erm (if s ¼ lnðrÞ). Note
that if s ¼ r; the plant exhibits the plastochrone
difference, and if s ¼ lnðrÞ; the plant exhibits the
plastochrone ratio. Examples of a theoretical energy-
minimizing configurations for the inverted sphere Co0;
together with a real cactus that they reproduces, are
shown in Fig. 23. The inverted-sphere geometry is only
relevant at the region of pattern formation; as the
pattern moves out, this geometry gives way to a flatter
or non-inverted sphere geometry. The reproduction in
Fig. 23(d) is plotted as a deformation of a flat surface,
whereas the reproduction of Fig. 23(b) is plotted as a
deformation of a sphere. Similarly, in Fig. 22(b–d) we
show the deformations of a sphere determined by
increasing values of Q in the experiment of Fig. 22(a).
We next address the question of transitions between

these configurations as the size of G increases. As
G increases from 2N to 2N þ 1 and on up, the
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Fig. 23. (a) A cactus with alternating 2-whorl phyllotaxis and ridges

and (b) a theoretical reproduction, the plot of a2 cos ~k2 � ~x þ

a2 cos ~k2 � ~x þ a4 cos ~k4 � ~x for a4ba2: (c) A cactus with alternating
6-whorl phyllotaxis and (d) a theoretical reproduction, the plot of

a6 cos ~k6 � ~x þ a6 cos ~k6 � ~x þ a12 cos ~k12 � ~x for a12 ¼ a6:

Fig. 24. (a) The phyllotaxis on a plant that undergoes a (I,1) transition

from a (2,2,4) alternating 2-whorl phyllotaxis (large values of s) to

(2,3,5)-spiral phyllotaxis (small s) is shown along with the spiral

families, one of which does not change during the transition. A

penta–hepta pair is formed where the two dislocations in the other

spiral families meet. The corresponding wavevectors are illustrated in

(b) and (c) along with the typical boundary of the set of active modes.
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energy-minimizing triad changes in the sequence
~kN ¼ ðl;NÞ ~kN ¼ ðl;NÞ ~kNþ1 ¼ ðl;N þ 1Þ

~k
0

N ¼ ð�l;NÞ ! ~kNþ1 ¼ ð�l;N þ 1Þ ! ~kNþ1 ¼ ð�l;N þ 1Þ ! � � � :

~k2N ¼ ð0; 2NÞ ~k2Nþ1ð0; 2N þ 1Þ ~k2Nþ1 ¼ ð0; 2ðN þ 1ÞÞ

(77)
As G increases from 2N to 2N þ 1 and then from 2N þ

1 to 2N þ 2; there is an abrupt change in the optimal
triad, but the triad always has the form ~km ¼ ðl;mÞ; ~kn ¼

ð�l; nÞ; ~kmþn ¼ ð0;m þ n ¼ GÞ; where we find that l does
not depend on G (l is of order 1 and does depend on w
as discussed above). Writing the wavevectors in
the standard form ~km ¼ ðlm ¼ 2p

l ðq � mdÞ;mÞ; ~kn ¼ ðln ¼
2p
l ðp � ndÞ; nÞ; ~kmþn ¼ ð2pl ðp þ q � ðm þ nÞdÞ;m þ nÞ; we
see that ~kmþn ¼ ð0;GÞ implies that d ¼

pþq
mþn

¼
pþq
G ; and

therefore l ¼ lm ¼ �ln ¼ �2p g
l
1
G : As l is constant with

respect to G; the ratio g
l changes like G: As a

consequence, the area A ¼ 2p l
g
GL2 ¼ ð2pLÞ2

l
of a pri-

mordium is constant with respect to G:
These are transitions of type (I,1). As noted in the

introduction, these transitions are observed in nature,
particularly on plants (e.g. saguaro cacti) for which the
configuration is dominated by ridges (i.e. on plants for
which

jA1j

jA3j
is small), although they can also be observed
on plants with hexagonal configurations, as in Fig. 10.
Also note that one wavevector is preserved in each
transition of the sequence (77). If one draws the curves
joining the maxima of the surface deformation in
adjoining regions with different patterns, one sees
dislocations in two families of spirals, corresponding
to the two wavevectors that changed, and a penta–hepta
defect at the point where the two dislocations meet.
In Fig. 24, we illustrate this in the ðs; aÞ-plane, with
the transition between the phyllotactic lattices of the
alternating 2-whorl (2,2,4) and (2,3,5)-spiral patterns. A
penta–hepta defect and the preservation of one family of
spirals are illustrated in the plant of Fig. 10.
Although the (I,1) transition from the alternating 2-

whorl (2,2,4) to the Fibonacci (2,3,5) spiral is commonly
observed in nature, on a typical plant one observes (II,2)
transitions ð2; 3; 5Þ ! ð3; 5; 8Þ ! � � � thereafter. The
challenge is to find, within our picture, an explanation
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for these (II,2) transitions. A hint of the answer lies
within the planforms which are usually observed at the
higher Fibonacci numbers. They tend to look more like
parallelograms than like hexagons, as if they have been
constructed by deformations which contain more than
three wavevectors. And, of course, there is absolutely no
a priori reason why the active set A should be simply
restricted to single triads.
4.5. Four- and five-mode energy minimizers

There are two reasons for us to consider more than
one interacting triad in the active set.

Reason 1: First, let us imagine that we have included a
countably infinite set of modes ~kj in the active set, each
of which is a member of a triad defined by ~kr þ

~ks ¼
~krþs: We note that the corresponding set of amplitude
equations cannot be consistently reduced to that of a
single triad ~km; ~kn; ~kmþn ¼ ~km þ ~kn by setting all other
amplitudes to zero. The reason is that any of the modes
~km � ~kmþn; ~kn �

~kmþn (recall that the value of t for a
second harmonic ~km þ ~km or zero harmonic ~km � ~km is
zero) can be driven by quadratic interactions. For very
small stress P, the growth rate of these modes are so
negative that their amplitudes are, while not exactly
zero, very close to zero. However, for larger P, these
modes are more likely to be members of the active set.
To illustrate this, look at Fig. 25, which delineates in the
ðG; dÞ-plane for P ¼ 2:5; w ¼ 2

3
; and r ¼ 1 which modes

are active according to our sðl;mÞ4� 3sc criterion.
Notice that for G ’ 5; there is a region in the plane for
20

15

Γ

10

5

0.3 0.4

d

2

5

8

3

0.50.35 0.45

Fig. 25. (a) The regions in the (G; d)-plane in which ~kn; for n ¼

2; 3; 5; 8; are active modes, given r ¼ 1; w ¼ 2
3
; P ¼ 2:5:
which not only the modes ~k2; ~k3 and ~k5 are active, but
also the mode ~k8 ¼ ~k3 þ ~k5: The mode ~k7 ¼ ~k2 þ ~k5 may
also be a member of the active set. Which mode, ~k7 or
~k8; is more likely to play a role in the energy-minimizing
configuration?
To answer this question, first recall that we have

found that the most unstable triad is of the form ~km ¼

ðl;mÞ; ~kn ¼ ð�l; nÞ; ~kmþn ¼ ð0;m þ nÞ; where m ’ n: For
sufficiently large values of P, the wavevectors ~k2mþn ¼
~km þ ~kmþn or ~kmþ2n ¼ ~kn þ

~kmþn may come into play.
For m ¼ n; 2m þ n ¼ m þ 2n; but if n ¼ m þ 1; the
wavevectors ~k2mþn and ~kmþ2n may not play symmetric
roles; which mode is more likely to have a non-zero
amplitude in an energy-minimizing configuration? The
simplest way to check is to minimize the energy (68)
restricted to the four modes with wavevectors ~km ¼

ð2pl ; ðq � mdÞ;mÞ; ~kn ¼ ð2pl ðp � ndÞ; nÞ; ~kmþn ¼ ~km þ ~kn

and either ~k2mþn ¼ ~km þ ~kmþn or ~kmþ2n ¼ ~kn þ
~kmþn:

The energy thus becomes a function of d and l and
our task is to find the energy-minimizing choices these
parameters and the mode amplitudes for each choice of
a fourth wavevector. Using our experience from the
simple case of a single triad and the energy-minimizing
choices m ’ n ’ G

2
; consider the triads ~km; ~kmþn; ~k2mþn

and ~kn; ~kmþn; ~kmþ2n: The ratios
n;mþn
mþ2n

are closer to 1
2
than

are the ratios m;mþn
2mþn

: For the choices m ¼ 2; n ¼ 3; for
example, the ratios 2

7
and 5

7
are farther from 1

2
than are the

ratios 38 and
5
8 : Although we do not have an analytic

proof that this leads to a lower energy configuration
with the wavevector choice ~kmþ2n; it is confirmed by
numerical experiments that this mode is energetically
preferred. Consequently, the quadratic interaction
which gives the strongest bias is the one in which one
adds the second two modes of the existing triad. This,
of course, is exactly the recipe for producing
Fibonacci sequences. The particular member of the
Fibonacci family which is chosen (regular Fibonacci
1; 1; 2; 3; 5; 8; 13; . . . ; double Fibonacci 2; 2; 4; 6; 10;
16; 26; . . . ; or Lucas 3; 4; 7; 11; 18; . . .) for a particular
plant is determined by its choice of starting triad.

Reason 2: Bias plays a major role in choosing between
various bifurcation options. This idea is not new, but
was suggested over 50 years ago by Koiter (1963), who
introduced the term geometric imperfection to describe
the effect. The idea is simple. Imagine that one is
compressing an elastic sheet. For supercritical loading
P, it can in principle buckle to the left or to the right.
But, if there is a bias or imperfection in the original
shape and that bias has a non-zero projection in one of
the two competitors (left or right), the amplitudes of the
original imperfection will be continuously amplified.
Such bifurcations are included in the amplitude equa-
tions by adding a constant bias term to the mode which
has such a bias. In plant phyllotaxis, the bias occurs
because the original pattern, for example, the (2,3,5)
pattern, as it moves out of the compressed annulus, the
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Fig. 26. For the parameters Q ¼ 3; w ¼ 0; P ¼ 2:7 and modes with
angular wavenumbers 3,5,8,13,21, we calculated (a) The energy-

minimizing value of d as a function of G in the range G ¼ 5 . . . 18:
(b) The amplitudes of the 3,5,8,13,21 modes in the energy-minimizing

configuration as G increases.
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buckling zone, leaves a strong bias on the outer edge.
This has two important consequences.
Firstly, prior pattern bias encourages overlapping

triads. The reason for this is that, as the new
configuration forms in the generative region, the bias
arising from the previous pattern, say from modes with
circumferential wavenumbers ð2; 3; 5Þ; drives through
quadratic interactions a new mode whose circumferen-
tial wavenumber is the sum 3þ 5 ¼ 8: Of course, as 2þ
5 ¼ 7; the mode with circumferential wavenumber 7 can
also be driven. In the competition, however, it is the
ð2; 3; 5; 8Þ quartet that prevails, particularly when there is
a bias in the modes (2,3,5). This is essentially because the
2 mode is so strongly linearly damped.
Secondly, Type II transitions, which are imperfect, are

easier for a system to make because, as G increases, the
original minimum of the energy landscape, which is the
starting point for the system at the new value of G; is
close to the new minimum. So, even though there may
be deeper minima in the energy landscape, the one which
has the starting point in its basin of attraction is the one
which will be realized. This raises an important
question. Under what conditions are Type I transitions
favored over Type II transitions? The factors are related
to the values of the parameters P�Pc

Pc
; the amount by

which the stress is above its critical value, and the
curvature C of the generative region. If P�Pc

Pc
is too small,

then overlapping triads are less favored because the
modes at the ends of the two overlapping sequences
(such as 2 and 8 in the quartet (2,3,5,8)) are very heavily
damped. The stationary solutions of the amplitude
equations corresponding to overlapping triads disap-
pear. If C is too small, the quadratic interactions are
greatly inhibited and then one finds minimizers which
consist of ridge-dominated single triads. But, the picture
is still incomplete; to give quantitative estimates of the
choices of P and C and bias states that give rise to I or II
transitions we need to run more simulations.
We now demonstrate with a concrete example a

progression with Type II transitions. Take the five active
modes ðlm;mÞ; ðln; nÞ; ðlm þ ln;m þ nÞ; ðlm þ 2ln;m þ 2nÞ;
and ð2lm þ 3ln; 2m þ 3nÞ for m ¼ 3; n ¼ 5; l3 ¼

2p
l ð1�

3dÞ; and l5 ¼
2p
l ð2� 5dÞ: We analyse the situation in

which the stress in the angular direction is 35% above
critical (i.e. P ¼ 2:7) and there is no stress in the radial
direction (i.e. w ¼ 0). The active set consists of three
overlapping triads with amplitudes A3;A5;A8;A13; and
A21: For values of G; 5pGp18; we calculate the
minimizers of EðA3;A5;A8;A13;A21; l; dÞ and plot
the energy-minimizing values of d and the
amplitudes jA3j; jA5j; jA8j; jA13j; jA21j as functions of G
in Figs. 26(a and b). We note that both d and the jAjj

change continuously with G in (II,2) transitions, and the
chosen values of d are, in contrast to the three-mode
case, not typically rational numbers. We also note the
shapes of the dominant planforms, as plotted in Fig. 27
for increasing G: For G ¼ 8; four modes have significant
amplitudes, but the center pair 5 and 8 are dominant.
The corresponding pattern is that of parallelograms
(Fig. 27(a)) that are arranged in two families of 5 and 8
spirals. For G ’ 11; the three center modes 5,8, and 13
dominate with amplitudes jA3j; jA21j5jA5j; jA8j; jA13j:
Such configurations give rise to the staircase parallelo-
grams seen in Fig. 27(b); the center mode 13 is
manifested in the family of 13 spirals. For G ¼ 14;
again four modes have significant amplitudes, but now
the dominant center pair is 8 and 13; thus in Fig. 27
one sees parallelograms arranged in families of 8 and 13
spirals.
For any choice of G; the energy-minimizing choice of

amplitudes is such that the amplitudes jAnj of modes
with angular wavenumber n ’ G are largest. For
example, Fig. 28 shows the energy-minimizing choice
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Fig. 27. Deformations w ¼ a3 cosð~k3 � xÞ þ a5 cosð~k5 � xÞ þ a8 cosð~k8 � xÞ þ a13 cosð~k13 � xÞ þ a21 cosð~k21 � ~xÞ; where ~x ¼ ðs ¼ lnðrÞ; aÞ and for values
of d and the amplitudes aj as determined by the experiment of Fig. 26, (a) at G ¼ 8; so that d ¼ 0:383; a3 ¼ 0:3; a5 ¼ 0:52; a8 ¼ 0:58; a13 ¼ 0:3; a5 ¼ 0;
(b) at G ¼ 11; so that d ¼ 0:3815; a3 ¼ 0:15; a5 ¼ 0:42; a8 ¼ 0:53; a13 ¼ 0:53; a21 ¼ 0:15; and (c) at G ¼ 14; so that d ¼ 0:3815; a3 ¼ 0:05; a þ 5 ¼

0:32; a8 ¼ 0:54; a13 ¼ 0:55; a21 ¼ 0:38:

Fig. 28. The five-mode envelope. For the parameters Q ¼ 3; P ¼ 2:7;
w ¼ 0; and the choice d ¼ 0:3819; the energy-minimizing amplitudes An

of five successive modes in the Fibonacci sequence are plotted for

successive values of G in the Fibonacci sequence.

Table 2

The predicted relationship between the number of modes with positive

amplitudes in a deformation, the planform, and the types of transitions

and values of d

Number of

modes

Planform Transition type d

1 Ridges (I,1) Rational

3 Hexagons (I,1) or (I or II,2) Rational

4 Parallelograms (II,2) Irrational

5 Staircase parallelograms (II,2) Irrational
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of amplitudes jAnj of five modes whose angular
wavenumbers are consecutive members of the Fibonacci
sequence; as G increases, the shape of the envelope of the
five amplitudes stays approximately the same, but the
maximum of the envelope is located at successively
higher Fibonacci numbers.
As the final remarks of this subsection, we return to

the observations made in Section 1.2 of the introduc-
tion, namely
1.
 The divergence angle 2pd and the parastichy numbers
ðm; nÞ observed in nature are related by d ’

pþq
mþn

:
Typically, plants with strong ridge configurations
have rational values of d ¼

pþq
mþn

and undergo (I,1)
transitions, whereas those with parallelogram defor-
mations typically have irrational values of d ’

pþq
mþn

and undergo (II,2) transitions.

2.
 The area A ¼ 2p l

g
GL2 of a newly formed primor-

dium is locally independent of G:

Concerning Observation 1, we have shown that
energy-minimizing ridge-dominated or hexagon config-
urations involve triads of the form ~km ¼ ðl;mÞ; ~kn ¼

ð�l; nÞ; ~kmþn ¼ ð0;m þ nÞ and therefore rational values
of d ¼
pþq
mþn

: For larger values of P;C and under the
influence of bias, overlapping triads, irrational values of
d, and parallelogram or staircase parallelogram plan-
forms constitute the preferred planform. Only if d and
the amplitudes are allowed to change continuously
through irrational values can Type II transitions take
place; thus, we expect Type I transitions for ridge-
dominated planforms and Type II transitions for
planforms with overlapping triads. The intermediary
case of hexagonal planforms is less clear. For example, if
a hexagon ~k2 ¼ ðl; 2Þ; ~k3 ¼ ð�l; 3Þ; ~k5 ¼ ð0; 5Þ planform
forms and moves out to the edge of the generative
region, the choices of P;C and the bias determine
whether the mode with wavevector ~k8 is present in the
new configuration forming in the generative region.
Further simulations will be needed to determine the
relative importance of the parameters. Table 2 sum-
marizes these conclusions.
Concerning Observation 2, we have theoretically

calculated the choices d ’
pþq
mþn

; m þ n ’ G; so that ~km ¼

ð2pl ðq � mdÞ;mÞ ’ ð2pl
g
G ;mÞ: Also, we have calculated the

optimal choice ~km ’ ð1; G
2
Þ: This gives us that 2pl

g
G is of

order 1 for all values of G; and thus l
g
G is independent of

G: Recalling that the area of a new primordium is given
by A ¼ 2p l

g
GL2; we see that A is also independent of G:

Notice that, in contrast to (I,1) transitions, in (II,2)
transitions the whorl number g never changes; A is
kept constant by decreasing the plastochrone ratio/
difference l:
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4.6. Brief comparison with the model of Douady and

Couder

It is intriguing to compare the results of the
mechanical model presented here with the model of
DC as sketched in Section 2.2. A crucial result of both
our model and that of DC is that (I,1) transitions (and
the patterns of Table 1) are energetically preferred
unless bias from previously formed configurations
(deformations in our case or arrangements of primordia
in the DC paradigm). Thus, we agree with DC that the
pattern that is observed on a plant is the result of both
the initial pattern that forms and the role that bias plays
as the pattern develops. Douady and Couder (1996a–c)
present detailed bifurcation diagrams for dependence of
the phyllotactic coordinates on their parameter G ¼

d0
R
:

For our model, such bifurcation diagrams would
necessarily involve both the phyllotactic coordinates
and the amplitudes of the various modes. However, one
advantage of our model is that it provides a rational and
testable explanation for the appearance of bias (see
Section 5).
Our model defines primordia of finite size, depending

on the natural wavelength of the pattern; Douady and
Couder (1996c) suggest that this should be part of any
physiological model. The second key component of any
physiological model, as suggested by DC, is that it gives
the primordia a repulsive or inhibitory action. Instead of
this second component, our analysis relies on the
interaction of elementary triads of periodic modes. This
allows us to examine polygonal planforms and phyllo-
taxis in the same model. Furthermore, it has potential
consequences for differences between Type I and II
transitions; in our model, Type II transitions rely on
having overlapping triads.
As discussed in Section 2.2, DC interpret their results

in terms of optimal packing. As we consider planforms,
rather than primordia with a given disk shape, a new
definition of packing would be needed to compare
results. To interpret the DC definition for a pine cone or
cactus with a parallelogram planform, for example, one
has to redraw the parallelogram phylla as ellipses.
It is not trivial to compare the model of DC with ours

and to determine to what extent the dynamical rules
they study are contained in the mechanical model, but
this would be an enlightening task for further work.
5. Discussion

In order to frame the summary and conclusions, we
pose and address three questions, namely
1.
 What postdictions, namely explanations of behaviors
already observed, and what predictions are consistent
with and arise from our theory?
2.
 What observations should we encourage experimen-
talists to make?
3.
 How could, and to what degree should, our picture
and the model used to capture the essential ingre-
dients, be improved?
Before answering the first and second questions, we
remind the reader again of the point we made in the
overview and at the beginning of Section 4. The patterns
seen on plants have much in common with patterns seen
in laboratory experiments (e.g. Rayleigh–Bénard con-
vection) and other places in nature (e.g. fingerprints and
stripes and spots on wildcats); similar macroscopic
patterns can form from a variety of microscopic
mechanisms that share basic symmetries. Therefore, in
considering the ramifications of the mechanical model
for plant patterns analysed in this paper, it is important
to distinguish between symmetries in the model that
could also be present in, for example, reaction–diffusion
models, and conclusions that are specific to the
mechanical model. The keys to establishing the plausi-
bility of our model are contained in the particular
structures of the coefficients sðl;mÞ; tðm; n;m þ nÞ of the
quadratic and cubic terms in the elastic energy (4.1). The
form of (4.1) is universal, but the choice of minimizers
depends on the dependence of s and t on the
wavevectors and other central parameters, G;C; w; and
r: In Section 4, we discussed this structure and were led
to conclusions that we now summarize.
Conclusions, unique to our model, and suggestions

for experiments, are as follows:
�
 The natural wavelength 2pL of the pattern is given by

L4 ¼ Eh3n2

kþEh
R2a

; which, if kp Eh

R2a
; is approximately the

geometric mean
ffiffiffiffiffiffiffiffi
Rah

p
of the tunica thickness and the

circumferential radius of curvature. This agrees with
an observation of Steele (2000) who also noted that
there is a linear relation between L2 and h. To further
determine the dependence of 2p l

g
GL2 on h, n and E

we suggest a new technique called elastography
(McLaughlin and Yoon, 2004) for measuring elastic
constants of biological tissue by following elastic
waves using ultrasound imaging techniques. This
might be used to good effect in the plant context.
�
 The quadratic coefficient sðl;mÞ determines a range of
active wavevectors, as described in Section 4. It would
be useful to map the range of wavevectors observed in
plants to check consistency with our model.
�
 The cubic coefficient tðm; n;m þ nÞ and its structure is
central to our model. Firstly, our theory predicts that
the magnitude of t is proportional to the circumfer-
ential curvature. If it is small, ridges dominate. If it is
of order one, triads dominate. Secondly, tðm; n;m þ

nÞ is a sensitive function of the divergence angle 2pd:
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This gives preference to the angles 2p pþq
mþn

that
converge to the golden angle as m; n become large
Fibonacci numbers. Furthermore, t depends on the
plastochrone ratio l: This is essential for the choice of
non-zero radial wavenumbers for small values of w:
Indeed, recall that t is maximized at l ¼ 0 (so that the
corresponding radial wavenumbers are l ¼ 1), and
for small w the linear growth rate s is maximized for
l ¼ 0 (that is, l ¼ 1). The energy-minimizing choice
of l of order 1 is a compromise between the choices
that maximize s or t: A theory in which t is constant
as a function of l predicts triads with wavevectors
~k1 ’ ð0;mÞ; ~k2 ’ ð0; nÞ; ~k3 ¼ ð0;m þ nÞ; these are not
observed in nature.
�
 Our theory supports the observation that the area
2p l

g
GL2 of a primordium is independent of the

divergence angle and the size of a plant. As the plant
grows (so that G increases) and its patterns undergo
transitions, we have shown that l or g change in such
a way as to keep l

g
G constant. Either the plastochrone

ratio decreases as 1G (this keeps the radial wavenumber
of order one) or the whorl number g changes as G:
The former can change continuously. Thus, transi-
tions connected with it are more likely to be of second
order. The latter changes in integer steps, and these
transitions are more likely to be of first order. We
emphasize again the remarkable property that in (I,1)
transitions one wavevector (both the circumferential
and radial wavenumbers) is invariant, and in (II,2)
transitions two wavevectors are invariant, except for
slight changes in the radial components. The radial
structures of adjoining patterns in a large sample of
plants should be checked to verify this conclusion.
�
 Our theory suggests that, if there is no bias of a
previously formed configuration, the buckling config-
uration will be one described by ~k1 ¼ ð�l;NÞ; ~k2 ¼
ðl;NÞ; ~k3 ¼ ð0; 2NÞ (the wavevectors of the alternating
N-whorl) or ~k1 ¼ ð�l;NÞ; ~k2 ¼ ðl;N þ 1Þ; ~k3 ¼
ð0; 2N þ 1Þ: Hence, the first pattern to appear on a
plant should be described by either of these choices. It
would be worthwhile surveying the initial patterns
formed in young plants to check this prediction. The
choice of N will be such that the ratio of the
circumference 2pR in the generative region to the
natural wavelength 2pL is either 2N or 2N þ 1: In
addition, the fact that the number of spirals differs by
at most one suggests, for example, that a plant that
increases up the Lucas sequence 1; 3; 4; 7; 11; . . . will
exhibit the parastichy pair ð3; 4Þ; and not the
parastichy pair ð1; 3Þ; when it first forms phylla.
�
 Our analysis suggests, and the authors’ experience
supports, the information summarized in Table 2.
That is, plants that show strong ridge configurations
are likely to undergo (I,1) transitions, whereas plants
that show parallelograms are likely to undergo (II,2)
transitions. Furthermore, plants with strong rib
configurations are likely to have rational values of d,
whereas those with parallelograms are likely to have
irrational values of d. These predictions can be
checked by a large collection of data in the field.
The ðI ; 2Þ and ðI ; 0Þ transitions discussed in Sections
1.5.2 and 1.5.4, respectively, have not been fully
explained by this model, although we suggest that
ðI ; 2Þ transitions are associated with planforms that
involve a single triad and therefore can have proper-
ties of both ðI ; 1Þ or ðII ; 2Þ transitions, depending on
the values of the parameters, particularly the stress,
curvature and bias of previous configurations. Doua-
dy and Couder (1996c) suggest that the rarely
observed ðI ; 0Þ transitions can occur when the previous
configuration exerts no bias on the newly forming
configuration, and this is consistent with our picture.
�
 Although difficult to perform, experimental modifica-
tion of the stress parameters P and w and the
curvature constant C could test the following predic-
tions: smaller values of C (i.e. less curvature in the
region of pattern formation) or of w (i.e. less
compressive stress in the radial direction) give
preference to ribbed patterns, rational values of d,
and (I,1) transitions. Larger values of the stress
parameter P allow for more active modes, and
therefore increase the likelihood of having parallelo-
gram patterns and the (II,2) transitions that yield
Fibonacci-like sequences.
Particularly suited to experiments are plants that
naturally show transitions between various plan-
forms. For example, pineapples are often described
as having hexagonal planforms; a typical pineapple,
however, shows regions in which the planform is
better described as being a tiling of parallelograms.
Thus, pineapples are, in our theory, the result of four-
mode deformations with amplitudes jA1j ’ jA2j ’

jA3j and jA4j ’ 0 (in the hexagonal regions) or jA2j ’
jA3j4jA1j ’ jA4j (in the parallelogram regions).
Slight changes in the parameters C;P; w may be able
to produce pineapples with purely hexagonal or
purely parallelogram planforms. Similar statements
hold for totem pole cacti (which show transitions
between ridge and hexagonal planforms), and sun-
flowers which often show transitions between paralle-
logram and staircase parallelogram planforms or
between hexagon and parallelogram planforms. No-
tice that it is a verifiable prediction of our theory that
transitions should be seen to occur between ridges and
hexagons, between hexagons and parallelograms, and
between parallelograms and staircase parallelograms,
but not, for example, between ridges and parallelo-
grams (without a sudden change in the parameters).
�
 Our theory makes definite and verifiable predictions
on whether the dimples of the buckled surface
form outward (Co0;r40; C40; ro0) or inward
(C40;r40).
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�
 By combining the notions of bias and the dominance
of triad interactions, we are led naturally to Fibonacci
sequences. Bias occurs as the old patterns moves,
usually outward, relative to the annular zone of
compression, and by its presence on the outer fringes
of the new buckling zone influences the choice of the
next pattern. It would be of interest to check
experimentally the premises on which the arguments
rely, namely that a pattern, once formed, moves out
of the buckling zone and that the new buckling zone
feels its influence. Careful measurements of the
current position of a given pattern as a function of
time and the position of the buckling zone as a
function of time would be useful.
Before going on to answer the third question, we want
to mention another potential source of the quadratic
nonlinearity in the von Kármán equations (and
corresponding cubic nonlinearity in the elastic energy)
that would allow for triad interactions, but without
the d-sensitivity or dependence on l: Notice that, if
C ¼ 0; the FvKD equations are invariant under the
change o 7! � o: The curvature terms break this
symmetry when Ca0 and allow for the differing
energy characteristics of hexagons whose centers
point up or down. Another asymmetry that would
achieve the same effect arises from the fact that the
tunica is attached to a corpus foundation; pushing
into this foundation may be harder than pushing out
from this foundation. In our model, this would be
included by adding to the potential V ðoÞ ¼ ko2 þ
g
4
o4 of the elastic foundation a cubic term so that

V ðoÞ ¼ ko2 � d
3
o3 þ g

4
o4: Then, the term V 0ðoÞ ¼

ko� do2 þ go3 in the FvKD equations would break
the o7! � o invariance. For d40; this gives energetic
preference to hexagons whose centers point away
from the corpus. In a model of fingerprint pattern
formation, also based on a study of the von Kármán
equations, Kücken (2004) notes that such an asym-
metry is indeed likely—fingerprints first form in a
basal layer beneath the outermost layer in the skin,
and differences in the extensibilities of the layers
below and beneath this basal layer have been
measured. It is interesting to note that hexagonal
patterns are found in the fingerprints of some koalas;
according to Kücken, it is large asymmetries in the
stress tensor that make most of our fingerprints
patterns of ridges. There is some evidence that, like
fingerprints, primordia are initiated not in the outer-
most layer of the tunica, but one or two or three cell
layers down. Palmer (1998) provides evidence for this
in the sunflower, and Lyndon (1994) cites cell division
changes in the tissues just below the tunica as the first
evidence of primordium formation. Nevertheless, for
small values of w; this possible source of nonlinearity
(for which the interaction coefficient t is the constant
d) gives inaccurate predictions for the choice of
the radial wavenumbers for the reasons given
above.
We now turn to question number three. To preface
our answer, we remind the reader that the magnitudes
of the phylla and primordia observed on mature
plants are larger than the magnitudes predicted by the
shell-buckling theory. We argue, in accordance with
Green (1999) and Dumais and Steele (2000), that
buckling creates a template, a buckled surface with a
non-uniform stress distribution on which further
growth can occur due to processes not yet included
in the model. An important process we have omitted
is a description of the influence that a non-uniform
stress distribution causes on the distribution of
hormones such as auxin. A non-uniform hormone
distribution would lead to a continued growth of the
plant surface which would enhance the already
existing pattern.
What would this change to our model involve? We
should introduce a new variable Hðr; a; tÞ which
measures the concentration of the growth hormone
relative to its spatial average. It would be driven
locally by some functional of the local stress. We
suggest �r2f ; the negative of the trace of the stress
tensor relative to its spatial average, as it measures the
variations in the compressive stress. We note, from
the second FvKD equation (3.4) that its Laplacian is
proportional to the total Gaussian curvature of the
deformed surface. Hormone diffusion may also be a
factor (one would need to compare the time it would
take the hormone to diffuse across a primordium area
with the buckling time) so that Hðr; a; tÞ might satisfy
an equation of the form

qH

qt
� K1H � K2r

2H ¼ �K3r
2f . (78)

In order to include the effect of growth on stress, a
modification of the stress-strain relation would be
made by including the concentration H in much the
same way that one would include temperature if there
were temperature variations in the elastic sheet.
However, before embarking on the model upgrade,
it would be worthwhile first establishing that (i) the
buckling is the primary mechanism for plant patterns,
and (ii) the relative time-scales associated with the
processes of buckling and growth are comparable.
Two features of the upgraded model should be noted.
Firstly, if the induced stress by buckling leading to
growth leading to more stress feedback loop happens
on the buckling time-scale, the winning deformation
will not minimize the elastic energy, but rather a
modified amplitude polynomial (4.1). Secondly, the
growth-stress dynamics will continue after the pattern
has left the buckling region.
The connection between non-uniform stress distribu-
tion and plant growth subsequent to the initial
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pattern-forming stage may have other consequences.
We have argued that the determining factor in
generating ridge rather than hexagonal and parallelo-
gram patterns is the curvature of the buckling region.
Our model deals with the patterns seen close to the
north pole, in or close to the generative region; at the
north poles of the cacti in Fig. 29(a–c), one observes
ridges, hexagons, and parallelograms, respectively.
However, for all three of these cacti, ridges become
dominant further away from the north pole. One
possible source of this change is that the plant tip was
flatter when the patterns in the older regions further
from the plant tip were formed. However, a similar
situation is demonstrated by the paper cactus depicted
in Fig. 30. Figs. 30(a and b) show a young paper
cactus pad with a parallelogram pattern; the
. 29. These cacti show (a) ridge, (b) hexagonal, and (c) parallelogram config

rely radial deformation becomes more dominant in (b) and (c).

Fig. 30. Parallelograms (a,b), hexagons (g,h) and states in betw
two directions of largest amplitude are marked in
Fig. 30(b). Recall that a parallelogram pattern is, in
our theory, produced by a sum of four modes with
amplitudes jA2j ’ jA3j4jA1j ’ jA4j; the spirals
marked in Fig. 30(b) correspond to the modes with
amplitudes jA2j; jA3j: As the pad gets larger, as in
Fig. 30(c and d), one notices that a third amplitude is
getting larger, and, as the pad continues to get larger,
a hexagonal pattern develops, as in Fig. 30(e and f). In
terms of amplitudes, what has happened is that the
amplitude jA4j has increased, while jA1j has de-
creased. Mature paper cactus pads show a hexagonal
configuration, as in Fig. 30(g and h). This indicates
that different components of the plant’s configuration
are amplified differently by growth induced by a
non-uniform hormone distribution brought about by
urations near their north poles, but further from the north pole, the

een (c–f) are seen on these pads of a paper cactus.
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non-uniform stress. It may be that a slight dominance
of the purely radial deformation at the plant tip may
induce changes in cell division and cellulose orienta-
tion so that this deformation grows further via
feedback mechanisms as the patterned plant material
differentiates. This leads us to further suggestions for
observations and experiments.
�
 Do the patterns of cellulose orientation and hormone
distribution correspond to the ridge, hexagonal, or
parallelogram configurations seen on plants, or may,
for example, the pattern of cellulose orientation be
ridge-like in a plant that exhibits a hexagonal plan-
form? It would be useful to know, for example, in the
cactus of Fig. 29(c), if the cellulose orientation or
hormone concentrations achieve ridge-like configura-
tions already at the plant tip, where one observes a
parallelogram planform, and then influence the
observed pattern so that the parallelograms give
way to hexagons and then ridges.
�
 Sunflowers have long been studied by those interested
in phyllotaxis, but careful observations of changes
between hexagon, parallelogram, and staircase paral-
lelogram planforms (all of which can be observed in
sunflowers; see (Palmer, 1998)) have not been made.
In the sunflower, the buckling zone moves inward
relative to the earlier pattern, so that G decreases in
time and the patterns which emerge move down,
. 31. Stickers can form (a) at the maxima or (b) at the minima of a surface def

maxima of its hexagonal deformations.

. 32. Stickers mark modes too. (a) The hexagons on this cactus determine thr

formations with wavevectors ~k1; ~k2; ~k3 ¼ ~k1 þ ~k2: The stickers, however, fol
¼ ~k2 þ ~k3: (b) The diamonds on this cactus determine two families of s
formations with wavevectors ~k2; ~k3: The spirals determined by the wavevector
directions determined by the wavevector ~k4 ¼ ~k2 þ ~k3; as marked in black.
rather than up, the Fibonacci sequence. Are there also
differences in the transitions between the various
planforms?
Cell growth patterns within the cactus SAM have
been discussed by Mauseth and Niklas (1979) and
Niklas and Mauseth (1980). Although these authors
do not consider hyperbolic or inverted-sphere geo-
metries, it is interesting that they relate cell division
rates in the various zones of the SAM (such as those
in Fig. 8) to the geometry, showing that the number of
cell divisions in a tunica region is related to the
tunica’s curvature. The relation of this work to the
role of curvature as a measure of nonlinearity in our
model is a further question for future work.
Finally, another interesting question is raised by
cactus stickers, which may form at the tips, the
bottoms, or both places of a surface deformation; see
Fig. 31. The maxima of the surface deformation are
the regions of greatest compressive stress, and the
minima the regions of the least compressive stress, but
the details of how stress variation would lead to
sticker formation are not known. The relevance of
triad interactions to sticker formation is, however,
further suggested by the cacti of Fig. 32. Fig. 32(a)
shows a cactus with a hexagonal planform; the three
periodic deformations that (in our theory) produce it
are marked. Notice that the stickers follow along the
ormation. (c) This succulent has stickers at the minima and leaves at

ee families of spirals, marked in white and corresponding to periodic

low the spirals, marked in black, corresponding to the wavevector

pirals, marked strongly in white and corresponding to periodic
~k1 ¼ ~k3 � ~k2 are marked faintly in white, and stickers follow along
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lines that would mark the directions of the fourth
periodic deformation whose amplification would
produce a parallelogram pattern. In fact, near the
very center of the plant the planform consists of
parallelograms. The marked hexagonal configuration
may then be a result of a change in an originally
parallelogram pattern as described above, with
evidence of the former presence of a fourth mode left
by the stickers that formed. Again, to determine the
biological differences that lead to the differences
between these two plants, one needs to know the form
of the pattern as it develops in the generative region
and the subsequent changes in the pattern as the
plant grows.
Acknowledgements

The authors are grateful to NSF Grant DMS 0202440
and NSF VIGRE Grant 9977116 for support and to
Michael Kücken for many useful discussions.
Appendix A. The phyllotactic vector sequences

Transitions of type (II,2) lead to a sequence of lattice
generators. If a plant begins with a lattice generated
by ~om ¼ 1

g
ðml; 2pðmd � qÞÞ; on ¼ 1

g
ðnl; 2pðnd � pÞÞ with

d ’
pþq
mþn

; a (I or II,2) transition produces a new
lattice generated by ~on ¼ 1

g
ðnl; 2pðnd � pÞÞ; omþn ¼

~om þ ~on ¼ 1
g
ððm þ nÞl; 2pððm þ nÞ � ðp þ qÞdÞÞ; and d ’

pþq
mþn

: Note that the only change in the lattice is that d has
changed. After a sequence of (I or II,2) transitions
occur, the lattice generators move up the phyllotactic

lattice generator sequence (PLGS)

~om ¼
1

g
ðml; 2pðmd � qÞÞ,

~on ¼
1

g
ðnl; 2pðnd � pÞÞ,

~omþn ¼
1

g
ððm þ nÞl; 2pððm þ nÞd � ðp þ qÞÞÞ,

~omþ2n ¼
1

g
ððm þ 2nÞl; 2pððm þ 2nÞd � ð2p þ qÞÞÞ,

~o2mþ3m ¼
1

g
ðð2m þ 3nÞl; 2pðð2m þ 3nÞd � ð3p þ 2qÞÞÞ,

..

. ..
.

ð79Þ

Note that, for any two consecutive vectors

~oM ¼
1

g
ðMl; 2pðMd � QÞÞ; ~oN ¼

1

g
ðNl; 2pðNd � PÞÞ

in this sequence, PM � QN ¼ �gcdðM;NÞ ¼ �g; and
the chosen divergence angle is d ’

PþQ
MþN

: The dual
phyllotactic wavevector sequence (PWS) reads

~km ¼
2p
l
ðq � mdÞ;m

� �
,

~kn ¼
2p
l
ðp � ndÞ; n

� �
,

~kmþn ¼
2p
l
ðp þ q � ðm þ nÞdÞ;m þ n

� �
,

~kmþ2n ¼
2p
l
ð2p þ q � ðm þ 2nÞdÞ;m þ 2n

� �
,

~k2mþ3m ¼
2p
l
ð3p þ 2q � ðm þ 3nÞdÞ; 2m þ 3n

� �
,

..

. ..
.

ð80Þ

For example, taking m ¼ n ¼ g for some integer g, we
obtain the sequence

~og ¼
1

g
ðgl; 2pðgd � 1ÞÞ,

~o0

g ¼
1

g
ðgl; 2pðgdÞÞ,

~o2g ¼
1

g
ð2gl; 2pð2gd � 1ÞÞ,

~o3g ¼
1

g
ð3gl; 2pð3gd � 1ÞÞ,

~o5g ¼
1

g
ð5gl; 2pð5gd � 2ÞÞ,

..

. ..
.

ð81Þ

which we will call the special phyllotactic lattice

generator sequence (SPLGS). For consecutive vectors
~oj ¼

1
g
ðml; 2pðmd � qÞÞ; ~ojþ1 ¼

1
g
ðnl; 2pðnd � pÞÞ of this

sequence, pm � qn ¼ �gcdðm; nÞ ¼ �g: The dual wave-
vector sequence reads

~kg ¼
2p
l
ð1� gdÞ; g

� �
,

~k
0

g ¼
2p
l
ð�gdÞ; g

� �
,

~k2g ¼
2p
l
ð1� 2gdÞ; 2g

� �
,

~k3g ¼
2p
l
ð1� 3gdÞ; 3g

� �
,

~k5g ¼
2p
l
ð2� 5gdÞ; 5g

� �
,

..

. ..
.

ð82Þ

These last two sequences encode both the Fibonacci
sequence if g ¼ 1 and the double Fibonacci sequence
2; 2; 4; 6; 10; . . . if g ¼ 2: These are the two most
commonly observed sequences in nature; according to
the data collected by Jean (1994). about 92% of plants
with spiral phyllotaxis exhibit the Fibonacci sequence,
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and about 5% exhibit the double Fibonacci sequence.
Another approximately 2% of plants exhibit the Lucas
sequence 1; 3; 4; 7; . . . encoded by choosing m ¼ 1; n ¼ 3
in Eqs. (79) and (80). These data, however, do not
indicate what the original choice of m; n was on the
plants. For example, a plant that starts with m ¼ 1; n ¼

1 and continues up the sequence (79) will exhibit the
Fibonacci sequence, but so will a plant that starts with
any other consecutive Fibonacci numbers, such as m ¼

1; n ¼ 2:
For a plant that exhibits the Fibonacci sequence, the

divergence angle 2pd ¼ 2p pþq
mþn

will approach the golden
angle 2p

b2
; where b; the positive zero of x2 � x � 1; is the

golden number. To see this, denote the kth Fibonacci
number by f k: For m ¼ f j ; n ¼ f jþ1; what is

pþq
mþn
? By

induction on j, prove that f j�1 f j � f j�2 f jþ1 ¼ �1 ¼

gcdðm; nÞ: The numbers pþq
mþn

; then, can be chosen to be
f j�1þf j�2

f jþf jþ1
¼

f j

f jþ2
(the other possible p; q choices yield

similar results). It turns out that
f j

f jþ2
! 1

b2
¼ 1

bþ1 as j !

1: To show this, note that
f jþ2

f j
¼

f jþf jþ1

f j
¼

f jþ1

f j
þ 1; so

that it suffices to show that
f jþ1

f j
! b ¼ b2 � 1 as j ! 1;

that is, thatð
f jþ2

f j
Þ
2
� ð

f jþ2

f j
Þ � 1! 0 as j ! 1: To this

end, calculate that ð
f jþ1

f j
Þ
2
� ð

f jþ1

f j
Þ � 1 ¼

f 2
jþ1

�f jþ1f j�f 2
j

f 2
j

;

and prove by induction on j that f 2jþ1 � f jþ1 f j � f 2j ¼

�1 for all j. Most divergence angles observed in nature
are therefore approximately the golden angle D ¼ 2p

b2
:
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