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Abstract 

Our goal is to find a macroscopic description of patterns that both unifies and simplifies classes of externally 
stressed, dissipative, pattern forming systems, such as convecting fluids, liquid crystals, wideband lasers, that 
are seemingly unrelated at the microscopic level. We construct an order parameter equation which provides a 
controlled approximation of the original microscopic field in the limit of large aspect ratios. It is built from, and 
is a regularization of, the Cross-Newell phase diffusion equation obtained by averaging over the local periodicity 
of the pattern. Unlike the latter, it is valid for all wavenumbers and can correctly capture the nucleation, shape 
and nontrivial properties of the far fields of disclinations, dislocations and grain boundaries. It reduces to 
the Cross-Newell equation away from pattern singularities and to the Newell-Whitehead-Segel equation near 
onset. As a consequence, it correctly determines all the long wave instability boundaries (zig-zag, Eckhaus-skew- 
varicose) of the Busse balloon. Far from onset, the order parameter is a real variable but its equation involves a 
functional corresponding to its local amplitude. The local amplitude and phase, required for the order parameter 
equation and the reconstruction of the approximation to the original field respectively, are extracted from the 
order parameter field by wavelet analysis. Numerical comparisons between solutions of the original equation 
and the regularized equation are carried out. We also explore a new class of singular and weak solutions of 
the Cross-Newell equation which take account of the energetics of defects as well as their topologies. These 
solutions correspond to convex and concave disclinations and their composites, including saddles, vortices, 
targets, dislocations and two new objects, handles and bridges. Finally, we show that phase grain boundaries, 
lines across which the wavevector is discontinuous but the phase is continuous are captured by shock solutions 
of the phase diffusion equation. 

1. Introduction and general discussion 

1.1. Preamble .  W h a t  has been done  

A fundamenta l  goal o f  theory is to provide  
a macroscopic  descr ipt ion o f  almost  periodic 
pat terns that  bo th  simplifies and unifies one 's  
unders tanding o f  classes o f  pa t tern  forming sys- 
tems which are seemingly unrelated at the mi- 

croscopic levels. For  example,  much  at tent ion 
in recent  years has been given to finding such 
descript ions o f  Rayleigh-Brnard convect ion pat- 
terns in pure  fluids. There  are several classes o f  
such models  which differ in their  domains  o f  
validity a n d / o r  their  qua l i ta t ive /quanta ta t ive  
characters.  Some, like the Swif t -Hohenberg  
(SH) equat ion [ 1, 2],  or  its extension including 
a coupling with a mean-drif t  te rm [3, 4],  are 
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obtained by averaging all fields over the verti- 
cal direction and making certain assumptions 
on their vertical structures. In some parameter 
ranges, these models give a good qualitative 
agreement with observations, but they do not al- 
low for precise predictions. Other macroscopic 
descriptions are derived semi-rigorously from 
the primitive microscopic governing equations 
after averaging over the horizontal as well as 
the vertical direction, but are restricted in their 
applicability. Such is the case for the Newell- 
Whitehead-Segel (NWS) equation [ 5, 6 ] which 
is valid near onset and if the rolls in the pattern 
are everywhere almost parallel. Its modification 
to include mean drift effects at finite Prandtl 
numbers was given by Zippelius and Siggia 
[7]. The rotational invariance of the Oberbeck- 
Boussinesq equations imposes a major restric- 
tion on the validity of such a description since 
natural patterns rarely exhibit parallel sets of 
rolls. Rather, rolls tend to be aligned perpendic- 
ular to the boundaries and therefore the bulk is 
likely to contain rolls with all orientations. Un- 
like the case of nematic liquid crystals [8], for 
normal fluids there is no restoring force which 
obliges the rolls to stay parallel to a fixed di- 
rection. The problem of rotational degeneracy 
has been successfully addressed by Cross and 
Newell [9] and these authors derive a phase- 
diffusion equation which generalizes the equa- 
tion of Pomeau and Manneville [10] for fluc- 
tuations about a fixed orientation. A complete 
determination of the phase diffusion-mean drift 
equations for the Oberbeck-Boussinesq system 
of equations has recently been done [ 11, 12] 
which gives for the first time a complete quan- 
titative agreement with the Busse balloon at all 
finite Rayleigh and Prandtl numbers. 

However, the phase diffusion equation has 
one glaring weakness. It is a partial differen- 
tial equation for the phase, first order in time 
and second order in the two spatial variables. 
The latter part is quasilinear and can be ellip- 
tic negative definite, elliptic positive definite 
or hyperbolic depending on wavenumber. Only 

when the wavenumber lies in the elliptic, nega- 
tive definite band (the Busse balloon [ 13 ] ) is 
the equation well-posed. It is ill-posed in all of 
the other regions. Moreover, a combination of 
boundary conditions, topology and instabilities 
can force the local wavenumber outside of the 
Busse balloon. It is therefore necessary to make 
sense of the equation over a wavenumber band 
much wider than that stable band. The goal of 
the present work is to develop a regularized ver- 
sion of the phase diffusion equation, hereafter 
known as the OPE, which has the properties that 
it (i) describes the behavior of the pattern when 
the local wavenumber is forced out of the Busse 
balloon, (ii) reduces via the Cross-Newell for- 
malism to the same phase diffusion equation 
derived from the original microscopic equations 
(iii) is simpler than the latter. It should also 
allow us to make sense of (regularize) the weak 
and singular solutions of the phase diffusion 
equation which describe point and line defects. 
This paper will describe the extent of our success 
to date in addressing these challenges. 

We begin by discussing the philosophy and 
shortcomings of various macroscopic descrip- 
tions. The basic idea is to use certain properties 
of the pattern to reduce the dimension of the 
original microscopic system and to define an 
order parameter (or order parameters) which 
successfully captures its macroscopic behavior. 
Near onset, linear stability theory determines 
all the active modes of the system, namely those 
modes that are either amplified, remain neutral 
or are only weakly damped as the stress pa- 
rameter R, e.g. the Rayleigh number, exceeds a 
critical value Rc. In systems possessing transla- 
tional and rotational symmetry, this set of active 
modes can be characterized in Fourier space and 
consists of all modes with wavevectors k lying in 
an annulus about the circle [kl = kc determined 
by linear stability theory. The order parameters 
are the complex Fourier amplitudes A(k, t) of 
these modes and Bestehorn and Haken [14] 
have shown that for small amplitudes they obey 
the set of integro-differential equations: 
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dA = _A(k2,R).~ 
dt 

+ . :  dkl dk2 dk3]" (kl, k2, k3 )A(kl ).4(k2 ) 

x A * ( k 3 ) ~ ( k - k t  - k 2  + k3) + h.o.t., (1.1) 

where h.o.t, refers to higher order terms in 
amplitude. Unfortunately, without further sim- 
plification, these equations are impossible 
to handle. The first simplification involves 
the choice of planform and is found by test- 
ing the relative stabilities of the finite am- 
plitude solutions associated with (a) roils, 
X ( k , t )  = A l ( t ) ~ ( k -  k l ) , l k l l  = kc, (b)  
rhombi, .4(k, t) = A1 (t)~ ( k - k l )  +A2(t)t~ ( k -  
k2),lkll = [k2l = kc, k l "  k2 arbitrary, (c) 
hexagons A(k ,  t) = S3=lA j ( t ) J ( k  - k j ) , k2  = 

k2 • k3 = k3 . k l  = - 1 / 2 k  2, (d) quasicrystals 
X ( k , t )  = ,S~_._lAj(t)~(k - k j ) , N  > 3,}k A = 
kc, k j .  kt arbitrary and (e) turbulent crys- 
tals .4(k , t )  = S , ~ l A j ( t ) ~ ( k  - k j ) , N  large, 
Ikjl = k~, some of which ((a), (b), (c)) tile 
the plane in a periodic lattice. Assuming that 
rolls are indeed the preferred planform, one 
can then go on to ask about the finite ampli- 
tude evolutions of a state containing modes 
(kc + (R - R~) l/2Kx, (R - Rc) l/4Ky ) within 
a neighborhood of a fixed wavevector (kc, O) 
and obtain from ( 1.1 ) by Fourier transform the 
NWS equation, or in systems supporting trav- 
eling waves, the appropriate coupled complex 
Ginzburg Landau (CGL) equations [ 15 ]. These 
equations are restricted in their domains of va- 
lidity. They assume rolls are almost parallel and 
that the amplitude is small, so that they obtain 
only near onset. They contain within them so- 
lutions which correspond to dislocations, grain 
boundaries and, in travelling wave systems, de- 
fects acting as sources or sinks for right and left 
travelling waves. They fail, however, to con- 
tain solutions corresponding to disclinations. 
Another simplification of (1.1) seeks to retain 
the rotational symmetry by representing the lin- 
ear term 2(k2 ,R) .4 (k , t )  as 2 ( - V 2 , R ) A ( x , t )  
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and then by approximating the nonlinear con- 
volution in (1.1) as certain combinations of 
A 3, IAI2A, ]VAI2A, choices which lead to the SH 
equation and variations thereof. One obtains 
in this way an equation which again has small 
scales but which may nevertheless be simpler 
than the original microscopic system. However, 
it represents an uncontrolled approximation of 
the latter and, in all likelihood, will fail far from 
onset. 

1.2. Discussion o f  goals and results 

In this Section, we discuss the goals of the 
present work in detail, delineate the successes 
and the shortcomings, the main results, and 
point out several remaining challenges yet to be 
overcome. 

1.2. I. When is the phase diffusion relevant and 
in what circumstances does our theory apply? 

In contrast with the amplitude equation theo- 
ries which are relevant near onset and for which 
the small parameter is R - Rc, the amount by 
which the stress parameter exceeds critical, the 
Cross-Newell (CN) approach takes as its start- 
ing point an exact finite amplitude solution 
wo ( O = k • x )  corresponding to the preferred 
local planform. Although applicable to patterns 
whose local planform contains several phases 
(stationary rolls, squares, hexagons, multidi- 
rectional travelling waves), here we focus our 
attention on the case in which quasistationary 
rolls or stripes are the only locally stable plan- 
form, and for which coupling with some mean 
drift field can be ignored. The small parameter 
in the theory is e, the inverse of the aspect ra- 
tio F = 1/2, the ratio of a typical length l over 
which the local wavevector changes to the typ- 
ical pattern wavelength 2. The dimension l is 
usually taken to be the size of the container but, 
depending on the dynamics of the pattern itself, 
may turn out to be smaller. In fact, the most 
appropriate choice for l is the distance between 
pattern singularities and, as the stress parameter 
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R is increased well above its onset value Rc, the 
number and density of defects tend to increase. 
This immediately brings to light one of the dif- 
ficulties with the theory. Its small parameter, e, 
depends on R and will generally increase with 
R. Furthermore, there is no a priori estimate 
yet available on the range of stress parameter 
(and other parameters that may be relevant) for 
which e is small. To date, all we know is what we 
observe. A typical pattern consists of a mosaic 
of patches, usually consisting of almost straight 
or circular rolls, which are separated by iso- 
lated point defects called disclinations and line 
defects joining disclinations called phase grain 
boundaries across which the phase is continu- 
ous but the wavevector is discontinuous. The 
pattern may or may not be stationary. Time de- 
pendence is usually connected with the presence 
of dislocations and amplitude grain boundaries. 
(These terms will be defined later). Neverthe- 
less, it is clear that there are ranges of R for 
which e is small and where a suitably regularized 
phase diffusion equation should be relevant. 

1.2.2. The CN equation; some heretofore 
overlooked yet important results, and its 
apparent gradient property 

Given the basic premise that the pattern 
wavevector changes slowly almost everywhere, 
the basic idea of Cross-NeweU theory is to seek 
a solution wo(O = f k  • dx)  of the underlying 
microscopic field equations that is a modulation 
of the locally periodic structure. In Section 2.1, 
we review the derivation of the phase diffusion 
equation from two viewpoints. Here we simply 
state that it is a constraint on the evolution of 
the change in phase induced by the translational 
symmetry of the original system, which also 
respects its rotational invariance, and write it 
down: 

z(k)Ot - kD± ( k ) V .  ~: - DII ( k ) ( k - V ) k  = O. 
(1.2) 

By construction (they are inner products of 
products of  wo(O) and its derivatives), the 
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perpendicular (D± (k) ) and parallel (Dtt (k) )  
diffusion coefficients are analytic in k , k  = 
v 0 ,  k = It, I, kk  = k. 

The first new result we introduce in this paper 
(section 2b) is that there is a special condition, 
namely 

Dil(k) 
r = res - 1, D±(kB) = 0 ,  (1.3) 

k=kB kD± (k ) 

under which (1.2) can be written in flux diver- 
gence form, 

r(k)Ot + V . k B ( k )  = 0, (1.4) 

with 

k 

k B ( k )  = (kB)0 exp f kDII (k------~)D± (k) dk , (1.5) 

k0 

analytic over wavenumbers within the neutral 
stability boundaries ( kl ( R ) , kr ( R ) ) , the domain 
over which the underlying finite amplitude plan- 
form exists. We assume here, there are profound 
consequences if this is not true, that the transi- 
tion at the neutral stability boundary is super- 
critical. The typical shape of the graph o f k B  (k) 
as function of k is shown in Fig. 1. 

The condition (1.3) is important for at least 
two reasons. First, it allows us to write the spa- 
tial part of  the phase diffusion equation in flux 
divergence form. This is important because it 
means that the jump or Rankine-Hugoniot con- 
ditions which relate the values of the wavevec- 
tor across curves where it is discontinuous are 
independent (within a certain class) of  the ex- 
act form of regularization. Second, the amount 
by which r differs from unity provides one mea- 
sure of the nongradient character of  the system. 
When r = 1, one can establish the formal exis- 
tence of a free energy (derived in [9]) 

k 

-g= f f-Gdxdy,-d=- f kB(k) dk, (1.6) 
kB 

where 
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Fig. 1. Graph of  k B ( k ) .  

b 

~F 
= V . k B ( k ) .  (1.7) 

~0 

If B(k)  is not analytic, G is not defined be- 
cause, although one can choose the real branch 
for k > kB, one cannot find a branch which is 
real throughout (kt (R), kr (R)). We will demon- 
strate explicitly in Section 4 that ( 1.4) is not for- 
mally gradient when r ¢ 1. If the original system 
is gradient, then, as we will show in Section 2.1, 
F is obtained from the original free energy F 
simply by averaging its integrand G over a period 
of  the fast phase 0, namely G = ~ f2~ G dO. 
But there are systems, the Oberbeck-Boussinesq 
equations at very large Prandtl numbers being 
one example, where r is almost one and the phase 
diffusion equation behaves as if  it were phase 
gradient even though the original microscopic 
equations are not. The notion of  a phase gradient 
system is new. We will see in Section 4 how near 
stationary disclinations the far field wavenum- 
ber k approaches ks exponentially fast, so that 
F becomes vanishingly small. 

However, it is not true that F is a true gra- 
dient functional if there are dislocations in the 
pattern. The obstruction, identified in [9], that 
F decreases with time if and only if the far field 
wavenumber kd at which isolated dislocations 
are stationary is equal to ks, still stands. How- 
ever, the result (1.3) points out that there are 
two separate contributors to kd and to the fi- 
nite velocity of dislocations when the far field 
wavenumber is not equal to kd. One arises from 
the non phase gradient character of  the system 

(if r # 1 ). The other arises from the structure 
of  the dislocation core peculiar to the particu- 
lar system of  interest. Our regularization will be 
consistent with keeping r = 1. It will not, how- 
ever, be able to capture kd nor dislocation veloc- 
ities to within an order e accuracy. 

1.2.3. The regularization of(1.4) (the OPE) and 
the sense in which it represents a controlled 
approximation to the solution of  the original 
microscopic equation. The use of  wavelets 

As it stands, the CN phase diffusion equation 
is inadequate because it is ill-posed when the lo- 
cal wavenumber k lies outside of the Busse bal- 
loon (kB(R),kE(R))  (See Fig. 1 for definition 
of kt, ket, kR, IcE, kr ). Since there are many influ- 
ences (e.g. curvature, induced by boundary con- 
ditions) which force the local wavenumber out- 
side of  this interval, we must add new terms to 
(1.4), which will be of order e2 almost every- 
where, but which come into play and can balance 
V. kB in those regions (whose area tends to zero 
with e ) where the local wavenumber lies to the 
left of  the zig-zag instability boundary k = kB or 
to the right of  the Eckhaus instability boundary 
k = kE. This we do in Section 3. In principle, 
one can calculate the exact corrections by contin- 
uing the Cross-Newell method to higher orders 
thereby obtaining corrections involving higher 
order spatial derivatives to both the phase diffu- 
sion equation (the corrections involve fourth or- 
der derivatives in 0) and the algebraic equation 
giving the amplitude as a function of wavenum- 
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ber. The latter will involve second and higher 
derivatives in the amplitude. Indeed, one can of- 
ten calculate the most important correction of  
the phase diffusion equation. However, except 
in a few special circumstances, it is impractical 
to compute all the corrections because the calcu- 
lations are too formidable to be carried out an- 
alytically and numerical evaluations tend to ob- 
scure the important physics. Despite these diffi- 
culties, it may turn out to be essential to carry 
out this analysis if one is to accurately capture 
the influence of  the cores of  singularities such 
as dislocations on their speeds and interactive 
properties. A key theoretical challenge will be to 
separate those contributions that really matter 
from those which play only a perturbative role. 

In this first attempt, our approach has been to 
build the regularized equation (the OPE) about 
the phase diffusion equation in a manner con- 
sistent with the following principles. The order 
parameter, which we will call W, is a real val- 
ued, monochromatic, periodic function of  the 
phase O, W = a cos O. It is very important that 
the order parameter be real as otherwise the 
OPE would not support disclinations whose lo- 
cal wavevector field is double valued. It satisfies 
the equation 

X(-V2)Wt  + ( A ( - V  2) 

+ a 2 F ( - V 2 ) ) W  = O, (1.8) 

which reduces via the Cross-Newell formalism 
to the same phase diffusion equation as the orig- 
inal microscopic system. We stress this crucially 
important feature. We build the OPE on that one 
foundation, the phase diffusion equation, which 
is the central means of  encoding the pattern be- 
havior of a particular system in a macroscopic 
format and which is readily calculable. The orig- 
inal field w can be reconstructed from W as 
w0 (arccos ~ W). It will in general contain higher 
harmonics of  the fundamental local period. The 
amplitude a and phase 0 of  W are recovered 
from the real signal W by wavelet analysis. This 
is another important addition to the study and 

understanding of  patterns. While we choose to 
use the wavelet algorithm directly in the OPE to 
define the quantity a 2, it is also a crucial aid in 
determining the wavevector field of  the patterns. 

Our assertion is that in the limit e ~ 0, ( 1.8 ) 
and the original microscopic system describe the 
same pattern behavior, except for defect veloci- 
ties. The fact that it shares the same phase dif- 
fusion equation certainly supports this. We pro- 
vide additional support with the aid of  several 
numerical experiments which simulate nontriv- 
ial pattern behaviors. In particular, the choices 
of  coefficients in (1.8) allow us to capture the 
nucleation of  dislocations with great accuracy. 
Moreover, we are also able to capture the insta- 
bility of  dislocations and their gliding proper- 
ties. Indeed, we will see a dramatic affirmation 
of  the necessity for using a real order parameter 
W when we study how well the OPE simulates 
the instability of  moving dislocations. Perhaps 
somewhat fortuitously, the defect velocities are 
captured to within a reasonable accuracy. The 
reason for this is that the velocity of  dislocations 
driven by an instability in the phase field, as is 
the case when the far field wavenumber lies to 
the right of  the Eckhaus instability boundary, far 
exceeds that of  dislocations which move so as 
to adjust to a change of  wavenumber within the 
Busse balloon. We note that it is possible to add 
terms to ( 1.8 ) which would ensure that kd is cor- 
rectly identified but our prescription for doing so 
involves no general principle so we will leave this 
as an open challenge until we gain a more com- 
plete understanding of  the role of  defect cores. 

Two other challenges, connected with the 
practical implementation of  (1.8) in general 
circumstances, remain open, or at least partially 
open. The first has to do with an accurate two 
dimensional wavelet transform that can suc- 
cessfully resolve scales down to the size of a 
wavelength. This will be important if we are to 
attempt to compare the behaviors of solutions of  
(1.8) with solutions of the original microscopic 
system, particularly with respect to the mor- 
phology of  defects and their dissociation into 
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their elementary components. The second is the 
question of  the choice of appropriate conditions 
to apply at horizontal boundaries. Clearly in the 
fluid context, for R - Rc = O ( 1 ), one of  them 
should be that the normal gradient of  V IV is 
zero to leading order. But what should the sec- 
ond one be, and how does the first depend on 
R - Rc as this quantity becomes small? 

1.2.4. The point and line singularities o f  
patterns, and weak solutions of(1.4) 

One of  the most important contributions of  
this paper is the demonstration that the station- 
ary phase diffusion equation 

V x k  = 0 ,  V . k B = 0 ,  (1.9) 

admits weak solutions that we can identify with 
the point and line defects of  patterns. We will 
show that the elementary point defects are con- 
vex and concave disclinations (Figs. 2a, b, d, e) 
and from them one can build composites such as 
saddles, targets, vortices, handles (each contains 
two disclinations) and dislocations and bridges 
(each contains four disclinations). It is impor- 
tant to emphasize that these solutions are sig- 
nificantly different from the harmonic solutions 
(valid i fB _ 1 ) which arise as the level curves of  
quadratic differentials and which are sometimes 
drawn in the literature to represent the phase 
field near disclinations. The solutions we find 
not only have the correct topological properties 
but also the correct energetic ones in that the lo- 
cal wavenumber almost everywhere in their far 
field lies within the Busse balloon. Indeed, it will 
turn out to be very close to kB. In contrast, the 
harmonic solutions have wavenumbers which lie 
well outside the Busse balloon and therefore are 
not seen in real patterns. 

The solutions are weak in the sense that they 
are the e ~ 0 limit of  the smooth solutions of  

V . k B  + e21B ' (kB)[V2V.k  = 0, (1.10) 
4kB 

which is the stationary part of  ( 1.8 ) when ampli- 
tude corrections are ignored. For concave discli- 
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nations, the wavenumber k approaches kB from 
below. In that case, V. k B  is a hyperbolic opera- 
tor and the characteristics, Riemann invariants 
and Rankine-Hugoniot conditions for (1.9) are 
exactly calculated. It turns out (1.9) is isomor- 
phic to one dimensional compressible gas flow 
and the shallow water equations when k is close 
to, but less than, kB. The importance of condi- 
tion (1.3), namely r = 1, emerges again and 
again. The shock solutions correspond to phase 
grain boundaries which emanate from the cores 
of concave disclinations. They are called phase 
grain boundaries because, while the wavevector 
is discontinuous across them, the phase is contin- 
uous. Amplitude grain boundaries (Fig. 2f) on 
the other hand, are very different. They are the 
boundaries between two patches of rolls, each 
of which is described by a different phase, and 
across which the respective amplitudes decay. 
They usually consist of  a line of dislocations. 

As we have already said, an important realiza- 
tion of  this work is that the building blocks of 
all point defects are convex and concave discli- 
nations. For example, it is very clear that the 
vortex is the coincidence of  two convex discli- 
nations. We will also demonstrate by examining 
an exact solution of the regularized phase equa- 
tion (1.10) how dislocations are composed of  
four disclinations, two convex and two concave. 
These elementary defects are bound as compos- 
ites as long as the dislocation is stable. We shall 
also see, however, that moving dislocations can 
destabilize, essentially by a process that involves 
the dissociation of  the disclinations, and the for- 
mation of two new pairs of  convex and concave 
disclinations. The dislocation is then reformed 
by a combination of  the old convex disclinations 
and the new concave ones, and in its wake leaves 
a bridge structure. The latter has been frequently 
observed in experiment. 

A more detailed discussion of the rich charac- 
ter and properties of  the solution of (1.9) corre- 
sponding to singularities will be given in [ 16 ]. In 
particular, we will discuss their connection with 
the canonical singularities (folds, cusps, umbil- 
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(a) D S  (b) 

. (d) 

(e) 

~ , .  3~ r 

(f) 

Fig. 2. (a), taken from [35], shows a concave disclination (DS) and three sidewall foci in a convecting fluid at a value of 
the Rayleigh number R = 2.61Rc, Rc = 1708 and Pr = 2.5. (b) is a numerical simulation of the SH equation for R = 0.1 
with boundary conditions w = Vw -~  = 0. (c) is (b) with shock lines marked. (d) is a pattern showing many concave 
and convex disclinations and phase grain boundaries in a magnetically driven ferrofluid taken from [36]. (e) is a Roman 
Arch (regularized convex disclination) seen in a numerical simulation of a pattern created by an instability of copropagating 
optical beams [37]. (f) shows an example of an amplitude grain boundary. 
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ics) of  two dimensional maps, with quasiconfor- 
mal maps and quadratic differentials, and with 
measured foliations. 

The outline of  this paper is as follows. In Sec- 
tion 2, we revisit the phase diffusion equation, 
its derivation and introduce the r = 1 condi- 
tion. In Section 3, we show how the OPE is built 
from the phase diffusion equation and a knowl- 
edge of  the relaxation rate, as function of  k, of  
the amplitude to its slaved value. We also carry 
out three experiments to illustrate the effective- 
ness of  the OPE. In Section 4, we introduce the 
new weak and singular solutions of  the station- 
ary phase diffusion equation. In Appendix A, we 
discuss the wavelet transform. In Appendix B, 
we show how to find, in very general terms, the 
CN equation for the OPE. In Appendix C, we 
provide further and a more detailed motivation 
for the choices made in constructing the OPE. 

2. The phase diffusion equation 

2.1. Its derivation 

We shall show briefly how to obtain the 
phase diffusion equation and, using the Swift- 
Hohenberg model, 

//2t "1 t" (~72 "[" I ) 2 w - R w + w  3 =0,  (2.1) 

describing the evolution of a scalar field w (x, t) 
in two space dimensions x = (x, y) ,  we review 
how to do this two ways. 

First, we use general perturbation theory 
which uses no special property of  (2.1) other 
than the fact that rolls are the stable planform 
for a certain range of values of the stress parame- 
ter R. We assume that there is a small parameter 
e, which in the case of Rayleigh-B6nard convec- 
tion is the inverse aspect ratio of  the container 
and which here gives the order of magnitude of 
the roll curvature. This assumption is valid in 
real convection (and also for (2.1) as confirmed 
by numerical simulations) away from defects. 
Large scale coordinates are defined according to 

Physica D 74 (1994) 301-352 309 

X = 6x,  Y = ey, T = 62t, and it is important 
to stress that both space directions are scaled the 
same way since we want to preserve rotational 
invariance. Our aim is to derive equations for 
the macroscopic order parameters, the wavevec- 
tor and amplitude, of  the pattern. The method 
for achieving this description is analogous to 
the Whitham averaging theory [ 17 ] of  slowly 
modulated nonlinear waves. The small scale co- 
ordinate upon which averaging is performed is 
the phase 0 of the basic nonlinear roll solution. 
The wavevector k is assumed to be slowly vary- 
ing and in turn this defines a large scale phase 
O = 60 such that k = Vx0 = V x O .  The field 
w ( O , X ,  Y, T )  is expanded in powers of  e as 
w = Wo + 6wl + 62w2 + . . .  and the differential 
operators take the following forms: 

Ot ~- 60TO0 + e20T , (2.2) 

Vx = kOo + 6 V x .  (2.3) 

We also find, 

(1 + V2) 2 = 120 + 612100 + 62122 

-I-63£300 -k 64£4,  (2.4) 

where 

120 = (1 + k 2 0 2 )  2 , (2.5) 

121 = (1 + k202)D1 + DI (1 + k 2 0 2 ) ,  (2.6) 

122 = (1 + k202)D2 + D2(I  + k202)  

+02002 , (2.7) 

DID2 + D2DI, (2.8) 

D2 2 , (2.9) 

£]3 = 

£4 = 

and 

D 1 = 2k • V + V.  k ,  (2.10) 

D2 = ~ 72. (2.11 ) 

02 £~ means that we replace b-~ in £j  by _p2 and k 
is the amplitude of the vector k. Substituting into 
(2. I ), we obtain the equation for the stationary 
straight roll solution w0 at leading order in e, 

(120- R ) w o  + w03 = 0. (2.12) 
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This equation has non-zero periodic solutions 
only when R and k are such that R - ( 1 - k 2 )2 > 

0. The graph R = (k 2-1 )2 is called the marginal 
or neutral stability curve. The minimum value 
of R, R = 0 is realized for k = 1. Let w0 (0) be a 
periodic solution of (2.12). We will assume here 
we are in a range ofwavenumber where the solu- 
tion is unique. The amplitude A (norm ofwo) is 
determined as a function of  the wavenumber k 
once we fix the periodicity of the solution to be 
2ft. Since k and A are not exact constants, then 
w 0  is not an exact solution of ( 2 . 1 )  and its first 
correction w~ satisfies 

LZOl = (£o - R  + 3wZ)wl 

= -(Oowo)Or - £1 (Oowo). (2.13) 

The linear operator L acting on wl is singular 
since, due to translational invariance, Oowo is an 
element of its null space. As a consequence, the 
phase must obey a solvability condition before 
wl can be found. This condition, which is nec- 
essary and sufficient if we demand that Wl be- 
longs to a space of  2n-periodic functions in 0, 
will simply read (L is self-adjoint) 

(OoWoIOoWo)OT + (OoWoI£IOoWo) = O, 
(2.14) 

where (alb) denotes the scalar product 

1f02" 2-~ dO ab. Note that the large scale deriva- 
tives of w0 are found as 

OVoo O W o  O k  2 

OX - Ok 2 0 X '  
(2.15) 

which reflects the fact that all the large scale de- 
pendencies are included in the wavenumber k. 
Expanding out the second term in (2.14) we get 
an equation of  the form 

OT -- kD± (k )V . k - DII ( k ) ( k -  V)k  = 0, 
(2.16) 

where k is the unit vector associated with the 
vector k. The coefficients D± (k) and Dbl (k.) are 
called the perpendicular and parallel diffusion 
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coefficients respectively. By construction, they 
are analytic in k. 

Multiplication by an integration factor gives 
formally 

z (k )Or  + V .  (kB(k) )  = O. (2.17) 

As we will discuss, an extra condition must be 
satisfied if z(k)  and B(k)  are to be analytic 
at k = kB. In the particular case of the Swift- 
Hohenberg equation, it is possible to calculate 
the functions z (k) and B (k) explicitly in terms 
of w0. After a little calculation, one finds, 

z(k ) = (002130) 2 , (2.18) 

1 d T.-~. 4 
B(k)  = ~ dkEW0 . (2.19) 

where f is ~ f2~ y d0. 
Second, we use the gradient property of (2.1) 

to obtain the phase diffusion equation by directly 
averaging (2.1) over the pattern periodicity. We 
shall consider a more general microscopic equa- 
tion of the form 

0F 
"tOt - -  O W  ' (2.20) 

which can be written as 

f f d x d y w t O w = - O F  (2.21) 

where F [w ] = f f G dx dy. In (2.20), OF/Ow 
is the variational derivative of F,  namely the 
expression in the integrand for the integral OF 
which multiplies 0w. Assume that the variation 
of the field w is totally contained in the evolu- 
tion of the phase 0. Averaging over 0 on the ap- 
proximate solution w0 (0) and taking the varia- 
tion 0w  in the "direction" 0, we get, 

eor f f dx dylOowolZOO = -O-F. (2.22) 

It is important to remark now that due to 
translational and rotational invariance, F de- 
pends solely on the wavenumber k. As a con- 
sequence ~T = f f ( d-G/ dk2)~k 2 dx dy = 
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f f (  d-G/dk2)2k • V~0 dx dy. Integrating by 
parts we get finally, 

dG 
OrlOowol 2 = Vx"  2k dk2, (2.23) 

so that z (k)  = (OWo/O0) 2 and B(k)  = 
- 2 ( d / d k 2 ) G ( k )  are both analytic functions 
of  k. Another reason for the existence of  these 
explicit formulae is that when the basic equa- 
tion is a gradient flow, the linearized operator 
is self-adjoint and the solvability condition is 
obtained after multiplying by OoWo. For the 
Swift-Hohenberg model, 

F=ff dx dy { - IRw2 + ///3 4 

+½[(v 2 + 1)w] 2} (2.24) 

w 

andusing (2.12), w e f i n d G  = - ~ w  0 . 1  4 
To determine the higher order corrections of 

the phase diffusion equation, it is possible, but 
in general difficult, to proceed to the next orders 
of the expansion. For example the function wl is 
the sum of terms coming from the inversion of 
(2.13 ) after imposing the solvability condition, 
and of  another term, an element of  the kernel of  
L, to be determined by the O(¢~ 2) compatibil- 
ity condition. It is however possible to incorpo- 
rate this latter term in the definition of  a "phase- 
shift" T. The redefinition of  a new phase equal 
to O + e ~ (as part of  a systematic expansion: 
0 = e0 + O1 + c O2 + . - . ) ,  allows us to recombine 
(2.14) and the next order solvability condition 
into a single equation for this new phase. In fact 
this procedure is equivalent to summing the dif- 
ferent compatiblity conditions of  the successive 
orders. We state here, and prove in Appendix B, 
that, for the case of  the regularized equation, and 
near kB where B (k) is small, the higher order 

l term that balances yV.  kB is e2vV2V • k where 
v = Dll (kB)/4k 2. The fact that it is a gradient 
is important. 
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2.2. Phase gradient systems 

There are several reasons for which it is use- 
ful to write (2.16) in conservation (flux di- 
vergence) or Cross-Newell form (2.17). First, 
many of  the properties such as wavenumber se- 
lection (not only by roll curvature but also by 
boundary geometry effects) are more easy to 
glean. Second, the conservation law form allows 
us to compute uniquely the wavevector jump 
(shock) conditions associated with weak solu- 
tions of (2.16) for k in the hyperbolic region 
k < kB(R). Third, the form (2.1) allows us to 
identify a candidate for a free-energy functional 

k 2 

/ /  if T = ( -  ~ B(s)ds)  dX dY, (2.25) 

because then 

3F  
zOr -- ~0  - - V ' k B ( k ) "  (2.26) 

However, there is an obstruction, heretofore 
overlooked, to writing (2.16) as (2.17). Iden- 
tifying coefficients of  V • k and (k • V)k  2 in 
(2.16) and (2.17), we get 

1 
D± (k) - - -  B (k),  (2.27) 

z(k)  

D i l ( k ) - D ± ( k )  1 dB(k)  
k - z dk ' (2.28) 

from which we find, upon dividing and integrat- 
ing, that 

k 
Dll (k) dk 

kB = (kB)0exp kD±(k)  " (2.29) 

ko 

Since Dll (k) and D± (k) are analytic in k! (R) < 
k < kr (R), kB is analytic everywhere providing 
that the residue 

D[I (kB) 
r -- (2.30) 

kBD~ (kB) 

of the integrand in (2.29) at its pole k = kB is 
unity. If r is not unity, B (k) is not single valued 
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p R r - 1  

oo 2000 5 × 10 -4 
cx~ 4500 5 × 10 -2 

6000 0.118 
1 2000 0.108 
1 4500 0.18 

Table 1 
The value of the residue r for several values of  Prandtl and 
Rayleigh number. 

and real within the marginal stability band. For 
example, we could define it to be real for k > 
kB but then it is not real for k < kB. Further- 
more, the free energy functional (2.25) would 
not make sense for all k in (kt (R) ,  kr ( R ) ) .  

Therefore, we define a new category of  pattern 
forming systems, named phase gradient systems, 
to be one for which the residue r is unity. This 
category includes microscopic systems which 
are gradient, but also contains a large class of  
microscopic flows which do not possess a free 
energy. For example, the Oberbeck-Boussinesq 
equations either at high Prandtl numbers p or 
near onset fall into this category. (The onset 
value R = Rc is 1708). 
This result is consistent with the observations 
of  Pocheau and Croquette [18] who find that 
the dislocation velocity in high Prandtl number 
(Pr  = 70) fluids obeys the 3/2 law, namely is 
proportional to (k  - k d  )3/2, and that the dynam- 
ics is close to being variational. We have also 
done several numerical simulations on a varia- 
tion of  the Swift-Hohenberg equation, suggested 
by Greenside and Cross [19] 

~/)t "Jr- ( V2 "Jr" 1 )2?/) _ R w  + w 3 + a w  (Vw)2 

+ b w 2 • 2 w  = 0 .  (2.31) 

Eq. (2.31) is a gradient flow for a = b. In this 
c a s e r =  l a n d k d  = k B .  F o r R  = 1 , a = 0 ,  b =  
- 1 , r  = 1.03,kd = 1.02kB; for R = 1,a = 
0, b = -2 ,  r = 1.06, kd = 1.02k8, and maximal 
velocities when (k  - kd ) / kd  is between 0 and 
0.2 are of  the order of 10 -2, slower than one roll 
wavelength per horizontal diffusion time. For 

R = 1,a = 0, b = - l ,  and w complex with w 3 
replaced by [W]2~V, CV2~72¢V by [ z0 ]2V2w,  r = 1, 

but the flow is nongradient and (kd - kB ) /kB = 
.08. 

The residue r also depends on the stress pa- 
rameter. Because the phase equation (2.16) with 
the regularization term - e  2 ( D_k ( kB ) / 4k  2 ) V2 V . 
k added must (and does) reduce to the phase 
component of  the NWS equation (with the am- 
plitude determined algebraicly in terms of  VO ), 
r tends to unity as R ~ Rc. 

When r = 1 ,F  defined by (2.25) is a for- 
mal free energy functional. It is natural to ask 
if F decreases with time. This question was ad- 
dressed in [ 9 ] and the conclusion there was that 
moving dislocations may cause F to increase un- 
less the far field wavenumber kd at which dis- 
locations are stationary is kB and that disloca- 
tions move so as to bring the wavenumber of  the 
pattern towards kB. That conclusion still stands 
even if r = 1. What is new here is the realiza- 
tion that the nongradient character of  the orig- 
inal systems can manifest itself in two ways. It 
can cause the phase equation to be nongradient 
or, even if the phase equation is formally gradi- 
ent, it can manifest itself in the dislocation core 
and thereby influence dislocation velocities. In 
the regularization of (2.17) that follows in Sec- 
tion 3, we will respect the condition r = 1 and 
ignore the defect velocity difficulty. The fact that 
we cannot accurately reproduce defect velocities 
measured on the horizontal diffusion time scale 
Ts (one roll wavelength per Ts unit) is not too 
serious when we consider that it is even less rea- 
sonable to expect a general theory to capture dis- 
location velocities when the far field wavenum- 
ber k is greater than kE. Whereas our inclusion 
in the OPE of the relaxation rate of  the ampli- 
tude mode to its slaved value will ensure that 
the dislocation nucleation time is captured ac- 
curately, the dislocation velocities will be of  the 
order of  one roll wavelength per vertical diffu- 
sion time scale which is e-2 Ts, in other words 
infinite when measured on the horizontal diffu- 
sion time scale. Therefore, the best one can hope 
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for is a qualitative agreement. 

3. The regularization of the phase diffusion 
equation 

3.1. The order parameter equation 

In this Section, we propose a two-dimensional 
order parameter equation (OPE) that repro- 
duces the dynamics of phase gradient patterns 
for all values of the stress parameter for which 
the phase diffusion equation obtains. Our goal 
is to write down a regularized form of the 
phase diffusion equation, uniformly valid for 
all k, inside and outside the marginal stability 
curve and, in the former domain, inside and 
outside the Busse balloon. For k < kB(R), a 
situation forced on the pattern (see the center 
of the cylinder in Figs. 2a, 2b) by curved roll 
patches induced by boundary constraints, the 
rolls undergo a supercritical instability called 
the zig-zag instability because the mode with 
wavevector (k,0) gives up its energy to the 

modes with wavevectors ( k, 4-ffk 2 - k 2 ) which 

produce a zig-zag pattern of wavenumber kB. 
The bifurcation is supercritical and the insta- 
bility is saturated. The behavior for k < kB (R) 
can be regularized by introducing a biharmonic 
term e 2 V V 2 ~  7 • k into the phase diffusion equa- 
tion, a term which arises naturally as the most 
important contribution at the next order of 
approximation. Furthermore, we can view the 
saturated state, which often contains concave 
disclinations (see Figs. 2a, 2b), from another 
point of view. For k < kB(R), the stationary 
phase diffusion equation is hyperbolic and it is 
not hard to show that, in general, characteristics 
from the same family will intersect and shocks 
will form. The resulting shock (weak) solutions 
give a good approximation to the pattern struc- 
ture near concave disclinations. The biharmonic 
term will act to smooth the discontinuities in 
the wavevector (strictly director) field along 
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the shock lines, lines which join concave discli- 
nations to sidewall foci (Figs. 2b, 2c). Thus, on 
the left of the Busse balloon, the phase equation 
can be itself regularized. 

To the right of the Busse balloon, however, an- 
other kind of regularization is required. In dis- 
tinct contrast to the zig-zag instability, the Eck- 
haus instability triggered when k > ke (R) is a 
subcritical one [20] and does not saturate in a 
new state close to the unstable one. Rather the 
instability very quickly takes the local wavenum- 
ber k far outside the Busse balloon k~ and also 
outside the right hand border kr of the marginal 
stability curve. At this value of k, the ampli- 
tude A 2 becomes zero and the basic premise of 
the theory, namely the existence of a finite am- 
plitude periodic state, is violated. To regularize 
in this case, we need to add back in the ampli- 
tude A, which to date has been slaved to, that 
is, determined algebraically by, the wavenumber 
k through -4 2 = Ft2(k 2, R), as an active param- 
eter. One might argue that when the amplitude 
of the total field is zero, modes with wavevec- 
tors in all directions can become active. But they 
will be rapidly suppressed by the bias introduced 
by the direction of the wavevector in the far 
field because the roll planform is locally stable. 
Therefore, only the amplitude associated with 
that mode is considered. The importance of this 
amplitude when/2 2 is close to zero is evidenced 
by the existence of a second solution v2 for the 
homogeneous equation Lwl = 0 given by 

dwo Owo OWo 0 ( OA "~-I 
1)2~- d--A-- O ~  + O0 2k 2 \ ~ - 2 J  ' 

(3.1) 

which becomes 2g-periodic at the marginal sta- 
bility boundary A 2 - -  f12 (k, R) = 0. Therefore 
we need a prescription in which both the ampli- 
tude and the phase are order parameters at the 
core of dislocations (points where A = 0) and 
at the center of certain target patterns where the 
local wavenumber becomes infinite, but only the 
phase is an order parameter elsewhere. 
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The order parameter equation must have the 
following properties: 

(a) It must be an equation for a real order pa- 
rameter that is a periodic function of the phase 
(e.g. a cos 0) in order to remove the multival- 
uedness of the phase introduced by local peri- 
odicity. Complex order parameters, that define 
a wavevector field without directional ambigu- 
ity, cannot describe disclinations because these 
defects are defined by the behavior of  a local di- 
rector (vector without an arrow) rather than a 
vector field. 

(b) The OPE must reduce to the Cross-Newell 
equation for e ~ 0 and inside the marginal sta- 
bility curve with analytic function B (k). 

(c) The OPE must lead to the same Newell- 
Whitehead-Segel equation as the original equa- 
tion near onset. The amplitude of the order pa- 
rameter must go to zero both at kt and kr. 

(d) The transition from the null solution to 
the roll solution at the marginal curve must be a 
forward pitchfork bifurcation. 

(e) We must recover the correct decay rate 
21s (see Appendix C) of  perturbations to all fi- 
nite amplitude patterns with wavenumbers in 
the marginal stability band. This property is im- 
portant if we wish to follow the dynamics of 
all events (such as the nucleation of dislocation 
pairs) that are connected with the horizontal dif- 
fusion time scale. We do not require that we re- 
cover the higher order terms of the phase diffu- 
sion equation from the OPE. 

We propose the following equation: 

)~ (--V2) Wt -I- A ( - V 2 ) W  

+ a 2 F ( - v E ) w  = O, (3.2) 

for the order parameter W = acos0.  The 
term a 2, the squared amplitude, is a functional 
of  the real field W extracted for example by 
wavelet analysis (see Appendix A). The func- 
tions Z, A, F are given by combinations of).lS, B 
and z. A term like A(-•E)w is by definition 
fE~o~A(k2)eikxW(k)  dk where W ( k )  is the 
Fourier transform of W (x). 

Let us now show that (3.2) satisfies points 
( a ) - ( e )  mentioned above: 

(a) It is clear from the form of the equation 
itself that it satisfies point (a) and (d) provided 
A(k 2) and F ( k  2) have a correct sign on the 
marginal curve. It is important to make explicit 
the link between its solution and the original 
pattern. The OPE it not meant to give the cor- 
rect short scale structure. For example, the so- 
lutions of the OPE are monochromatic and pe- 
riodic whereas the original equation may have 
many harmonics in its periodic structure. How- 
ever, given a solution W of  (3.2) it is possible to 
reconstruct the phase 0 of the true solution and 
with that phase and the amplitude a determine 
w0 (0) which is a close approximation to the ex- 
act solution. Namely, away from singularities, 

w ( x , y , t )  ~ w0 (arccos ( 1 W ) )  (3.3) 

for a of  order one and this reduces to W in the 
limit of  small amplitude a. The amplitude a of 
the order parameter W is not an approximation 
to the amplitude A of the real pattern, except 
near onset where the single Fourier mode ap- 
proximation of  the true solution is valid. The 
solution W will produce, however, the same 
overall pattern with the same topology (smooth 
patches, defect singularities, etc. ) as the original 
field w ( x,  y , t ) . 

(b) The Cross-Newell limit of  this equation 
is derived in Appendix B and we obtain the fol- 
lowing phase diffusion equation 

)~AOt -  V .  ( k A F ( A )  ') = 0. (3.4) 

This calculation is straightforward because (3.2) 
admits monochromatic solutions. This latter 
property allows us also to find 21s = - 2 A / x .  In 
order to satisfy (b) and (e), we find 

,/r X = 21s ) , (3.5) 

A = -v / - ( zA~s) ,  (3.6) 
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F' A' X B 
F - A + A-~" (3.7) 

The choice of  integration constant for (3.7) en- 
sures that the pseudo-amplitude is the real am- 
plitude at the right border of the neutral stability 
curve k = kr. Close to kr we choose F (k 2) = 
21s/2lfl so that Z (k2) = 1 at kr. Outside the 
band of  wavenumbers k between kt and k~ we 
define X (k2) and F (k 2) by the constant values 
they assume on the marginal stability curve. 

(e) The functions x ,A ,F are also functions 
of  the stress parameter R through r, B and 2~s. 
When this stress parameter is close to its criti- 
cal value Re, and if we denote by k0 the critical 
wavenumber, we derive from (3.2) the follow- 
ing NWS equation: 

OA 
Z(ko)At + ( R -  Rc)(-~--R)OA 

02A 
-½ (~k-~)0 ( 0 x -  (i/2ko)O2)2A 

+F(ko)IAI2A = O. (3.8) 

Equation (3.2) can be immediately transformed 
into Eq. (3.8) when )~, A and F are expanded 
about k = (k0, 0) ,  A is taken to be small and 
the stress parameter R close to Re. Under  these 
assumptions, the real and complex order param- 
eters are also equivalent and we can take W in 
(3.2) to be A e  iO and a 2 t o  be IAI 2. The coefficient 
o f 0 r r r Y  W identifies with the coefficient of  the 
most important next correction to the phase dif- 
fusion equation (3.4) derived from (3.2) near 
kB. 

3.2. Numerical simulations 

The goal of  the first experiment is to show 
that the OPE correctly reproduces the dynamics 
of  the original microscopic equation. Here, we 
choose the model (2.31 ) with a = b, 

Otw - ( R  - (1 + V 2 ) 2 ) w  -F w 3 -I- b ( w ( V w )  2 

-]-w2V2'//3) ~- 0 (3.9) 
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The reason for this choice is that its OPE is sig- 
nificantly different from the original equation. 
For the SH model (b = 0), the form of  the OPE 
is very close to the SH equation itself and its co- 
efficients Z, A, F do not show a significant differ- 
ence from 1, R - ( 1 - k 2 )2 and - ~ ,  respectively. 
This is mainly due to the fact that the ratios of 
the coefficient of  the higher harmonics to the 
leading order coefficient of  the solution COo (0) 
are very small. However, by choosing b # 0 we 
also change completely the form of the nonlin- 
ear terms and the solution COo (0) has a Fourier 
spectrum with a significant amount of energy in 
the higher harmonics. Therefore, the compari- 
son between the microscopic model and the OPE 
is less trivial. This equation derives from a po- 
tential and thus its phase diffusion equation falls 
in the category of  models on which it is possible 
to apply the construction of Section 2. The func- 
tions Z (k 2), A (k 2) and F (k 2) corresponding to 
this equation are plotted in Fig. 3 for b = - 5  
and R = 1. This model and the OPE derived 
from it are integrated in parallel, in order to test 
the validity of  the regularization. The integra- 
tion of  the OPE as it stands is easy when using 
a pseudo-spectral method with Fourier Series in 
a periodic domain. The temporal scheme mixes 
an Adams-Bashforth for the nonlinear terms, the 
a2FW term in (3.2), and an exact integration 
of  the linear terms with a time step of  0.05 for a 
spatial resolution of 64 x 64 grid points. We usu- 
ally take initially eight rolls oriented along the y 
direction. A large number of  rolls would necessi- 
tate a higher resolution. For Eq. (3.9) above, the 
cutoffwavenumber of  the spectral range, must be 
at least three times the dominant wavenumber 
of the pattern. This constraint is strict because 
the nonlinear term contains derivatives and a 
small truncation error would completely mod- 
ifiy the longwavelength instability boundaries. 
This constraint does not apply as strictly for the 
OPE since the roll solutions are monochromatic. 
This remark shows that the comparison between 
(3.9) and its OPE is far from being trivial. Since 
we are working with a field of  almost straight 
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parallel rolls, the computation of  the amplitude 
a 2 is done by using the Hilbert transform to con- 
struct w* and then a 2 = zo 2 + ~/3 .2 .  This pro- 
cedure gives a very satisfactory answer as long 
as the rolls do not make a large angle with the y 
axis. 

First of  all, we made some tests to verify 
that the borders of  the Busse balloon indeed 
coincide for both the microscopic model and 
the OPE. They do. Next we tested some very 
nontrivial behavior connected with disloca- 
tions, their motion and their instabilities. We 
started with straight parallel rolls at b = - 5  
and wavenumber/co = 1.3 with some perturba- 
tion w(t = 0) = Acos(k0(x  + asinxcosy))) 
tending to squeeze the roils in the middle of  the 
container. We observe the formation of  a pair of  
dislocations which then move apart in a climb- 
ing motion along the y axis. The solutions of  
both model (3.9) and the OPE are in very good 
agreement for as long as we calculated. Let us 
stress here that in principle we cannot expect a 
perfect agreement when defects are close to each 
other or are moving, but in fact there is in this 
case. In order to test what happens for different 
wavenumbers of  the far field, we did the follow- 
ing experiment. After the pair of  dislocations 
have moved a certain distance from each other, 
we stop the runs and change the spatial scaling 
so as to change the effective wavenumber of  the 
background pattern. We then restart the run. 
The defects then move in one direction or the 
other, according to the new wavenumber of  the 
pattern ko. We show in Figs. 4a, b, c, d the state 
of  the pattern after some time for both model 
(3.9) and the OPE, and for k0 = 0.85 and 
k0 = 1.2. The global topology is in agreement, 
but also the positions of  the defects agree. The 
agreement is even better if the inverse aspect 
ratio is larger (not shown). 

The OPE reproduces the behavior of  solutions 
of  the original equation reasonably well because 
the pattern is not "turbulent" and the distance 
between defects is large. However, we do not 
claim that this would hold if many defects were 
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nucleated. Indeed, we tried also to test more dis- 
ordered situations. At higher values of  the stress 
parameter (R = 3) and with a larger number 
of  rolls (n = 15) we begin to observe serious 
discrepencies between the OPE and the origi- 
nal equation. This in fact is not very surprising 
since the pattern, when initially prepared in an 
Eckhaus unstable regime, is rapidly driven into 
a state of  "defect mediated turbulence". In such 
regimes, small differences in the initial condi- 
tions are exponentially amplified, and at best, we 
could only expect to recover an agreement in the 
statistics of  the solutions. Indeed it would be of  
interest to investigate whether the same OPE ob- 
tains in a statistical sense for turbulent patterns. 

The goal of  the second experiment is to 
demonstrate a very nontrival behavior of  the 
pattern, the development of the bridge instabil- 
ity [21 ] (a finite amplitude instability of  a mov- 
ing dislocation), and to show the inability of  an 
OPE for a complex order parameter to capture 
it. Our OPE correctly reproduces all stages of 
this instability. For this experiment we take the 
SH equation (b = 0) at R = 3 with/Co = 1.5. 
The borders of  the nonlinear stability region in 
this case is kB = 0.98 and ke = 1.45. Taking 
the same initial conditions as in the second ex- 
periment, we also obtain a pair of  dislocations 
which move upwards and downwards. When 
we consider the local wavenumber in the region 
where the pair of dislocations is forming, we see 
that there is a patch of  wavenumber of  approxi- 
mately k0/3 just behind each dislocation, which 
rapidly disappears by contraction of  the rolls as 
the defects separate. Here, however, the mode 
ko/3 is more linearly unstable and the amplitude 
of  the Fourier components at that wavenumber, 
generated by the modulation of  the mode k and 
the existence of  the defect, have time to grow and 
reach significant values. Locally, it corresponds 
to a fully developed (nonlinear) patch of  rolls 
whose wavenumber has now increased but stays 
well below the value k of the surrounding rolls. 
Its amplitude is well above the amplitude of  
these rolls and thus there is a tendency to bridge 
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the gaps at the edges of  the dislocation. The 
competition between these two solutions even- 
tually leads to the formation of  a downflow just 
behind the core of  the defect and this completes 
the process. This process is illustrated in more 
detail in [21 ]. We show in Figs. 5a, b, c, a pic- 
ture of  the resulting pattern after some time for 
(a) the real SH equation, (b) the real OPE and 
(c) the complex OPE. The agreement between 
the solutions of  the SH equation and those of  
the real OPE is very satisfactory, even though, 
as we can expect, the defects are not at exactly 
the same location. But the topology is the same 

and this is the main point. We see, however, in 
Fig. 5c that the correct topology is not at all re- 
covered using the complex OPE. This might be 
interpreted by looking at the dotted lines in Fig. 
5b compared to Fig. 5c. In Fig. 5b, the dotted 
lines are the lines of  the zero of  HW,  the Hilbert 
transform of  the real order parameter W which 
solves (3.2). In Fig. 5c, they are the lines of  the 
zeros of  Im W. We see that the field I m W  is 
a regular dislocation for all times and thus the 
fields Re W and Im W cease to be intimately 
coupled in such a way that I Wl 2 is a slowly 
varying quantity. The coupling is forced in the 
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case of  the real equation. Let us emphasize this 
crucial point: the dynamics causes the two fields 
Re W, Im W of  the equation for the complex or- 
der parameter W = Re W + i Im W to evolve in 
such a way that x/(Re W) 2 + (Im W) 2 varies 
on short time scales. On the other hand, Eq. 
(3.2) forces the fields W and H W  to remain 
intimately coupled. 

The wavevector fields at three stages of  the 

dissociation and reformation process of  the in- 
stability are shown in Fig. 6. Bridges have been 
observed in real experiments [22, 23 ]. 

Finally, we want to present in experiment 4 the 
results of  using a two dimensional wavelet algo- 
rithm for the calculation of  the amplitude. The 
experiment is exactly the same as experiment 2 
for k0 = 1.3, except that the resolution is only 
32 x 32 grid points. We observe the formation of  
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ll 

(a) , (b / ' ': ' 

(c) 
Fig. 5. (a) shows the constant phase contours for the solutions of Eq. (2.31) with b = 0 and R = 3 at a time after the 
dislocations have destabilized and two bridges formed. (b),(c) are the level curves of W = 0 and W* = 0 for the same 
experiment at the same time for the solution of the real and complex OPE's respectively. In (b), the quantity W* is computed 
using the wavelet transform (one dimensional Hilbert transform). In (c), W and W* are the real and imaginary parts of 
the complex field Ae ~°. Note that (c) neither captures the instability nor the bridge formation. 

the dislocation pair and part of  its motion until 
some instability leads to a blow-up of  the code. 
Whereas the one dimensional wavelet algorithm 
is very robust, its two dimensional counterpart, 
discussed in Appendix A, is more difficult to 
tune and several sophisticated refinements still 
need to be done in order to obtain a resolution 
sufficient to identify the individual components 

of pattern singularities. We stress that this algo- 
rithm has a much broader application than for 
the OPE and we expect it will play a major role 
in the analysis of  patterns that arise both in real 
experiments and simulations. In Fig. 7, we dis- 
play the success of the present state of  the code. 
Figs. 7a, b show the phase contours, and the am- 
plitude of the pattern, at some time after the for- 
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Fig. 6. Three stages of the instability, dissociation and re-formation of the dislocation leaving a bridge in its wake. 

mation of defects. The wavevector field is accu- 
rately captured in the far field but does not have 
the resolution of that determined by the exact so- 
lution. The calculations are performed with the 
values o fa l  = 1,a2 = 3,o9 = 3 (see Appendix 
A). 

4. Towards a general theory of stationary 
pattern singularities 

4. I. Preamble 

To this point, our regularization procedure 
has adopted the following viewpoint. A pattern 
consists of a mosaic of relatively smooth patches 
of locally periodic rolls separated by point and 
curve singularities at which the wavevector 
changes suddenly. In the smooth regions, the 
Cross-Newell equation holds but in order to 
make sense of the global behavior, one must 
solve the regularized order parameter equation 
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Fig. 7. (a) is the same pattern as is obtained in Fig. 4a except here k0 = 1.3 at a time just after the dislocation pair 
has formed using the OPE and the two dimensional wavelet algorithm. (b), (c) show, respectively, the constant amplitude 
(multiplied by 103) levels and the constant wavenumber (multiplied by 8/1.3) level curves. 

constructed in Section 3. In other words, the CN 
equation is fine as long as one does not expect 
it to hold globally. It provides extremely useful 
qualitative information and it is the skeleton on 
which we build the OPE, but for general time 
dependent patterns, in order to make use of  its 
content, we must return from an equation writ- 
ten in large scale coordinates to one which is 
written in small scale coordinates. In spite of  

the fact that the OPE is usually simpler than the 
original system, we have lost the advantage of  
averaging. 

The purpose of  this Section is to show how we 
can recover some of  that advantage when we deal 
with stationary patterns. In particular, we assert 
and now demonstrate that the far fields of  point 
and line singularities are captured by weak and 
singular solutions of  the stationary phase diffu- 
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sion equation which describes that far field. Con- 
cretely, we will seek solutions of  the stationary 
CN equation 

V x k  = 0 ,  (4.1) 

V . k B ( k )  = 0, (4.2) 

which are realized as asymptotic (time T ~ c~) 
and therefore stable solutions of  

z (k )Or  + V . k B ( k )  + ¢2Rg = 0 (4.3) 

in the limit ¢ ~ 0. Because these solutions may 
not be smooth, we call them weak solutions. 
In (4.3), Rg represents the regularization. It is 

e ~ V 2 X  7 • k for ke~ < k < kB with e = 1 
, . t~ B 

when k is close to kB. For k > ICE or k < kEt, 
it represents the amplitude regularization ob- 
tained by embedding the phase diffusion equa- 
tion in (3.2). In what follows, we will indeed 
find new solutions which capture the nature 
(the topology and the energetics) of  point and 
line defects. Moreover, it turns out that the 
building blocks of  all point defectsare  convex 
and concave disclinations, to which objects we 
have given the name monofects, whose topolo- 
gies have already been discussed in the literature 
[24, 25, 26]. What is new in the present work 
is that we find weak solutions of  (4.1), (4.2) 
which not only have the correct topologies but 
which also satisfy the energetic (stability) con- 
straints imposed by insisting that they are stable 
(T ~ co) solutions of (4.3) in the limit e ~ 0. 

Solutions of  (4.1), (4.2) give rise to a map 

X ( X  = rcosa ,  Y = r s i n a )  

-* k ( f  = kcos~a,g = k s i n g ) ,  (4.4) 

from physical space to wavevector space with Ja- 
cobian matrix (subscripts refer to partial deriva- 
tives) 

j =  ( fx fY gr ' (4.5) 

with determinant 

IJI = f x g r -  frgx = k ( k r ¢ ~ - k ~ r ) .  (4.6) 
r 

This map is singular when I JI = ~ .  If  the rank of  
the Jacobian matrix J is one, the singularity is a 
fold. If  J has rank zero, the singularity is an um- 
bilic. Note that the fact that f (X, Y), g (X, Y) 
satisfy (4.1), (4.2) applies a constraint so that 
not all generic singularities of  two dimensional 
maps are necessarily realized here. The Jacobian 
matrix of  the inverse map is 

v,v  

Rotational invariance means that B is a func- 
tion of wavenumber k only and it is therefore 
more convenient to analyze the map from X to 
the wavevector angle ~ and wavenumber k. This 
map is not trivial for two reasons. First, in addi- 
tion to the singular vectorfield solutions of (4.1), 
(4.2) for which the map X ---, ~ is singleval- 
ued in the neighborhood of  the singularity, there 
are director field (a vectorfield without arrows) 
solutions, corresponding to convex and concave 
disclinations, for which the map X ~ ¢ is dou- 
blevalued. In those cases, ~ is only determined 
modulo rt or up to sign. In the neighborhood of  
point singularities where k is a vectorfield, one 
can define the invariant, F ,  called the circula- 
tion and defined as 

F = _~1 f k  • dX,  (4.7) 

C 

where C is a curve which circumscribes the 
singularity in a counterclockwise direction. In 
the neighborhood of  point singularities, such as 
disclinations, where k is only a director field, 
F is not defined. There is, however, another 
invariant, the twist T, which is the winding in- 
dex of  the map X to k or, more simply stated, 
the amount by which a director rotates about 
its midpoint as the latter circumscribes the sin- 
gularity on the curve C. For disclinations, T 
is either +~z (convex) or - n  (concave). The 
twist of  each of  the composite defects is simply 
the sum of the twists of the disclinations from 
which it is built. 
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Second, while the map X --. ~o tells us much 
about the defect topology, the map X ~ k tells 
us about energetics. This map is also multivalued 
because of the nontrivial shape of kB(k) .  The 
energetically correct solution branch is chosen 
uniquely by the constraint that the wavenumber 
k must lie between kn and Ice almost everywhere. 
Only in an order vQ- neighborhood of certain 
curves (phase grain boundaries along which the 

' k  regularization Rg = e ~ V 2 V  • k obtains) 
• ,~tt B 

or in an order e neighborhood of point defects 
(where amplitude regularization is usually re- 
quired) can k lie outside of (kB, IcE ). Moreover, 
the requirement that the wavenumber lies in the 
band (kB, kE ) almost everywhere means that the 
orders of magnitudes of various constants that 
arise in the singular solutions are determined• 
The result is that, in the neighborhoods of point 
defects and phase grain boundaries, k is ka to 
within an exponentially small correction in those 
regions where the rolls are straight, and to within 
order e in regions where the rolls are circular, in 
the far field of stationary dislocations. Therefore, 
concave and convex disclinations, as do target 
patterns, select a preferred wavenumber in their 
far fields. 

In Section 4.2, we introduce the solutions cor- 
responding to point defects, convex and concave 
disclinations, saddles, targets, vortices and spi- 
rals. Handles, dislocations and bridges are also 
discussed. The first two are called monofects. 
The next five are each composed of two disclina- 
tions and are therefore called difects. The last two 
require four disclinations and are called quadra- 
fects. We identify these solutions by applying 
the hodograph transformation which converts 
(4.1), (4.2) into a linear, separable equation. In 
Section 4.3, we examine the quasilinear system 
(4.1), (4.2) directly, and identify its characteris- 
tics and the Rankine-Hugoniot conditions asso- 
ciated with its discontinuous solutions. It turns 
out that, when k is close to kB, as is almost al- 
ways the case of interest, the system (4.1), (4.2) 
is isomorphic to compressible gas flow and the 
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shallow water wave equations. Because of the 
flux divergence form of the stationary equation 

V . k B ( k )  + e2IB'(kB)IV2V.k = 0, (4.8) 
4ks 

the jump conditions at discontinuities are 
unique and independent of the exact form of 
the regularization. In Section 4.4, we introduce 
exact solutions of (4.8) corresponding to dis- 
locations and to phase grain boundaries with 
weak discontinuities. Again we will see the im- 
portance of  the r = 1 condition. 

4.2. Elementary and composite defects of  roll 
patterns 

Since (4.1), (4.2) are quasilinear, we can use 
the hodograph transformation 

f x  = IJIYg,fY = -IJIXg, gx 

= -IJIYT, gy = IJISf (4.9) 

to express X and Y as functions of f and g. 
Equation (4.1) then allows us to introduce the 
potential O(f,  g),  

Off 0 0  sin ~o 0O" 
X -  Of  - c°s~°0k k 0~o' (4.10) 

__0O 00 cos~O0" 
Y -  Og -s infp~-~ + k 0~0' (4.11) 

and, after a little analysis, (4.2) becomes 

k o o f  o kB o ' 0  -~-~kB-5- ~ + ~-~( )0--~ = O, (4.12) 

a linear and separable equation in k, ~0. Observe 
that O(X, Y) and O(f ,g )  are related via the 
Legendre transform 

of o f  
• ~ r - - .  O ( X , Y )  + O( f ,g )  = k X = k--~.~ (~.f3) 

Thus a solution O(k, ~o ) gives us a map between 
(k, {o) and (X, Y) (Eqs. (4.10) and (4.11)) and 
the constant phase contours are given by 

O0 f O,  (4.14) k3- -  ~ - _- 
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and can he drawn either in the k ( f , g )  or 
X ( X, Y) planes. 

We now analyze several of  these solutions in 
detail. It is useful for illustrative purposes to he- 
gin with a class of  solutions, called harmonic, 
corresponding to the choice B (k) = 1, even 
though they are irrelevant for patterns because of  
energetic considerations. In this case (4.1) and 
(4.2) are the Cauchy Riemann conditions from 
which we can deduce that w = f - ig is an an- 
alytic function of  z = X + iY. The singulari- 
ties of  analytic functions corresponding to vec- 
torfields ( f ,  - g )  are well known. They are asso- 
ciated with the level curves corresponding to the 
integration of  the one-forms 

dO = dO + id~  = w dz 
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and  

(4.15) 

for w = z t = rte it'~, l an integer. The constant 
phase contours are given by 

(4.16) 0 = rt+lcos(l + 1)a .  

The canonical singularities are zeros (1 = 1 ) 
and poles (l = - 1 ). Director field solutions on 
the other hand derive from square root singu- 

:t: l larities, w = z ~, and are associated with the 
level curves corresponding to the integration of  
the quadratic differentials 

v ~ d z  2 . (4.17) 

o = n - l r n / ( n - l ) c ° S ( n  -if-S-f-In a ) .  (4.22) 

The constant phase contours for m = 1 , - l ,  2, 
or n = 3 , -  1,2 corresponding to the concave 
and convex disclinations, and a saddle respec- 
tively, are drawn in Figs. 8c, 8a, 8k. Note that 
the twists are - n ,  n and -2r t  respectively. Note 
that the wavenumbers of  the harmonic solutions 
fall well outside the Busse balloon over large 
areas near the singularity. For this reason, the 
harmonic representations only give the correct 
topologies of  the solutions of  (4.1), (4.2) we 
shall shortly discuss. Nevertheless, they help us 
understand the morphology of  the composite de- 
fects because the w (z) representations of the lat- 
ter can be found by multiplying together the har- 
monic representations of  each of  the elementary 
disclinations from which that particular compos- 
ite is built. We list the composites, their repre- 
sentations, their twists and their circulations in 
the following Table. Note in particular that, in 
the limit # ~ 0, the wavevector field for the dis- 
location is given by 

For w = z m, the constant phase contours are 

O =  r(m+2)/2 COS ( m ~  2a)  . (4.18) 

For m -- 2l, (4.18) is (4.16). The solutions 
(4.18 ) correspond to taking the exact solutions 
of  (4.12), 

g ! k .  = , = cosnqL n 1 + 2/m (4.19) 
n 

which gives 

r = k n - I  , (4.20) 

= (n - 1)~,  (4.21) 

Y X 
f = k0 + e X 2  "~" y 2 '  g = --e X2 + y 2 '  

O = lc0X - ca ,  (4.23) 

and is clearly the superposition of  a vortex at 
X =  Y = 0 a n d a s a d d l e a t X = 0 ,  Y = - c / k 0  
(Fig. 8q). 

We now turn to the construction of  the ener- 
getically correct weak solutions of  (4.1), (4.2) 
with nontrivial topologies. It is instructive to be- 
gin with the target pattern because in this context 
it is easy to see how the energetic considerations 
come into play. 
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Fig. 8. (a) Isophase contours for the harmonic convcx disclination. Note k ~ oc as x 2 + y2 _., 0. (b) Isophase contours for 
regularized convex disclination or Roman Arch. (c) Isophase contours for harmonic concave disclination. Note k ~ 0 as 
x 2 + y2 ~ 0. (d) Isophase contours of  regularized concave disclination with phase grain boundaries along c~ = ~/3, ~, 57r/3. 
(e) Isophase contours for exact solution of  unrcgularized solution of  (4.1), (4.2) with concave disclination topology. The 
sector 0 < ~ < 27r/3 shows a blown up version of a single phase linee in which the multivaluedness of  the unregularized 
solution is apparcnt. (f) The corresponding path in k space (bold line) fedcba to the one marked in (e). The dotted line 
is the locus of folds. The outer and inner circles arc k -- kB and k = kE! respectively. (g) Isophasc contours of  harmonic 
target pattern. Note k ~ oc as r ~ 0, k ~ 0 as r ---, oc. (h) Isophasc contours of  regularized target pattern. (i) Separated 
target pattern. (j) Vortex. 0 = - a .  (k) Isophase contours of  harmonic saddle. (1) Isophase contours of  regularized saddle 
with phase grain boundaries along a = 7r/4, 3)z/4, 51r/4, 7~/4. (n)  Isophase contours of a separated harmonic saddle. (m) 
Wavevector field for the separated harmonic saddle. (o) Isophase contour for Type I handle. (p) Isophase contours for Type 
II handle. (q) Isophase contours of harmonic dislocation. (r) Wavevcctor field for harmonic bridge. 
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Fig. 8 - -  continued. 
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Symbol Name Representation Twist (T)  and Circulation ( r )  

X (Fig. 8a) Convex disclination w = ( z  - a)  -1/2 T = 
V (Fig. 8c) Concave disclination w = (z  - a) l /2  T = - n  
X X  (Fig. 8i) target w = (z 2 - a 2 ) - l / 2  T = 27r, F = 0 
(Fig. 8j) vortex w = i ( z  2 - a 2 ) - I / 2  T = 2n, F = - 2 n  

spiral w = (c~ + i ) ( z  2 - a 2 )  -1/2 T = 2n, F = - 2 n  
V V  (Fig. 8m) w = i ( z  2 - a2) 1/2 T = - 2 r r , F  = - n R l a  2 

( z - a  ] l ] 2 
X V  (Fig. 80) Handle w = ~ z + a /  T = 0, F = - 2 n l m a  

( ) = b- [ ( z+a*) ( z -a )  XXvv (Fig. 8q) Dislocation w , ,~W(z+b. ) ( z_O)  T = O,F = -21r 

a = : ~ + # , b = #  
/ Y \ 

' V ~ V ]  (Fig. 8r) Bridge ~o=(z2-a2)l/2(z2+b2) -1/2 T = 0 , F = 0  
\ x :  

a, b real 

Table 2 
A list of the harmonic representations. 

( 1 ) Target: 

k 

f dk 0 = c ~--~, (4.24) 

r = ~/X 2 + y2 = c / k B ,  (4.25) 

a = tan -I Y / X  = ~,  (4.26) 

k 

c f dk O = ~ - c  ~--~. (4.27) 

From (4.26), we see that q~ is determined 
uniquely as function ofc~. In particular, T = 2n. 
The more interesting map is between r and k 
which, for c negative, is drawn in Fig. 9. Ob- 
serve that in order to obtain a solution which 
covers all the regions in the (X, Y) plane down 
to the target core r = 0(e)  and for which the 
wavenumber k is the stable band (kB, Ice ), we 
must choose c = -ec0. That choice pushes the 
relevant branch AD close to kn almost every- 
where. In the core region r = 0(e ), k increases 
to ke but the amplitude regularization will al- 
ready have come into play at that stage. This 
argument is very similar to the one used by 
Pomeau and Manneville [27] to show how cir- 
cular roll patterns select the wavenumber kB. 
Write (4.25) as 

c 
kB  = - (4.28) 

r 

and it is clear that in order to keep kB finite for 
r of  order e, the constant c must be of  order e. 
Then, in the far field, where r is order one, B (k) 
is of  order e, meaning that k = kB + 0(e) .  In 
our discussion here, we draw one extra conclu- 
sion, namely that c must be negative so that k 
approaches kB from above. For target patterns, 
the circulation F is zero. We also note from (4.6) 
that 

k kB  
[JI- r 2 ( k B ) "  (4.29) 

from which we see why, unless Co is identically 
zero, which can be arranged but is not typical 
for circular patches in natural patterns, it is very 
important to have regularization in the core re- 
gion. The amplitude regularizations for target 
patterns is discussed by Pomeau and Manneville 
[28 ] and by Newell, Passot and Souli [ 12 ]. 

(2) Convex Disclination. 

The convex disclination is captured by an- 
other exact solution of  (4.12), 

"0 = ck ~ cos~o, (4.30) 
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Fig. 9. The graph of  r versus kB for the target pattern. Note that  the only acceptable solution is the branch AD. The value 
of  r at D is less than c, the core size. 

from which we find 

k 

f d k  c 2 X = r c o s a  = c ~ - ~  + ~ - ~ c o s  ~0, (4.31) 

c 
Y = r s i n a  - k2 B sintp cos~0, (4.32) 

and 

c 
O = ~-~ costa. (4.33) 

Note that if  B = 1,0" is exactly given by (4.19) 
with n = - I .  In order that this solution cov- 
ers all but a core region of  diameter ~, c must be 
of  order ~. We write c = -~c0. Therefore k = 
ks + O(e ) almost everywhere. The isophase con- 
tours are drawn in Fig. 8b (see also Figs. 2e and 
10) and take the form of a Roman Arch. In Fig. 
2d we show Roman Arches in a ferrofluid pat- 
tern and in Fig. 2e reproduce a Roman Arch ob- 
served in a numerical experiment involving two 
copropagating optical beams. This shape can be 
solved for explicitly by inverting (4.31 ), (4.32) 
(choosing the k branch that lies in (kB, ke ) ) and 
drawing O = O0 for several values of  Oo. The 
shape can also be heuristically argued as follows. 

For cos~ of order one, namely for I~0[ strictly 
less than ~, the dominant term in (4.31) is the 
second and, from (4.31), (4.32), 

£ c O 
r - k B  cos~0, a = ~0, (4.34) 

and the constant O contours are semicircles. For 
~0 -~ ~, however, or cos ~o = O (k - kB), it is the 
logarithm terms in (4.31 ) which dominates and 

k - k s  = exp k 3 l n ' ( k s ) l s ,  (4.35) 
eCo 

namely k approaches ks exponentially fast as X 
tends to negative infinity. For X < 0, the con- 
stant phase contours are straight lines. There is 
no discontinuity in any derivative between the 
semi circular and straight regions. The twist T 
of a convex disclination is it. Circulation is not 
defined. 

The choice of  the sign of  c (or c0) gives the 
direction of  the Roman arch. For c > 0 or co < 
0, the semicircular component occurs for X < 
0, ~ < ~0 < ~ and the straight component occurs 
f o r X  > 0. 

(3)  Vortices and  spirals. 
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(a) (b) 

(c) (d) 

Fig. 10. A sequence of snapshots showing the instability of the convex disclination (Roman Arch) as the stress parameter 
is taken close to its onset value. These patterns occurred in a pattern formed by copropagating optical beams [37]. 
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The exact solution 
k 

f dk = -eCo ~ + ecl~o (4.36) 

leads to targets (Cl = 0), vortices (Co = 0,cl = 
l)  and spirals (Co, Cl non zero). From (4.10), 
(4.11), 

o c~ (4.37) 
r = e (kB)  2 + ~-~, 

a = ~o + fl(r) ,  (4.38) 

where cosf l ( r )  = -eco/kBr ,  sinf l(r)  = 
eCl/kr. They have twist 2re. The pure vortex 
(Co = 0) has a circulation of  -2r t  whereas the 
spiral, like the target pattern, has zero circula- 
tion. The pure vortex can he regularized by the 
correction terms at its core but not in its far 
field. In certain cases, for example, the com- 
plex Ginzburg-Landau equation, ks is zero and 
then the regularized vortex is a stable object. 
When ks > 0, however, the far field can only 
be "regularized" by introducing another nearby 
singularity, a saddle. As we have remarked af- 
ter (4.23), the juxtaposition of  a vortex and a 
saddle gives a dislocation (see also Fig. 13). 

(4) Concave Disclination. 

The solution 

= F ( k )  cos 3~0 (4.39) 

leads to the concave disclination. In this case, 
F (k) cannot be expressed in terms of  elemen- 
tary functions but it is readily calculated. As be- 
fore, however, on the branch which is energeti- 
cally relevant, k ~- ks and then we can approxi- 
mate F (k ) by eco~n[k - ka[. We obtain 

e Co cos3~cos  X = r c o s a  - k - ks 

3ecoen[k-ks[  sin 3~ sin (p, (4.40) 
+ ks 

¢. C O 
Y = r sin a - k _---L--~s cos 3~ cos 

3ecoen[k - ks[ 
- ks sin 3(p cos ~.  (4.41) 

Almost everywhere on the constant O contours, 

cos3~ = 0 ( k - k s ) ,  (4.42) 

so that the logarithm terms dominates in (4.40), 
(4.41) in the sectors --~ < a - 2~__.~ ~ 9' n = 

0, 1,2. In each of  these sectors respectively, ~0 = 
~, ~ and - ~ ,  and k approaches ks exponentially 
fast from below as X 2 + y2  ~ c~, 

ks (sin 3~)_1 ks - k = exp 

x (Xsin  ~ - Ycos (p). (4.43) 

For example, in the first section, ~0 ~ + { and 
k s -  k = exp [ -  (ks / 3e c0) X ]. The transition be- 
tween roll directions is made in a region close to 
the rays a = 9, ~ and ~ .  Along these rays, the 
sin 3~0 term vanishes, cos 3~0 becomes of  order 
one and the first terms in (4.40), (4.41) dom- 
inate. In Figs. 8f and 8e we draw the constant 
phase contours both in k space and in X space. 
Several key features should be noted. 

( 1 ) The dashed lines in Fig. 8fcorrespond to folds, 
namely a locus of  singularities of  the matrix 
J ( [ J [  = e~) of  rank one. 

(2) In wavevector space, the constant phase con- 
tour O = constant, f e d c b a  stays close to k = 
kB, ~0 = ~, ( f )  until it crosses the fold close 
to e. At this point (a cusp in X-space; see Fig. 
8e), the solution transfers onto the branch on 
which ~0 makes a transition from ~ to ~. When 
this locus crosses the fold close to b, it trans- 
fers again onto a branch ba where ~0 is almost 
constant ({). Again, the transition in X-space 
occurs at a cusp. 

(3) Note that as a goes from zero to 2~ around 
the singularity at r = 0, ~0 winds clockwise 
through the angle -z~. The twist T of  a concave 
disclination is -ft .  

(4) The singularity at r = 0 and the points 
marked U on Fig. 8f are umbilics. 

(5) Generically, umbilics, being the interaction of  
folds, are isolated singularities. 

(6) The number of  solutions at any point (X, Y) 
is eight. 
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(7) The presence of  a concave disclination 
acts to select the far field wavenumber to 
be exponentially (not just ks + 0(e)  but 
ks + 0 ( e x p ( - 1 / e ) ) )  close to ks! 
The new feature in the concave disclination is 

the regularization of  the transition regions along 
the rays a = rt/3, rr and 5rr/3. As one goes from 
the sector -~r/3 < a < rt/3 to the sector zr/3 < 

< rt, the phase remains continuous but the roll 
direction changes by n/3. The multivalued solu- 
tion is regularized in an order v ~  boundary layer 
obtained by a balance between V- kB (k), which 
is small because k _,2 ks, and the phase regular- 
ization E 2 ( IB  t (ks)[~4ks )~72~ 7 .k, namely is a so- 
lution of  (4.8). Since k is below ks, V. kB is hy- 
perbolic and can support shocks. The shock rela- 
tions, derived in the next Section 4.3, are that the 
constant phase contours on opposite sides of  the 
shockline meet the shock line, here d X / d Y  = 
tan n/6, at the same angle, exactly what we see in 
the concave disclination. Because the equation 
(4.2) and the regularization is in flux divergence 
(conservation) form, the shock conditions (the 
Rankine-Hugoniot conditions) are independent 
of  the exact form of regularization. Therefore the 
concave disclination is a singularity which is as- 
sociated with wavenumbers k below ks, and the 
potential instability (the zig-zag) is regularized 
(saturated) by the presence of  the next correc- 
tion in the phase diffusion equation. In Section 
4.4, we work out the exact solution of  (4.8) in the 
case where the change in roll direction is small. 

In principle, one should also be able to have 
convex disclinations analogous to concave discli- 
nations in which the semicurcular cap in Fig. 
8b is replaced by a rectangular cap with shocks 
along the direction a = +n/4 jo in ing  phase con- 
tours with wavevector angles ~o = n/2 to phase 
contours with wavevector angle q~ = 0. For these 
solutions k .will approach ks from above. They 
will, however, have a higher free energy than the 
Roman arch but may be important near lateral 
boudaries. 

We have frequently said that concave and 
convex disclinations cannot be present in pat- 

terns which can be described by a complex 
order parameter. Therefore as R decreases to 
Rc, there comes a point Rd (e), depending on e, 
at which disclinations must destabilize because 
near onset, where both amplitude and phase are 
active order parameters, the wavevector field is 
uniquely defined. In Figs. 10 and 11, we show 
numerical simulations of  the instabilities of  
both the Roman Arch (as occurred in a problem 
of counterpropagating optical beams) and the 
concave disclination (as it arises in a simulation 
of  the SH equation in a cylinder). The former 
ends up in a state of  almost parallel straight 
rolls. The latter ends up as a pattern with two 
distinct phases separated by an amplitude grain 
boundary. 

(5) Saddle. 

The saddle is the merger of  two concave discli- 
nations and is given by 

O(f ,g )  = F ( k )  sin2~0, (4.44) 

where again, on the energetically relevant 
branch, F (k) can be approximated by e Cot n ( k -  
ks ). The constant phase conto.urs are shown in 
Figs. 81. The twist T = -2zt. The circulation 
is zero. The shocks (phase grain boundaries) 
occur along the rays a = ~, "~[-,'T,'7["31r 5n 7n Saddles, 
being the direct superposition of  two concave 
disclinations or umbilics, are non generic. They 
are exact solutions but, unless there are external 
influences to make the coincidence of concave 
disclinations energetically favored, a perturba- 
tion to the system will cause them to separate. 
Fig. 12a shows a saddle computed as an exact 
solution of  the Swift-Hohenberg equation in a 
circle. Fig. 12b shows how the saddle separates 
when noise is added to the exact solution and 
the perturbed pattern is allowed to evolve fur- 
ther in time. The saddle separates along one of  
its shocks to create two concave disclinations. 
The direction of  separation keeps the total circu- 
lation zero. This is consistent with the separated 
harmonic saddle of  Fig. 8m. Note the circula- 
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(a) (b) 

(c) 
Fig. 11. Three snapshots of  a concave diselination. (a) Stable concave diselination at a finite value of R. (b) Its destabilization 
as R is taken below some critical value R d. The dependence o f R  a on ~ has yet to be determined. (c) The eventual formation 
of  an amplitude grain boundary. 

tion of the separated pairs is zero if R I  a 2 = 0 
or a = [ale =t=i~/4. 

Energetically acceptable solutions correspond- 
ing to collections of isolated disclinations in 
close proximity will be discussed in another 
paper. They involve a complicated superpo- 
sition of angle harmonics ~ ( F . ( k ) c o s n ( a  + 

Gn ( k ) s i n  n~o ) but as yet we have no simple su- 
perposition rule. The advantage of the harmonic 
representation for composites is that these solu- 
tions are constructed simply by multiplication 

of the individual solutions. It is therefore easier 
to understand the morphology of defects. Three 
interesting composites, one familiar, two new, 
are the dislocation, the handle and the bridge. 
Dislocations correspond to a vortex bound with 
a saddle, the singularities being separated by 
distances of the order of a wavelength or k~ I. 
In Section 4.4, we give an exact solution for the 
stationary dislocation of the stationary regular- 
ized phase diffusion equation (4.8). Although 
this solution does not contain all the informa- 
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(a) 

(b) 

Fig. 12. (a) saddle, an exact and apparently stable solu- 
tion to the SH equation in a cylinder. (b) with a finite 
amount of noise added, the saddle naturally splits into two 
concave disclinations revealing the nongeneric character of 
that structure. 

tion about the core, it does clearly illustrate that 
there are four singular regions, two where k be- 
comes larger than ke and two where k becomes 
smaller than kE~. Around each of the former 
T = n. Around each of the latter T = -f t .  
Handles are pairs of  nearby concave and convex 
disclinations. They have a total twist of  zero 
and therefore can appear out of  the vacuum 
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state when it is energetically favorable for them 
to do so. There are two types. Type I consists 
of  a loop in the constant phase contours shown 
in Fig. 80, around which pair the circulation 
is zero. They often arise at larger values of the 
stress parameter when the zig-zag instability is 
not saturated by the zig-zag Chevron pattern. 
Type II (Fig. 8b) handles which look like dis- 
locations, but do not have a far field consisting 
of  straight parallel rolls, have finite circulation. 
They arise in the formation of  bridges after the 
instability of dislocations. As the saddle under 
the dislocation separates horizontally (a in Ta- 
ble 1 is real), there is a finite circulation - h a  2 
created. This can be offset by the creation of a 
handle with zero twist and opposite circulation. 
This process has been discussed in Section 3. 

Bridges are essentially two pairs of  handles ar- 
ranged so that both the total twist and the total 
circulation is zero. We have already met them in 
Section 3 (Fig. 5). 

4.3. Characteristics, Riemann invariants and 
shocks 

We write (4.1), (4.2) in matrix form as 

A1Fx + A2Fr = 0, (4.45) 

with 

0 -1  ) 
F =  ( f , g ) T ,  A1 = B + 2 f 2 B  ' 2 f  gB'  ' 

(1 o)  
A2 = 2 f  gB'  B + 2g2B ' ' (4.46) 

where B' = dB /  dk 2. Next, write A-~lA2 in Jor- 
dan form 

Al iA2  = PAP  - l ,  (4.47) 

with 

,=(5o+ 
-1  ' (4.48) 
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so that (4.45) becomes 

e - l f x  d" AP-1Fy = O. (4.49) 

If  2+ = 2_ , a  = 1. If  2+ # 2_ ,a  = 0. The 
diagonal components of  A are 

2f  gB'+ i - B  ( ~ k B  ) 
2± = (4.50) B + 2f2B ' 

which, after replacing f and g by k cos ~ and 
k sin tp, becomes 

2± = +x / - s (kB)ks in¢-  vrs-Bc°s~,  (4.51) 
v:s-Bsin ~ 4- V/-s(kB)kCOSq 

where we take s = 1 in the hyperbolic region 
kE~ < k < kB where B > 0, (kB)k < 0 and s = 
-1 in the hyperbolic region kE < k < kr where 
B < O, (kB)k > 0. It is the former region in 
which we are most interested. Unless B (kB)k = 
0, i.e. at k = kE~,ka, kE,2+ ~ 2_ and a = 0. 
We now take kEt < k < kB. Then introducing 
the characteristic coordinates u ( X, Y ), v ( X, Y ) 
by 

dY Ux 
- - - -  ~ 2 . . i .  , dX uy 

dY Vx 2_, 
dX vy (4.52) 

we obtain 

Of Og 
O---ff + 2+-b-ff = O, 
o:  
Ov + 2 _  = 0 ,  (4.53) 

which, in polar coordinates and after a little anal- 
ysis, become 

where 

t anp  ( k ) -  _x/-L__(.k~ ) k .  (4.56) 

The Riemann invariants of  the Cross-Newell 
equation are: 

kn 
cotp(k) dk (4.57) R± = ~0~ k " 

k 

R e  are constant along the characteristic curves 

dY 
= 2± = tan(~ ~ p(k)), (4.58) 

dX 

respectively. Defining 2± = tanx±,  R e  are con- 
stant along the directions ~0 :F P (k) respectively. 
We also point out that if the Cross-Newell equa- 
tion is not in flux divergence form, these results 
still hold with 

t a n p ( k )  = v/. ~ . (4.59) 

Observe that near the left Eckhaus boundary 
kE~, p(k) ~ re/2 and the characteristic direc- 
tions are almost parallel to the isophase con- 
tours. Near kB, p (k ) ~ 0 and the characteristics 
become parallel to the wavevector direction. In 
all cases, the wavevector bisects the characteris- 
tics. In the vicinity of  kB, we can approximate 
Dz by -D~_ (k~ - k 2 ) where D~_ is dD±/dk 2 es- 
timated at kB. Then from (4.56), 

1 ( k ~ - k  2)1/2 
t a n p ( k )  _~ v ~  kB ' (4.60) 

D 
.where r, the residue of  ~ at k = kB, is equal 
to unity if B (k) is analytic at kB. In the same 
approximation 

( i )  _ c o t p ( k )  d k - ~  = O, 
Ou k 

k 

0 ( kfk c°tp(k) dk ) 
b-~ - k + ~  = 0 ,  

(4.54) 

(4.55) 

k 

Therefore we have that 

(4.61) 

I (k  2 _ k 2)1/2 
~o q: r v ~  kB ( 4 . 6 2 )  
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are constant along the directions 

dY 1 (k 2 - k2) 1/2 
dX - (p q: x / ~  kB ' (4.63) 

respectively. If  we identify ~0 with the horizontal 
fluid velocity U, ( 1/v / -~)  (k  2 - k 2 ) l/2/kB with 
C the sound speed and call r = 2/7 - 1, (4.62), 
(4.63) are exactly the equations of  one dimen- 
sional compressible gas dynamics. In the case 
where B ( k )  is analytic at kB and r = 1,7 = 2 
and they are also isomorphic to the shallow wa- 
ter equations. 

In general, such systems will form multivalued 
solutions and indeed we have already demon- 
strated the multibranched behavior of  the map 
X ~ k. When the Cross-Newell equation is reg- 
ularized, however, as in (4.8), we expect that the 
multivalued solutions can be replaced by single 
valued solutions with discontinuities along cer- 
tain lines called shocks 

dX 
- s = cot ~ ,  (4.64) 

dY 

in the X, Y plane. Because (4.8) is in flux di- 
vergence form, in the small ~ limit the Rankine- 
Hugoniot (jump) conditions are independent of  
the exact form of the regularization term, pro- 
vided that it too is in conservation form, as in- 
deed it is. The reason is straightforward. Write 
(4.3) as 

O x ( f B  + e2F)  + O v ( g B  + e2G) = 0, (4.65) 

with ( F , G )  = ( I B ' ( k B ) I / 4 k B ) V V  • k .  Then 
seeking "travelling wave" solutions which de- 
pend only on Z = X - sY ,  we find on inte- 
grating across the value Z = 0 at which a large 
transition in the values of  f ,  g occurs, 

[ f B  + e2F] - s [ g B  + e2G] = 0, (4.66) 

where [h ] represents the difference between the 
asymptotic values of  h on one side of  Z = 0 and 
the other. Then, as long F, G asymptote to zero 
on either side of  Z = 0, the "shock" conditions 
can be determined by taking the e = 0 limit. 
If  (4.8) is not in flux divergence form, as is the 
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case when r # l, one does not have the freedom 
to integrate once and prove that the jump con- 
dition produced by the smooth solution of  (4.8) 
with e finite will give rise to a jump condition 
independent of  the exact form of regularization 
in the e --. 0 limit. For (4.1), (4.2), the jump 
conditions are 

s [ f l  + [gl  = 0, (4.67) 

[ f  B ] - s [ g B  ] = 0. (4.68) 

We examine several cases. 
The wavenumber k is continuous across the 
shock. Since k, and therefore B is continu- 
ous, (4.67) and (4.68) together imply that 
[ f  ] = [g ] = 0 or that B (k) = 0. Therefore, 
k = kB on each side. As a direct corollary, we 
can argue that if k < kB on one side of  the 
shock, then it cannot be continuous across the 
shock. We consider Figs. 8d,e. Take the pat- 
tern wavenumber on the negative side to be 
kB (0, 1 ), and the angle that the shock makes 
with the X axis to be V. Then s = cot V. If  k 
is continuous, then that condition and (4.67) 
gives 

+ g:+ = 

s f+ + g+ = kB, (4.69) 

so that 

f+ ((1 + sZ)f+ - 2skn)  = O. (4.70) 

If  f+  = 0, then g+ = kB and there is no 
discontinuity. Therefore, at a shock we must 
have that 

2s 
f+ = 1 + s 2kn = knsin2¢/, 

1 - s 2 
g + -  l ~ k B  = - k B c o s 2 ~ , .  (4.71) 

Therefore the constant phase contours make 
equal angles with the shock line as shown in 
Fig. 6b. In particular we note as special case 
the limit ¢ = 0 for which the wavevector k 
reverses direction across the shock. We also 



T. Passot, A.C. Newell / 

note that the shock angle is simply the average 
of  the angles of the level phase curves on either 
side of  the shock. Since this angle ~ is analo- 
gous to U, the condition is equivalent to the 
shock speed being the average of flow speeds 
front and back as is. These shock conditions 
are precisely what is seen along the phase grain 
boundaries emanating from concave disclina- 
tions and saddles. 

(2) k_ = ks, k+ < ks. In that case, from (4.68), 
we have that f+ - sg+ = 0 because B+ # 0. 
Then, s f+ + g+ - ks = 0 and therefore 

f+= skB 
1 + s  2 - k + c ° s ~ "  

ks 
g+ = 1 + s 2 - k+ cos~  (4.72) 

where k+ = ks sin ¥. In this case, the rule is 
that the phase contours as the side where k < 
ks are perpendicular to the shock line. Note 
that as ~u ~ 0, the wavelength on the plus side 
increases to infinity so that k+ ~ 0. In that 
case, the plus side of the shock is open to a new 
instability of  the zero state and will generally 
give rise to a roll planform with another phase. 
Observe in neither of these cases is there any 
restrictions on ~, the shock angle. 

(3) General case k_ = (0,k_).  In this case, the 
two equations (4.67), (4.68), 
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¥7 k2 ( "2s2-  k2+ = 1 1 + ~ ~+-+). (4.77) 

Note if B_/B+ << I, k _  ~ ks and we recover 
case 2. 

4.4. Weak shocks and stationary dislocations 

We now examine a special class of  solutions 
of  the regularized phase diffusion equation 

z ( k ) O r  - kD± (k )V-  Ic - Dll (k) (~c. V)k 

+e2/~V40 ~-~ 0, (4.78) 

in the case when k ~ ks, v = ~ and the far 
- -  4 k ~  

field is almost a field of straight parallel rolls. Let 

0 (X, r, T )  = k s X  

ks r / =  - 4k2(---~.7~) 

and find 

~s - 4 ~  - 4 ~  ~ n  - 8 ~  ~ - 6 ~ 2 ~  + ~ 

- 4 1 - r r  ( ~ +  ½~2)~P~, 1 = 0 ,  (4.80) 

- ~ 4 r + ~ ,  ( 4 . 8 1 )  

where 

s f+ + g+ - k_ = 0, (4.73) 

B+ (f+ - sg+ ) = B_ ( f_ - sg_ ) ,  (4.74) (4.82) 

give two relations between, f+,  g+, s and f_ = 
0, g_ = k. We will choose to write f+,  g+ in 
terms of  s, k_. 

f+ = ~  1 -  (4.75) 
1 +  

k_ ( s2B_ 
g+ = ~ 1 +  \1 + - ~ - +  , / ,  (4.76) 

where k+ and B+ is a solution of the nonlinear 
equation 

We now have in a very explicit form what we 
have said before. The two cases r = 1 and r # 
1 are different in a substantial way. For r = 1, 
(4.80) is relaxational; for r # 1, it is not! We 
also point out that when r = 1 it is simply the 
Newell-Whitehead-Segel equation from which 
the amplitude has been eliminated by assuming 
it slaved to the phase gradient. In this context, 
and in the small amplitude limit, Pomeau [29 ] 
has also obtained the first of  the two solutions 
which follow. 
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There are two solutions of  particular interest. 
The first corresponds to a weak shock, a phase 
grain boundary which occurs when the wavevec- 
tor discontinuity is small. Let 

= - x ~  + G(~/) (4.83) 

and find 

aG~ -6flG2G,m + G ~  = 0, (4.84) 

with 

( ) l - r  
a = 4 x  1 + l - r  r , fl = 1 + ~ . ( 4 . 8 5 )  

Now f = oo _ kB - ex/kB and g = v/gGn so OX - -  
that gOD satisfies 

c~g - -  f l / e g  3 + gqn = y, (4.86) 

where 7 is the integration constant. We seek so- 
lutions where g (r/) approaches constant values 
as r/ ~ dzc~. Note x must be positive. Thus in 
the far field of  the grain boundary, k approaches 
kB from below. If we demand reflection symme- 
try of  the phase pattern about the y = 0 axis, 
a natural assumption since there should be no 
preferred side, then y = 0 and 

g (r/) = tanh t/ 

= tanh 
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(4.87) 

so that k• = f2  + g2 = k~ + ]xe (r - l ) l r  + 
0(e2). The far field wavenumber is an order 
e distance away from ks unless r = 1. Fur- 
thermore for r < 1, it would lie in the zig-zag 
unstable region which is unacceptable because 
the regularizing contribution in zero in the far 
field and cannot come into play to balance 
the nonzero value of  V • kB(k ) .  On the other 
hand, if we choose ? so that g ( - c c )  = - ~  
whence f 2  (_C~) q- g2 (_CxD) = k 2 + 0 (£2), then 
g ( + ~z) = ~ ( 1 + 0 (r - 1 ) ) and wavenum- 
bers on opposite sides of  the shock are unequal. 
Indeed there is no shock solution to link patterns 
with wavenumbers k8 on either side of  the shock 

unless r = 1. When r = 1, the constant phase 
contours do indeed meet the shock at equal an- 

l 2 2(g2/2e - -  RT) 2, the gles. In this case, 7gg,~ = 
solution (4.87) is linearly stable and 

-ff = 1- f g~d~d~l = 4/3(2x)a/EL, (4.88) 
J 

where L = f d~. Note that the contributions 
from V.  kB and (Dll (kB)/4k2)•40 to  the free 
energy are the same. So, as we have noted, the 
free energy grows linearly with the length of  the 
phase grain boundary. Solutions periodic in r/ 
can also be found. They correspond to orbits 
in the (g, gn ) phase plane inside the separatrix 
joining ( - ~ , 0 ) t o  ( ~ , 0 ) .  They have a 
higher free energy. They appear as wavy rolls un- 
dulating between the zig and zag directions. 

The second solution of  interest corresponds 
to a stationary dislocation and has self similar 
structure. Let 

~(~,rl, s) = sgn~F ( ~ -  ~ )  (4.89) 

and find 

F "  = 4(2F '' + 12 (F ' -  12(F T ' "  

- 8 F  '2 + 6F'EF '' 

+ 4  1 - r  ( ½ F ' 2 - ( F ' ) F  ''. (4.90) 
r 

Eq. (4.90) has a remarkable property. It satis- 
fies the Painlev6 test when r = 1 and not oth- 
erwise. This means that its only moveable sin- 
gular points, points that depend on initial data 
such as the value of  F and its first three deriva- 
tives at a given (, are poles. This strongly sug- 
gests that (4.90) for r = 1 is integrable. Mau- 
ron Zou, who verified the Painlev6 properly of  
(4.90) with r = 1 also was able to construct the 
integral 

I = 2 (F '  - 2 ~ ) F " ' -  F ''2 + 4F"  + 16~3F ' 

- 2 8 ( 2 F  '2 + 16(F ' 3 -  3F '4. (4.91) 

Indeed, it turns out that not only is (4.90) in- 
tegrable but so is (4.80) when r = 1 and ~ = 
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(c) 
Fig. 13. The morphology of  a stationary dislocation as represented by the solution (4.94). (a) shows the isophase contours 
and (b) the wavevector field, k > kB north and south of  the lines marked 1.0 where k = kB and approaches kB from above 
in the far field, k < kB and approaches kB from below in the far field of  the west-east-sectors. (c) is a magnification of  the 
wavevector field within a roll wavelength of  the origin. The region of  the two convex disclinations, the vortex, is circumscribed 
by the contour k = 1.5kB. The two narrow regions (k < 0.5kB) below the origin contain the concave disclinations. One can 
clearly see the vortex-saddle nature of  the two components. 

0. Nepomanyashchy and Pismen [30] observed 
that all solutions of 

~,~ = sgn~(2~  + ~v2), 

namely Burger's equation, satisfy (4.80). One 
sees this directly by noting that (4.80) with ~ = 
0 and r = 1 can be written, 

o - 4 ~  ( ~  + 

_4 0 -  [ ~  ( ~  + ½~2)] + (~4~t/ __ 0 ,  
tg/~ 0~/4 

(4.92) 

and replacing ~ + ½ ~2 by ~, ,  twice gives the 
stated result. The solution corresponding to the 
stationary dislocation is 

~v(~,q) = s g n ~ [ ( g n 2 - g n ( l  + e -'~ 

+ (1 - e-'~)Erf~) ] (4.93) 
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and then 

O ( X , Y )  = kBX  + esgnX/~n2  

- en I1  + e -n + (1 - e  -n)  

x E r f ( ~ 2 l ~ [  Y)]  } . (4.94) 

Note that for Y < 0, O(X = 0, Y) = nsgnX. 
The constant phase contours, the wavevector 
field and the wavenumber field is plotted in 
Fig. 13. In particular we note that in this ap- 
proximation the dislocation consists of a vortex 
(two neighboring convex disclinations, each 
with twist T = n) and a saddle (two neighbor- 
ing areas of twist T = - n )  although the actual 
structure of the region of the net "concave" 
disclination is complicated. 

These solutions had been first suggested by 
Newell [31 ], and later Meiron and Newell [32] 
verified that their shape corresponded very ac- 
curately with the numerically calculated shape of 
a stationary dislocation of the Swifl-Hohenberg 
equation. 

Again, on this solution, the two contributions, 
from V. k B  and the regularizing term e2uV40, 
to the free energy are equal (because of (4.89)) 
and 

y = f de dn 

= f dC f de (2 3/2" 
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(4.95) 

This integral converges in the far field but 
requires the amplitude regularizations near the 
core in order to remove the divergence there. 
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Appendix A 

In this Appendix we describe the algorithm that calculates the slowly varying amplitude A from the 
real field u (x, y ). The reader might want to refer to the papers by Tchamitchian and Torresani [33] 
and Delprat et al. [ 34] for further details on the one dimensional version of the algorithm we use here. 

The extraction of amplitude and frequency from time signals, such as might be recorded from a 
sound wave, has been important for a long time. It requires the use of tools such as the Wigner 
distribution or the Gabor transform (sliding window Fourier transform). This last representation 
is now advantageously replaced by the wavelet transform, which basically has the same structure, 
the frequency translations being replaced by dilatations. Before describing the general algorithm, 
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let us introduce the ideas and notations used in a simple case where the signal is one-dimensional, 
"asymptotic" (i.e. in the high frequency limit) and contains only one spectral line. 

In this latter case, the modulations laws can be satisfactorily extracted using the Hilbert transform. 
A real signal can be non-uniquely represented in the form 

f (x) = A(x)cosqS(x). (A.1) 

Among pairs of  (A, ~b), there exists a canonical one. Consider the Hilbert transform: ~ = - i s ~ - l e 3  r ,  

where jc is the Fourier transform and e f (co) = Sgn ((o) f (o)). (For example 7/cos ( ax )  = sin (ax) .  ) 
The analytic signal of  f ( x ) ,  called Zf(x) ,  is obtained by linear filtering after cancelling negative 
frequencies: 

ZT(X) = (I + iT-[)f(x) = Af(x)exp(iqSf(x)). (A.2) 

From this representation it is now easy to define an instantaneous frequency (or wavenumber) as 
k f  ( x )  = dq~f /dx .  It can be shown that this definition corresponds to what one looks for physically 
if the amplitude A f  varies slowly compared to ~bf: I dq~/dxl >> IlIA dA/dx[ and if  the signal is 
locally monochromatic. The principal obstacles to the use of  such an algorithm in our problem are 
(i) there is no analog of  the Hilbert transform in two dimensions, although we are going to describe 
a possible way of  handling the quasi one dimensional cases, (ii) the algorithm cannot be extended to 
the multiphase case. 

Let us now describe briefly the Gabor transform. For any f in L 2 (R), it is defined as 

+ o o  

G'~f(m) = f e-iC°X f(x)g,~(x - b) dx (A.3) 
- - 0 0  

where g~ (x) is a "window-function". The optimal window with respect to the uncertainty principle, 
is given by the Gaussian g~, (x) = (1/2v/'Ud) e -x2/4~. This definition localizes the Fourier transform 
of  f around x = b. The problem with that definition is that the width of  the window (given by 
2[[xgallz/llgc~llz = 2V/(-a)) is constant. We would like however to have a small "space window" 
to analyze with precision "high frequency" bursts and vice-versa. We will see now that the wavelet 
transform has this zoom in and zoom out property. 

Wavelets constitute new basis for representing functions. We know that every function o f L  2 (0, 2zt) 
can be decomposed into a sum of many mutually orthogonal components (cne inx ). The Fourier basis 
in this case is generated by dilatation of  a single function: e ix. If we now want to construct such a basis 
in L 2 (R), we must look for small waves or wavelets that have fast decay at infinity. Thus we have to 
introduce not only dilatations of  a generating function but also translations. The function V will be 
called an orthogonal wavelet in L 2 (R) if ~j,k = 2J/2~ (2ix -- k),  j ,  k 6 Z, is an orthonormal basis of  
L2(R).  The Haar function (~UH(X) = 1 for 0 < x < ½, ~H(X) = --1 for ½ _< x < 1 and ~Un(x) = 0 
otherwise), is a simple example of  an orthogonal wavelet. A wavelet is called an R-wavelet if the dual 
basis can be generated by translations and dilatations from a unique wavelet. We will not discuss 
here further the cases of  a discrete wavelet basis but instead introduce directly the continuous wavelet 
transform which we will use in the following. It is defined for every f E L 2 (R) as 

+Oo 

T~,f(b,a) = [a[-½ / f(x)-~(x-b)a dx. 
- -  ( X )  

(A.4) 
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In contrast to the case of Fourier series, there is a relation between the discrete and the continuous 
wavelet transform, namely (f[!uj,k) = T¢f (~ ,  ~). The condition on !g that allows it to be used as 
a basic wavelet for the integral wavelet transform is much weaker than the condition for it to be an 
orthogonal wavelet. It comes from the inversion formula, 

f i  l ( x - b )  dadb 1 T~,f(b,a) !u a2 , (A.5) - -  

R 2 

which is valid if C~, is finite and nonzero which implies: f_+o ~ Iq(to)12/Icol daJ < oo. Moreover, if we 
want to have a good localization of the basic wavelet both in physical and Fourier space we may want 
to have !u ~ L 1 (R) so that the last condition reduces to ~ (0 )  = 0. Conditions are more restrictive if 
one considers only positive frequencies. It is easy to see using the above definition that the wavelet 
transform performs signal analysis using constant relative bandwidth and as a consequence it has the 
nice property to adapt its window with the frequency content of  the given part of  the signal. The 
analysing probe is also different. In the case of Gabor analysis, one has a given Gaussian profile, filled 
in by more or less periods of the oscillating exponential. In the case of the wavelet analysis, the number 
of oscillations in the wave profile is always the same, but the shape is more or less dilated. 

Let us now introduce the one dimensional algorithm due to Tchamitchian and Torrrsani [33]. 
This technique for the extraction of amplitude and frequency modulation laws works if the signal is 
asymptotic. Let us remark first that if the wavelet is also asymptotic, then the wavelet transform can 
be estimated using the stationnary phase method. Restricting the transform on a certain curve in the 
(b, a) plane, called the ridge, this estimate will allow us to define the frequency modulation law. It is 
however not very natural to impose the asymptotic constraint on the wavelet itself since it will enforce 
its frequency localization and destroy its space localization, in contradiction to what one wants for 
a space-frequency analysis. This problem can be avoided if one uses a wavelet with Gaussian profile 
(e.g. the Morlet wavelet). In that case indeed the integral involved in the wavelet transform can again 
be approximated. We will show now how to proceed. 

Let us write the basic wavelet !g = A~, e i@~ where now the amplitude A~, is the Gaussian function 

A~ (x) = e-½ x2 and let us denote by Af and t~f the amplitude and phase of the analytic signal of  f ,  
that constitutes our unknown. Simplifying the notation and for convenience normalizing differently, 
we can simply write the wavelet transform of a signal f (x) as 

+oo 

1 f x - b) ei(~i(x)_~(~)) dx. (A.6) Tf(b ,a)  = 2-a Af(x)A~,( a 
- - 0 0  

The factor ½ comes from the fact that we replaced the signal f by its analytic signal Zf. If the amplitude 
of the signal varies slowly compared to the amplitude of the wavelet one can approximate this integral 
as follows, 

+oo 

Tf  (b,a) ~ --~aS(xs)ei~(xs) i e-½(x=:'--~)2e i½(x-xs)2@''(xs) dx, (A.7) 

- - 0 0  

where • (x) = by (X) -- ~g ( ~ ) and Xs = Xs (b, a) is such that @' (Xs) = 0. There might be several 
such points. This is not an obstruction as we shall see. It is not necessary to evaluate this integral 
for every b and a, but rather on the so-called ridge which is the set of (b, a) such that xs (b, a) = b. 
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Choosing one solution of  this equation for a, namely ar (b), we can evaluate the wavelet transform at 
this point as 

T f  (b, ar(b) ) ..~ X/~ 2 ) e½atan(a'(b)2~"(b)) e -i~(0) (5 + (A.8) 

This is the first term in an asymptotic expansion whose next correction vanishes identically. 
If  we know the ridge, then the modulation laws for the wavenumber and amplitude follow. Indeed 

q~'(xs) = 0 leads to 

1 
k(b)  = ~b~(b) = ar--~q~,(0)  (A.9) 

and the last evaluation of T f  leads to 

A f ( b )  = x /~2) (1  + a4~"(b)2)~[Tf(b,a, . (b))] ,  (A.10) 

II  w h e r e ~ " ( b )  = 1 (ar(b)'~b~(O) + ~b~,(0)) on the ridge. -a,(-7~ 
We now need a procedure to determine the ridge. Let 7' denote the phase of the wavelet transform. 

Taking the path in the (b, a) plane defined by xs (b, a) = b0 to perform the derivative in the left hand 
side of the following equation, we have, at the intersection with the ridge, 

d ~  1 4~,(0) + , 2 • ( a . l l )  
" ~  xs(a,b)=bo = a 2 1 + (~b~,(0)a'(b) + ~b~,(0)) 

The path Xs (b, a ) = bo is also called a wavelet curve because it is determined uniquely by the analyzing 
wavelet. For example in the case of a fixed frequency wavelet (such as the one we use), the wavelet 
curve is simply given by a = ar (bo) and the last formula reduces to 

(ar(b) ,b)  - a -(b) d~,(O). (A.12) 

A simple procedure to calculate the ridge is to solve this equation by iteration, 

(0) 
an+l(b) = o~,(an(b),b ). (A.13) 

o-~ 

Several remarks have to be made at this point. First, it is possible to handle the case of several 
spectral components since the equation for the ridge is a nonlinear equation which might have several 
solutions. After finding one solution it is then possible to substract the spectral line just found from the 
signal and to continue on the remaining signal. Second, we do not need to calculate the whole wavelet 
transform of the signal but just the coefficients corresponding to the values of  a close to at. Since 
the iteration algorithm converges quickly, the procedure is quite fast. Third, the algorithm is meant 
to work on asymptotic signals and it is not obvious that it will give a good precision for convection 
patterns including defects. It has been successfully implemented in the one dimensional case using 
the Morlet wavelet: ~, (x)  = e-½ x~ e i~x. This wavelet is strictly speaking, not admissible (it could he 
made admissible by adding a correction term),  but since we never use the reconstruction formula in 
the algorithm, it is not important. The value of the frequency oJ is chosen to be between 2 and 6. 
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We are now going to discuss the two dimensional version of this algorithm. The generalization is 
easy by considering rotations in addition to translations and dilatations of the basic wavelet. The 
wavelet transform of the signal f (x, y ) will now be given by, 

1 f e - i ° ' R ° ( ~ ) f ( x , y )  dx dy, (A.14) Tf(b ,a ,O)  = ~ e -½1R°<~-~)12 

R 2 

where Ro is the rotation of angle 0. Since we use a spectral method to solve the OPE, it is convenient 
to give the wavelet transform in terms of the Fourier components of f ,  

T f  = ~ k f  (k ) e ik'b e - ( a R d c - ° J ) 2 / 2  . (A. 15) 

In fact, since near dislocations, the scalings of across and along the axis are different, it is useful to 
choose a slightly different wavelet. We scale differently the direction parallel and perpendicular to 
the vector ro by choosing the wavelet to be ~u(x) = e-½ x'R~t'lR-~x+i'°x where ~ is the angle of the 
constant vector ¢o with the x axis and [a] the diagonal matrix of coefficients ~1 and c~2 which scale 
the two directions. The analysis follows just as in the preceeding case and we obtain that the wavelet 
transform is given by 

T f = l v l v ~ S ,  kfi(k ) e ik'b e -½((aRok-c°)tRe~[a-llR-~(aRok-°j)) , (A. 16) 

where [a - l  ] the diagonal matrix of coefficients l/a1 and l/a2. The ridge is obtained by solving the 
two fixed point equations, 

O~P 0 ~  
tan(0)  ~ - ~ (A.17)  

 ov 2) 
a = (A.18) 

)2  ' 
~o---~,/ + (o--~ ] 

where the indices 1 and 2 denote the x and y directions and ~ is the phase of the wavelet transform. 
And finally the amplitude is obtained by, 

Af(b)  = ITf(b'ar'Or)[ ( [ a 4 ( ~  2 - ~r'tl i ~J22) q- (Otl C2 "Jr- o~2s2) (Otl $2 q- o~2 c2)  - c2s2 (or2 - oq )2 ]2  
7c 

ff-{a2cs(o¢2 - ot 1 ) ~r-tl2 - a2  [~r-/ll (Otl $2 a t- o~2 C2) n t- ~t22 (o~1c2 a t- o~2s2) ]}2)  ¼, ( A . 1 9 )  

where c = cos(0r - ~), s = sin(0r - ~) and ~q is the derivative of the phase of T f  with respect to 
bi and bj. 

Appendix B 

We want here to show how to obtain the Cross-Newell equations for the OPE (3.2). Consider the 
term A ( - V  2 ) W which by definition is equal to f _ ~  A (k 2 ) e ikx W (k) dk. We are looking at the phase 
diffusion properties of this linear term in the case of slowly modulated rolls. This latter assumption 
means that W ( k )  has a narrow (of order ¢ ) support centered about a wavenumber that we will call 
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/Co. Since the width of  the wavepacket is small compared with the absolute value !of/Co we can take 
another representation of W (k) that is widely used in the context of  envelope equations, namely, we 
set W (k) = A (ko, X)5  (k - ko ) where X = ex is a large scale on which modulationlof the wavepacket 
takes place. The operator A, which in Fourier representation is simply a multiplicafive term, will now 
become a very complicated operator acting on the function A, namely, Ao (k  2 - ieD1 - e2V 2)A (X) 
where D~ is the operator defined in Section 2. We will be looking at the first two terms in the asymptotic 
expansion of this term using powers of e. We will also calculate the contribution at order e 3 in the 
special case when ko is close to ks. In order to be able to compute these terms it will be necessary to 
make further assumptions. Since the support of  W is assumed to be small, it is possible to take for 
A (k 2) a Taylor expansion around ko. We then only need to look at cases where A (k 2) = (k 2)n. The 
result we will obtain will still be valid if the function A can be expanded in an infinite series of powers 
of  k 2 around ko. The main difficulty in the computation is that we also take ko to be a slowly varying 
function of X and thus the operator DI and ko 2. do not commute. 

The calculations of Section 2 suggest a possible formula of the form 

A ( k  2 -  i eD l )nA  = (k2)nA 2 -  i~V"  ( k n ( k 2 ) ( n - 1 ) A  2) + O(~ 2) (B.1) 

that we will prove by induction. This formula is certainly true for n = 1. Let us assume it holds for n 
and let us examine the case n + 1. We have, after a little algebra, 

A ( k  2 - ieDl )n+lA = A ( k  2 - i eDl )  (k  2 - icD1 )hA (B.2) 

1 
= A ( k  2 - i e O l ) - ~ ( ( k 2 ) n A 2  - i eV"  ( k n ( k 2 ) ( n - ~ ) A  2) + O(e2)) (B.3) 

= (k~)n+lA 2 - ie (AOl (k~)nA + k~V.  (kn(k~)(n-~)A2)) + O(~ 2) (B.4) 
= (k2)n+lA 2 -  i e V .  ( k ( n  + 1)(k~)nA 2) + O(e2). (B.5) 

We see easily that for a general function A (k 2) the term W*A  ( - V  2) W in the slowly varying wave 
approximation will be up to order e, 

= A ( k 2 ) I W I  2 -  i e V .  ( k d - ~ A ( k 2 ) l W I 2 )  + O(e2). (B.6) W * A ( - V 2 ) W  

It is now straightforward to derive (3.4). 
Our next task is to calculate the principal contribution at order e 3 to the phase diffusion equation 

when k is close to ks. A little analysis will show that the most important term is that proportional to 
e3V2V • k which arises from the action of D2 on DI. 

It is then straightforward to show by induction that this contribution from (k~ - leD1 - e 2 D 2  )hA is 

1 
) kgn-4n2 • n l A .  (B.7) i e 3 n ( n ~  

Adding up these contributions gives us that the coefficient r/ of  e2V2V • k in the phase diffusion 
equation is 

( - ~  2 F " '  1 
~/ = + A -~ - )  ~-. (B .8)  

Differentiating (3.7) and using k = ks, we find that 

1 d B  1 
1/ - 2z dk 2 - 4, gDil~:h (ks ) .  (B.9) 
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In this appendix we discuss the coupling of  the phase diffusion equation with the amplitude mode. 
We also try to motivate the choice of the OPE and discuss possible alternatives. 

C.I. The phase and amplitude equations near the border of  the marginal stability curve 

In the case where the amplitude is not of  order one but of  order (x/r(~, the corrections to the phase 
equation can be evaluated more easily. This will be illustrated using the SH equation. This intermediate 
scaling allows to calculate the nonlinear roll solution perturbatively and explicitly. Moreover, at small 
amplitudes, 21s(k2,R),  the decay rate of an amplitude fluctuation about its slaved value, is small 
and the amplitude mode will also be marginal, allowing the coupling of phase and amplitude. The 
essential differences with the analysis of  Section 2.1 are that now w = (Vr(~(Wo + ewl + . . - ) .  At order 
O( x / ~  ) ), we get that Wo = Ao cos 0, Ao is order one, R = Ro = ( 1 - k 2 )2. The essential difference is 
that the linearized operator has now two null eigenmodes, cos 0 and sin 0. A simple calculation leads 
to the following two equations, 

(A 2 + O(e2A6) )OT + Ao(E I + e2E3)Ao + O(eEA~) = 0, (C.1) 

( R - ( l e 2 -  k2)2)A0 43A 3e - AOT+ (E~ + e z E 4 ) A o + O ( e Z A ~ ) ,  (C.2) 

where R - ( 1 - k 2 )2 is of  order e. For the complex Swift-Hohenberg equation (w being now complex 
and w 3 replaced by w2w * ) the algebra is much simpler. The equations obtained are exact and given in 
[9 ]. In the case where the wavenumber of the pattern is close to the borders of the marginal stability 
curve (either kt or kr both of which we denote as ko), Eqs. (C.1) and (C.2) simplify because we can 
identify the linear term to all orders and the first nonlinear correction proportional to the cube of A0. 
We then obtain an equation for the complex order parameter W = v/-(Ao e iO/~, 

Ot w ..~ A 0 ( - V 2 ) W  -~- IWI2I"o W =- 0 .  (C.3) 

The term A0 ( - V  2 ) W is the inverse Fourier transform of 2 (k 2 ) W. The term 2 (k 2) is the eigenvalue 
of the operator L0 = ~-~n [w=0 associated to the eigenmode cos (k0x) for a microscopic equation of the 
form: 

Otw + H ( O , R , w )  = O. (C.4) 

We denote W the Fourier transform of  W and F0 = go, the first Landau constant. For the Swift- 
Hohenberg model, go = 3/4. Note that in this equation, time and space differentiation are performed 
with respect to small scales. While Eqs. (C. 1 ) and (C.2) make no sense for k < kt or k > kr, (C.3) does 
make sense, and provides a natural extension for (C. 1 ), (C.2) in these domains. It is also interesting 
to note that in the weakly nonlinear limit the three functions r (k) ,  B (k) and f12 (k) can be derived 
from 2(k 2) and go. We find, 

r oc it 2 = -2~go, (C.5) 

B / r  = -2 ' ,  (C.6) 

where the prime denotes derivation with respect to k 2. 
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C. 2. A general approach 

We can formally derive the phase and amplitude equation for an equation of the form (C.4) in the 
fully nonlinear regime by simply projecting this equation onto an appropriate set of basis modes. We 
begin by using (2.3) to expand H as SeiHi. Consider w0 of parity S (symmetric) to be the solution 
of Ho (w0) = 0. A translation of the pattern by one quarter of a period exchanges the parity S with 
that of the antisymmetric or A mode. Denote by L the linear operator obtained by linearizing H0 (w) 
about Wo, L '~a = z~-aw Iw0. The stability of w0 (0) is determined by the spectrum of the operator L acting 
on a suitably defined function space. The complete stability analysis in an infinite or nonperiodic 
domain leads to the full basis of Bloch functions and their associated Floquet experiments. However, 
since we are only going to consider large scale perturbations of the basic mode, we restrict ourselves 
to the study of a discrete set of periodic eigenmodes. The sidebands of each of these will be taken 
care of once we include dependence on the macroscopic coordinates X, Y. What then are the correct 
boundary conditions on Lw = 2w? We surely have to consider all the higher harmonics of the basic 
period of w0 (0) but we also have to consider some of the subharmonics. The dangerous modes are 
those that can be sufficiently excited so as to replace patches of pattern with wavenumber k with 
finite amplitude patches of patterns with wavenumbers k' = nk or k' = k/n for integer n where 
both k' and k lie in the marginal stability band (kt, kr). Modes lying outside the marginal stability 
band will be strongly damped and cannot attain finite amplitude states. The space of functions we 
should consider therefore is the space of periodic functions of basic period k/n such that k/n + 1 < 
kt < k/n. Because we assume that wo(O) is linearly stable, all the eigenvalues of L, except for the 
zero eigenvalue corresponding to an infinitesimal translation of the phase of w0, namely °o-~, will 
be positive. However, we must assume more. We assume that the least positive mode 21s (k 2, R) for 
all k in the marginal stability band has the same parity and period as w0 (0) and corresponds to an 
infinitesimal perturbation in the amplitude of the basic solution w0 (0). If the parity of the least- 
damped eigenmode of L is opposite to that of w0, then the manifestation of this mode through a finite 
amplitude instability leads to a global translation of the pattern. Indeed, in a previous paper [21 ], we 
have illustrated the triggering of a parity breaking instability in a numerical simulation of a climbing 
dislocation of the Swift-Hohenberg equation. The instability leads to a gliding motion. In that same 
paper, we also illustrated the finite amplitude instability and awakening of a mode with a different 
periodicity from w0 (0). This was the case of "bridge formation" in which a dislocation core can be 
locally destabilized by a subharmonic instability of the k/3 mode when the latter lies sufficiently to the 
right of the left boundary kt of the marginal stability curve. Therefore in our analysis we assume that 
the only modes which locally play any role are the phase (i.e. -~0 corresponding to a zero eigenvalue 
of L) and "amplitude" modes. The latter has the same parity (and periodicity) as w0 (0) and, at least 
near the marginal stability boundary where the amplitude A is not slaved, is Owoaa = ½w0, directly 
proportional to w0. Its damping rate 2ts (k 2, R) approaches zero at k[ and kr. This is what we mean 
when we say w0 (0) is stable and unique. Strictly, of course, wo(O) is not unique. Depending on the 
wavenumber k and stress parameter R, there may be other finite amplitude solutions with different 
periodicities. But they are all more damped than either the phase or "amplitude" modes. If they can 
be present, then we must enrich the analysis by including new phases. 

We are thus led to consider a discrete set of eigenmodes ~i (and ~/t for the adjoint operator Lt) 
corresponding to the eigenvalues 2i, where '~i+1 ~ '~i- We have 20 = 0 and C0 cx OoWo. We normalize 
the eigenmodes by imposing (~tl~j) = gij and (~i[~i) = 1. Due to the assumption about the parity of 
the basic solution, the eigenmodes are either symmetric (~is) or antisymmmetric (~iA). The marginal 
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mode C0 is of parity A, the least damped mode is of parity S, at least in a neighborhood of kr where it 
corresponds to the amplitude mode. We will consider an even parity perturbation Ws and write w = 
Wo + Ws, Ws = asCls. Substituting this expression into (C.4), we then project the equation onto the 
adjoint modes ~0 t and C~s and obtain, respectively, the usual phase equation, containing the dominant 
correction terms, and an equation for the evolution of the amplitude as. To order e 2, they are 

(~otl0o(Wo + WS))OT + (CotlHl(w0 + ws)) + eZ(CotlH3(wo + ws)) = 0, (C.7) 

e2(~slOr(wo + Ws)} + (~slHo(wo + Ws)) + e2(~slH2(wo + Ws)} = 0. (C.8) 

Away from the borders of the neutral stability curve, 21s is not small and (C.8) can be used to solve 
algebraically for as, thus expressing the slaving of the amplitude to the wavenumber. If we linearize 
the term (~s]Ho(wo + Ws)) as (C~s[Ho(wo)) + (~s[ ~ "  Ws) = 0 + 21sas, the coupling between 
phase and amplitude is too weak and adiabatic elimination of the amplitude is not valid. By the same 
token, equation (C.8) becomes interesting and nontrivial when 21s is close to zero, e.g. in the low 
amplitude limit. In this limit, the amplitude mode is ~ s  = ~ a  = ~ ,  SO that w0 can be approximated 
by ]/ClS and Wo + Ws is ( ] /+  as)~ls = ACts. The term (~s[Ho(wo + Ws)) is in first approximation 
equal to g ( k )A ( A  2 - ]/2) where g(k)  is given by 2~ u . This estimate reflects the fact that there is a 
supercritical pitchfork bifurcation when we cross the marginal curve and the formula will still be valid 
as long as the nonlinear solution Wo stays unique and the eigenvector associated with 21s is close to 
Wo. In the low amplitude limit, one can neglect the contribution of the nonlinear terms in H1 and after 
multiplying (C.7) by A, we shall obtain the following equations, 

1 - - - ~ V .  (kA2B(k))  + O ( e  2) = 0, OT + ~(k)A2 

e2AT + g ( k ) A ( A  2 - ]/2(k)) + O(c 2) = 0, 

(C.9) 

(C.10) 

which are the usual phase and algebraic amplitude equations when O(~ 2 ) t e rms  are neglected. We 
have deliberately written (C.9) in a form which identifies those places in the phase diffusion equation 
where the square of the "free" amplitude A 2 has been replaced by its slaved valued ]/2 (k,  R ) .  We 
recover the phase diffusion equation (2.17) by setting ~]/2 = ~- and/~]/2 = B. Note that it is possible 
to write the phase equation in conservative form because we kept only the linear terms in HI. For the 
real Swift-Hohenberg equation at small amplitudes, where we can approximate w by a one Galerkin 
mode expansion for the basic roll solution (i.e. w = Acos0),  we have ~(k) = l , /~(k)  = (1 - k 2) 
and g(k  ) = 3. 

We can obtain these equations directly when the microscopic model derives from a Lyapunov 
functional. We begin from equation (2.21 ), allowing for variations in both the phase and amplitude 
"directions". Defining the amplitude A by w = Af (O)  where f = l, we get, 

(C.11) 

Note that the integrand g (A, k 2 ) is obtained by averaging G over 0. g is G only when A 2 is replaced 
by ]/2 (kZ,R). From (C.11 ), 

0g  A20T + V . ( - 2 k - ~ ( A ,  k2) ) = O, (C.12) 
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Fig. C.I. The left and fight panels of (a), (b), (c), show respectively the graphs of the wavenumber k and amplitude A (solid) 
and slaved amplitude (dashed) as function of x at the time just before the singularity is reached for g = 0.1, 1.0 and I0. 
They were obtained by solving (C.9), (C. 10) for an initial condition corresponding to a wavenumber in the right Eckhans 
unstable band. Note that the slaving of the amplitude is much more pronounced for larger values of g and the time of 
formation of the singularity is shorter. 

At  -- Oq~ OA (A'k2)" (C.13) 

In particular, for the case of  SH, g = 174A4 - ½74A2/z 2 which of  course is equal to G = -¼74/z 4 
when A 2 = /z 2. We recover the phase-amplitude equations written above in (C.9), (C. 10) without 

0 2 assuming a single Fourier mode basic solution. Note that we have AlS = ~ (/z, k 2) only in the one 
mode approximation. 

We now want to give numerical evidence that, at least in the large aspect ratio limit, the amplitude 
is indeed slaved to the wavenumber even when the latter takes values between kE and kr. This point is 
important because it shows that the regularized phase diffusion equation will suffice in this domain. 
We need this because the coupling to the amplitude in the OPE is justified only close to kr. A second 
point addressed by this experiment concerns the time scale of  amplitude relaxation and the size of  the 
defect core. We show it is crucial to have the correct value of  21s if one wants to describe correctly 
the defect core and the time of  formation of  dislocation pairs. 

We integrate numerically the phase and amplitude equations (C.9), (C. 10) derived for the complex 
Swift-Hohenberg equation. The equations are solved for the wavenumber and amplitude in one space 
dimension, starting with k = k0 + a s inx and A = / z  (k), with k0 in the right Eckhaus band (Ice, kr). 
As a typical example, we chose the stress parameter R = 3 and took k0 = 1.5, a = 0.6. (Note that in 
the one dimensional case investigated here, the k/3  mode cannot be excited through a finite amplitude 
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Fig. C.1--continued. 

instability as it is in the two dimensional case after the formation of  a dislocation [21 ], because in 
the finite amplitude stage of the one dimensional Eckhaus instability, the local wavenumber never 
reaches such low values.) The spatial scale is chosen so that e = 0.1. Since the equations are not 
well posed as they stand, we must find an appropriate numerical algorithm. Our procedure, which 
turns out to work well, consists in adding and substracting in (C.9), the same quantity equal to a 
constant coefficient ~/multiplying the biLaplacian of O. One term (the one leading to an instability) 
is integrated explicitly together with the nonlinear terms using an Adam's Bashforth scheme, the other 
one is evaluated implicitely using a Crank-Nicholson scheme. This algorithm stabilizes the small scales 
and the solution is not very sensitive to the value of t/. Larger values of this parameter allows us to 
integrate closer to the singularity. We show the results for r/ = 1. The space derivatives are calculated 
using Fourier transforms. The domain is periodic and we use 128 grid points. At first, we added a spatial 
derivative term in the amplitude equation of the form ~V 2A. The coefficient ~ can be normalized after 
a redefinition of 2~s, and of the space and time scales. However the limit ~ ~ 0 is not singular and the 
observed behavior is the same in this limit as for a finite value of ~. Therefore, we chose ~ = 0. We 
varied the value of 2Is by varying g = 2~ in (C. 10). (In the case of  the complex Swift-Hohenberg 
equation, g is a constant equal to 1 ). An obvious result is that the time of formation of the singularity 
is larger for smaller values of 21s. In other words, the more the amplitude is slaved, the quicker the 
singularity is reached. Also the size of the core varies inversely proportional to 21s and becomes small 
as the distance between the local wavenumber k and kr increases. Our definition of the dislocation 
core is the size of the spatial domain where the amplitude A deviates from # (k) by more than 5%. It is 
then verified that for larger values of  2]s (or equivalently for smaller e since the spatial and temporal 
scalings can be absorbed in 2is),  the amplitude remains slaved to the wavenumber closer to the defect 
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center. In Figs. 14a,b,c we show results for the cases g = 0.1,g = 1. and g = 10. and graph the 
wavenumber k as a function of  space on the left picture, and the amplitude A (in plain) on the right 
picture. The dotted line represents the quantity ~ =/~ where/l  2 (u) = R - (1 - u 2 )2. This last 
quantity is negative when k is bigger than kr and that is the reason why we observe a discontinuity in 
the derivative of  g in the defect core. The time value on each picture corresponds to the time of  the 
last output before blow-up of  the numerics. We observe on each picture that the amplitude tends to 
zero in the core while the wavenumber tends to infinity.The influence of  21s is both apparent on the 
time of  formation of  the defect and also on the size of  the core region where A and # cease to be close. 
These simulations, and others (not shown) where we modified the shape of  the function/t  2 (k) near 
kr (leaving z and B unchanged) show that, once e is fixed by the size of  the domain, it is important 
that the regularization equation gives the correct value of  2ms in order to obtain the correct time of  
formation of  defects and the sizes of  their cores. 
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