
POST’S INVERSION FORMULA AND SEQUENCE
ACCELERATION

UA VIGRE PROGRAM

JONATHAN CAIN AND BENJAMIN P. BERMAN

Contents

1. Project Summary 2
1.1. Introduction 2
1.2. Mathematical Backround 2
1.3. Application Backround 4
2. Matlab Exchange File — Faà di Bruno 5
3. Sequence Accleration — Wynn–ρ 6
3.1. Rational Interpolation 6
3.2. The Mysterious Numerator 7
3.3. Aitken’s ∆2 Acceleration 8
3.4. Modified Aitken’s ∆2 Acceleration 9
4. Struggle for Precision 10
5. Discussion and Conclusion 10
6. Appendix A: Faà di Bruno’s Formula 12
7. Appendix B: Wynn’s ρ Acceleration 14
8. Appendix C: Aitken’s ∆2 Acceleration 15
9. Appendix D: P. Dostert’s High Precision in Matlab 15
10. Acknowledgements 17
References 17

Abstract. The Post Formula is an inherently ill–posed proce-
dure for numerically inverting the Laplace transform. To account
for this we developed arbitrarily high precision programs for Faà
di Bruno’s formula, which calculates the high order derivatives of
composition functions arising from our application to wave prop-
agation through disperive media. Furthermore, Post’s Formula
converges at a logarithmic rate, which we accomodate through the
use of high precision sequence accelerators—Wynn’s ρ Accelera-
tion. Ultimately, we arrive at the conclusion that Mathematica
is the most suitable programming package because of its symbolic
and high–precision capabilities.

Date: July 24, 2009.
1

2 J. CAIN AND B. P. BERMAN

1. Project Summary

1.1. Introduction. The pupose of this project is to consider faster and
more efficient methods for inverting the Laplace transform via Post’s
formula.

(1) f(t) = lim
q→∞

(−1)q

q!

(q
t

)q+1
(
dq

dsq
F (s)

)
s=q/t

The crux of the problem in using this formula is quickly and ef-
ficiently computing high-order derivatives of F (s). Another problem
that inherently arises is the large numerical coefficients from taking
large q, especially when t is small. Thus, a computer program with
arbitrary precision and relatively quick computing time is desired.

1.2. Mathematical Backround. 1

The problem with the numerical inversion of the Laplace transform
is the amplification of error that arises from the exponental integrand.

L(f(t)) = F (s) =

∫ ∞
0

e−stf(t) dt(2)

L−1(G(s)) =
1

2πi

∮
Bromwich

estF (s) ds(3)

f(t) : R→ C(4)

F (s) : C→ C(5)

As an alternative to Bromwich contour integration, Emil Post’s for-
mula (Equation 1) where f(t) is continuous on [0,∞) and for some
b ∈ R such that,

(6) sup
t>0

|f(t)|
ebt

<∞

is particularly attractive due to the absence of tuning parameters (c.f.,
Weeks and Talbot’s methods) and the fact that s /∈ C.

There are two problems with using Post’s inversion formula: First,
when implementing the formula on a computer, amplification of error
occurs as described above, especially truncation, discretization, and
roundoff errors. The second problem is the logarthimic convergence of
the method and the error rate of 1

q
as q →∞.

The solution to the first problem is discussed in detial in the section,
Struggle for Precision. The solution to the second problem is to use

1This subsection and the one that follows is a summary of the research conducted
by Patrick O. Kano and Moysey Brio [3]

POST’S INVERSION AND SEQUENCE ACCLERATION 3

a series acceleration method. Sequence acceleration produces a more
accurate result, much faster than iterating the sequence itself. However,
the rate of convergence must first be known in order to choose the
appropriate accelerator. The following (Equation 7) defines the rate of
convergence a(n), where limn→∞ Sn = S.

a(n) =
|Sn+1 − S|
|Sn − S|

(7)

lim
n→∞

a(n) = c, c ∈ (0, 1)(8)

lim
n→∞

a(n) = 1(9)

Equation 8 is the condition for a linear rate of convergence; e.g.,
Sn = (5/7)n. Equation 9 is the condition for a logarithmic rate of
convergence. The rate of our sequence, 1

q
, which arises from using

Post’s formula for finite q, is logarithmic. Because there is no one
algorithm that accelorates all logarthimic sequences [2], it is important
to choose a good accelerator by understanding the rate of convergence.

Currently, the generalized Wynn-ρ algorithm is being used. This
method recurisively yeilds an approximation for the function f(t) =
limn→∞ φn by ρ0

N−2. The recursive rule,

ρ
(n)
−1 = 0(10)

ρ
(n)
0 = xn(11)

ρ
(n)
k = ρ

(n+1)
k +

k

ρ
(n+1)
k−1 − ρ

(n)
k−1

(12)

produces the matrix:

ρ0
−1 = 0 ρ0

0 = φ0 ρ0
1 ρ0

2 · · · ρ0
N−2

ρ1
−1 = 0 ρ1

0 = φ1 ρ1
1 ρ1

2 · · · ρ1
N−2

ρ2
−1 = 0 ρ2

0 = φ2 ρ2
1 ρ2

2
...

...
...

...
...

...
... ρN−3

2
...

... ρN−2
1

ρN−1
−1 = 0 ρN−1

0 = φN−1

(13)

We will describe which accelerators is best for which sequences in
the section, Sequence Acceleration.

4 J. CAIN AND B. P. BERMAN

We now turn to the problem of computing high-order derivatives. In
our application of Post’s formula, we need to analyze a composition of
functions. We utilize Faà di Bruno’s formula for the composition of
two functions.

(14)
dn

dtn
f(g(t)) =

n∑
k=0

f (k)(g(t))Bn,k(g
′(t), ..., g(n−k+1))

This formula uses Bell polynomials of the second kind defined recur-
sively as:

Bp,q =

q−p+1∑
m=1

(
q − 1
m− 1

)
dmg

dtm
Bq−m,p−1(15)

B0,0 = 1(16)

Bq,0 = 0 for 1 ≥ q(17)

Bq,1 =
dqg

dtq
(18)

Bq,q = (g(t))q(19)

1.3. Application Backround. The application of our project arises
from the propagation of light through dielectric materials with non-
trival dispersion relations. With sufficient assumptions, Maxwell’s equa-
tions for relating electromagnetic fields to charge density and current
density reduce to:

(20) ~E(~k, s) = β(|~k|, s) ~E(~k, t = 0) + α(|~k|, s)∂E
∂t

(~k, t = 0)

with

α(~k, s) = α(|~k|, s) 1

s2εr + c2|~k|2
(21)

β(~k, s) = β(|~k|, s) =
s

s2εr + c2|~k|2
= sα(s, k)(22)

where εr(s) is the dispersion relation for a given material, |~k|2 = k2

is one spatial dimension, c2 is the speed of light squared, and s is
the Laplacian analogue of time t. The problem we address involves

the numerical inverision of the coefficients, α(~k, s) and β(~k, s), from
Laplacian space to time.

Thus, the necessity for applying Faà di Bruno’s formula (Equation
14) for the composition of two functions is apparent for computing the

POST’S INVERSION AND SEQUENCE ACCLERATION 5

approximate inverse coefficients via Post’s formula,

α ≈ (−1)q

q!

(q
t

)q+1

Dqα(k, q/t)(23)

β ≈ (−1)q

q!

(q
t

)q+1

Dqβ(k, q/t)(24)

Using this so-called “Bell-Post” method, it is possible to approximte an
optical wave propagation through a dieletric media given a dispersion
relation εr(s) and its derivatives along the real axis for a given time
and wave number.

2. Matlab Exchange File — Faà di Bruno

The first project task was to extend the Matlab [6] exchange file
IncompleteBellPoly.m to include Faà di Bruno’s formula. We imme-
diately encountered the problem of how to input the functions and
their derivatives. Matlab cannot compute the derivatives of functions
numerically, only symbolically with the Symbolic Toolbox. However,
Faà di Bruno’s formula, specifically f (n)(g(t)) requires that the func-
tion f be entered symbolically; i.e., we can enter numbers for g(t) and
its derivatives, but not the function f and its derivatives since they
depend on the specified values of g(t). So, we chose to have the user
provide the functions and their derivatives in cells.

A major advantage of this input method, besides saving some money
on the Symbolic Toolbox, is that one can symbolically compute the
derivatives in Mathematica [5] or Maple [4], then simply copy and
paste the derivatives into Matlab. Furthermore, function handles can
be used as an input method, if prefered by the user.

If one has access to the Symbolic Toolbox, they can directly com-
pute dn

dtn
f(g(t)) since the Symbolic Toolbox can easily use the chain

rule. Hence, one could avoid the need for Faà di Bruno’s formula alto-
gether. Another inherent advantage of the Symbolic Toolbox is that it
computes dn

dtn
f(g(t)) much faster that our program.

Below is a table comparing the run times of the two different progams.

6 J. CAIN AND B. P. BERMAN

Table 1. Comparison of run time

Input Time
Matlab (mp)
g = {’sin(t)’,’cos(t)’,’-sin(t)’,’-cos(t)’,’sin(t)’};

f = {’exp(t)’,’exp(t)’,’exp(t)’,’exp(t)’,’exp(t)’};

t = 1:10;

prec = 100;

tic; dbrunostringHighPrecision(t,prec,f,g); toc 1.39004 seconds
Matlab (syms)
syms t;

f = exp(sin(t));

tic; h = diff(f,t,4); mp(subs(h,t,1:10),100); toc 0.310071 seconds
Mathematica
f[t_] = Exp[Sin[t]];

t1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

prec = 100;

Timing[fd = D[f[t], {t, 4}]; N[fd[t1], prec];] 1.85615× 10−16 seconds

The next problem dealt with precision. The first versions of this
program directly accessed the IncompleteBellPoly.m file, requiring the
user to have downloaded the file to an appropriate directory where both
files are stored. However, this program does not run in multiprecision;
therefore, we took the relevant parts of this file and encorporated them,
along with the Multi Precision Toolbox, into our file. Further discussion
is given in the section, Struggle for Precision.

See Appendix A for dbrunostringHighPrecision.m

3. Sequence Accleration — Wynn–ρ

As mentioned, one of the main goals of our project was to experi-
ment with sequence acclerators. The main weakness of Post’s Inversion
Formula (Equation 1) is that it converges to its limit like 1/n converges
to 0. We spent a great deal of time trying to understand the underlying
mechanism of Wynn’s ρ acceleration specifically Equation 12.

3.1. Rational Interpolation. In our literature search, we found that
in many cases the derivation of Wynn’s ρ algorithm is completely ig-
nored. In the cases where it is not ignored, it is only mentioned that
it has to do with Rational Interpolation, and extrapolating the inter-
polant to infinity. We verified that this is in fact the case using Maple’s
symbolic manipulation for high degree rational interpolation.

POST’S INVERSION AND SEQUENCE ACCLERATION 7

The even columns of the Wynn–ρ matrix (Equation 13) correspond
to the rational interpolation of the original sequence. For example,
using the first 3 points, and a 1st degree rational interpolation yields
the first element of column 2. Using the first 5 points, and a 2nd degree
rational interpolation yields the first element of column 4. In general,
the best output from Wynn-ρ (the upper–right most element) is exactly
equal to using all of the points in the sequence and the highest possible
degree rational interpolation.

We have found that Wynn’s ρ algorithm is roughly 10 times faster
than using the built in RationalInterpolation function in Mathematica,
specifically for high precision acceleration of sequences with length be-
tween 10 and 1000. This makes some sense, since the acceleration is
concerned only with the limit of the interpolant (the coefficients of the
highest degree terms), whereas the interpolation must concerned itself
with every coefficient of the rational function. We could probably have
sped up the algorithm a bit further by having it only work with two
columns at a time, rather than constructing the entire matrix.

Our understanding of the connection between Wynn-ρ and rational
interpolation is hopefully a stepping stone toward being able to truly
derive the algorithm. There is a big gap in the literature at the mo-
ment, and if someone would search a bit deeper and derive a handful
of sequence accelerators, we think that it would be very worthwhile.

3.2. The Mysterious Numerator. Another goal of the project was
to toy around with the numerator from Wynn’s ρ algorithm (equation
12). This numerator is fully described in Osada’s paper [7], where the
term is actually related to the rate of convergence of the sequence. We
verified Osada’s modification for the sequences:

S1(n) =

(
1 +

1

n

)n
(25)

S2(n) =
n∑
k=1

(
k + e1/k

)√2
(26)

As Osada states, S1 should converge faster with a numerator of k
(θ = −1), and S2 should converge faster with a numerator of k−2+

√
2.

We confirmed that this is true.
Through studying Osada’s numerators and the code implementation

of Wynn’s ρ algorithm, we noticed that the k − 2 numerator in Kano
and Brio 2009 is actually a misnomer. The problem was that k − 2,
which is perfectly accurate in the computer program due to the change

8 J. CAIN AND B. P. BERMAN

of indices, was carried over to the paper without being changed back
to the traditional indices of the algorithm (Equation 12).

See Appendix B for wynnrho.m, wynnrho.nb

3.3. Aitken’s ∆2 Acceleration. The Aitken’s ∆2 Method is a ac-
celeration technique for linearly converging sequences. It is defined as
follows:

(27) An = xn −
(xn+1 − xn)2

(xn+2 − 2xn+1 + xn)

To better understand sequence acceleration, we compared Wynn’s ρ
accleration to Aitken’s method. We confirmed that Aitken’s method
is a fantastic accelerator for linearly converging sequences, and a bad
accelerator for logarithmically converging sequences by using the fol-
lowing test sequences:

S1(n) =

(
1 +

1

n

)n
(28)

S2(n) =

(
5

7

)n
(29)

Furthermore, the Wynn-ρ method was highly ineffective on test se-
quence S2 (Equation 29). Which just goes to show Weniger’s point
that it is important to test various accelerators on a given sequence.

Here, we present a comparison of the error for Aitken’s Method, and
Wynn’s ρ algorithm with the sequence itself. This comparison is for
the sequence S1 (Equation 28):

POST’S INVERSION AND SEQUENCE ACCLERATION 9

Figure 1. Notice that the plot is on a log-log scale.
The original sequence is in blue, Aitken’s accelerated se-
quence is in green, and Wynn-ρ is in red. For this se-
quence with a logarithmic rate of convergence, Wynn-ρ
is by far the best, we have found that for this sequence
it can be accurate up to 10−58 with an original sequence
of only 32 values.

3.4. Modified Aitken’s ∆2 Acceleration. Investigation into the mod-
ified Aitken’s method should be conducted. Osada [7] showed that this
acceleration algorithm produces results similar to Wynn-ρ for loga-
rthimically convergent sequences. As stated above, further work is
needed into understanding how acceleration algorithms are created. In
our opinion, the investigation into this acceleration method may prove
the most fruitful becuase there is an interesting relationship between
modified Aitken’s and Wynn-ρ. From Eqaution 12 and Matrix 13,
creating the ρ2

1 term in the sequence (for any k-length: ∆x) yields,

ρ2
1 = φ2 +

2∆x
∆x
∆φ2
− ∆x

∆φ1

(30)

= φ2 +
2∆φ1∆φ2

∆φ1 −∆φ2

(31)

where, ∆φ1 = φ2 − φ1 and ∆φ2 = φ3 − φ2. Thus,

ρ2
1 = φ2 +

2(φ2 − φ1)(φ3 − φ2)

−φ1 + 2φ2 − φ3

(32)

(33)

Notice the correspondence to the latter term in the formula for the
modified Aitken ∆2 method:

10 J. CAIN AND B. P. BERMAN

sk+1
n = skn −

2k + 1− θ
2k − θ

(skn+1 − skn)(skn − skn−1)

skn+1 − 2skn + skn−1

(34)

Besides giving insight into the derivation of acceleration algorithms,
perhaps the modified Aitken’s method will porduce faster, more effi-
cient results than Wynn-ρ. However, our computer implementation of
this algorithm produced inconclusive results.

4. Struggle for Precision

It is very important for each phase of Post’s Inverse Formula—the
Bell/Faà di Bruno formula and the sequence accelerator—to be highly
accurate. One of our goals was to implement a high precision routine
in Matlab. However it seems that this is something that Matlab is
simply not built for.

Our first attempt was to use the Matlab–official Fixed Point Toolbox.
The struggle here is that this Toolbox is meant to be used to go from
Matlab’s standard precision down to a fewer digits. Paul Dostert was
able to work around this and produce a tricky code that allowed us
to work in Matlab with high precision using solely the Fixed Point
Toolbox. See Appendix D.

Then, we discovered a user submitted toolbox called the Multi-
Precision Toolbox. Using this was much more straightforward, and
we achieved good results. However, regardless of using either toolbox
in Matlab, the run time was much much longer than using Mathemat-
ica to do the same problems in the same precision. For this reason we
recommend sticking to Mathematica when it comes to high precision
calculations; plus, it has the added benefit of being able to compute
symbolic derivatives, which may replace the need for a Faà di Bruno
and Bell algorithm. Nonetheless, if you can only work with Matlab,
our high precision codes combined with the Multi-Precision Toolbox,
should get you pretty far.

5. Discussion and Conclusion

Over the course of the last month, we have created a Matlab func-
tion for Faà di Bruno’s Formula (potentially for the Matlab File Ex-
change); experimented with various accelerators, ultimately confirming
that Wynn-ρ is most suitable; and developed high precision methods
to aid with Post’s inversion in Matlab, though Mathematica or Maple

POST’S INVERSION AND SEQUENCE ACCLERATION 11

may still be more effective. Our overall focus was less on Post’s inver-
sion itself, but more on the smaller pieces that may help make it a more
reasonable method for numerically inverting the Laplace transform.

The problem of Post’s Inversion is that in some ways it lies in the
gray area between numerical and symbolic computation. It would be
great to have the speed of C++ for the loops of Faà di Bruno’s Formula
and Wynn-ρ, but unfortunately both also require very high precision
and perhaps the symbolic manipulation of Mathematica or Maple. If
we were more skilled in C++ we may have been able to investigate this
further with the use of the ARPREC package. In the future, investi-
gation into using ARPREC and C++ to perform the computations
should be conducted with the purpose of possibly computing faster,
more accurate results. However, based on our results (specifally the
run times in Matlab and Mathematica), we can conclude that the use
of Mathematica or the Symbolic toolbox in finding the derivative of the
composition of two functions, is a faster program. While our high pre-
cision Faà di Bruno script has its utilities, when it is directly applied to
Post’s inverse formula in it’s current state, it runs into a problem with
the symbolic substitution of s = q/t into the derivative (see Equation
1). Patrick Kano’s Mathematica script [3] is more suitable due to its
ability to quickly compute in a high precision symbolic environment.

In the future, it is important that we gain the ability to derive these
sequence accelerators step by step. The key to this may lie in the pa-
pers of Wynn [9] and Bjorstad [1]. In general, it is our opinion that the
literature on sequence accelerators has neglected the means of creating
the algorithms, only to focus on the end results and tests on various
sequences. We have made some strides toward this derivation by explic-
ity making a connection between components of Wynn-ρ acceleration
and rational interpolation.

This summer we focused on exploring and improving two compo-
nents of the Post Inversion Formula (Equation 1): numerically with
Faà di Bruno’s Formula, and analytically with Wynn-ρ. We feel that
we have made a significant contribution, even if we simply confirmed
that Patrick Kano’s previous work in Mathematica is the fastest and
most efficient. After experimenting with with various sequence acceler-
ators, we find the Wynn-ρ is still most suitable, but further tests using
the Modified Aitkin’s method is necessary. We are also much closer
to a fundamental understanding of sequence accelerators and how they
are derived.

12 J. CAIN AND B. P. BERMAN

6. Appendix A: Faà di Bruno’s Formula

Our matlab exchange file for Faà di Bruno’s Formula:
NOTE: The symbol “(*)” signals a LaTex fomatting line break

function fout = dbrunostringHighPrecision(domin,prec,fins,gins)

%DBRUNOSTRINGHIGHPRECISION Calculates the n-th derivative of the composition of two functions

(*)using Faa’ di Bruno’s formula.

% [fout] = DBRUNOSTRINGHIGHPRECISION(domin,prec,fins,gins) returns a cell array giving the n-th

(*)derivative of [f(g(t))] at each value in the domain.

%

% INPUTS: domin - the domain over which at each point the functions and their n

(*)derivatives will be computed.

% prec - the bit precision for all computations.

% fins - the function f and n derivatives as strings in a cell array.

% gins - the function g and n derivatives as strings in a cell array.

%

% EXAMPLE 1:

% t = 1:.01:2*pi; % domain

% prec = 128; % 128 bit precision (double-

(*)double precision)

% f = {’exp(t)’,’exp(t)’,’exp(t)’,’exp(t)’,’exp(t)’}; % f=exp(t) and four derivatives

% g = {’sin(t)’,’cos(t)’,’-sin(t)’,’-cos(t)’,’sin(t)’}; % g=sin(t) and four derivatives

% fout = dbrunostringHighPrecision(t,prec,f,g) % runs the program

%

% [fout] = DBRUNOSTRINGHIGHPRECISION(domin,prec,fins) returns a cell array giving the n-th

(*)derivative of [f(g(t))] at each value in the domain.

%

% INPUTS: domin - the domain over which at each point the functions and their n

(*)derivatives will be computed.

% prec - the bit precision for all computations.

% fins - the handle to a function that yields the derivatives of

(*)f and g as strings in a cell array

%

% EXAMPLE 2:

% t = 1:.01:2*pi; % domain

% prec = 128; % 128 bit precision (double-double precision)

% fg = @derivativefinder(); % fg is a handle to a function that will

(*)find the derivatives of f and g and format appropriately

% fout = dbrunostringHighPrecision(t,prec,fg) % runs the program

%

% NOTE 1: This program requires the Multi Precision Toolbox (mp.m) by Ben Barrowes

(*)found at www.mathworks.com

%

% NOTE 2: The incomplete Bell polynomials section is inspired by the file

(*)exchange IncompleteBellPoly.m by Moysey Brio and Patrick O. Kano found at

% www.mathworks.com

%

% Authors:

% Benjamin Berman and Jonathan Cain

% University of Arizona

%

% Email:

% benpb@umich.edu

% cain1@email.arizona.edu

%

% Latest Modification Date:

% July 24, 2009

POST’S INVERSION AND SEQUENCE ACCLERATION 13

% Process inputs and do error-checking

if nargin == 3

%function is called

[fin, gin] = fins();

domin = gins;

elseif nargin == 4

fin = fins;

gin = gins;

else

error(’Either 3 inputs (function handle, vector, precision), or 4 inputs (cell vector, cell

*vector, vector, precision) are needed.’);

end

if length(fin) ~= length(gin)

error(’Need same number of derivatives for f and g.’);

end

% Initailize input matrices in prec -bit precision

f = mp(zeros(length(fin),length(domin)),prec);

g = mp(zeros(length(gin),length(domin)),prec);

% Evaluate the input at the appropriate points

for k = 1:length(fin)

% Convert cell vector to characters

gt1 = char(gin(k));

% Creat inline function and vectorize operations

gtemp = vectorize(inline(gt1));

% Fill in initialized matrix

g(k,:) = gtemp(domin);

ft1 = char(fin(k));

ftemp = vectorize(inline(ft1));

% f evaluated at g

f(k,:) =ftemp(g(1,:));

end

% Initialize computation matrices in prec -bit precision

B = mp(zeros(length(domin),length(gin),length(gin)),prec);

fseq = mp(zeros(1,length(fin)),prec);

fout = mp(zeros(1,length(domin)),prec);

Nin = length(gin)-1;

Kin = length(gin)-1;

for t = 1:length(domin)

% Compute high precision Bell Polynomials

DataList = g(2:end,t);

if(Nin==0 && Kin==0)

OutMatrix = 1;

elseif(Nin>0 && Kin==0)

OutMatrix = mp(zeros(Nin+1,1),prec);

OutMatrix(1,1) = 1;

else

Bm = mp(zeros(Nin,Kin),prec);

Bm(1:Nin,1) = mp(DataList(1:Nin),prec);

for nidx=2:Nin

14 J. CAIN AND B. P. BERMAN

for kidx=2:Kin

for midx=1:nidx-kidx+1

Bm(nidx,kidx) = Bm(nidx,kidx) + nchoosek(nidx-1,midx-1)*DataList(midx)

(*)*Bm(nidx-midx,kidx-1);

end

end

end

OutMatrix = mp(eye(Nin+1,Kin+1),prec);

OutMatrix(2:Nin+1,2:Kin+1) = Bm;

end

B(t,:,:) = OutMatrix;

% Use di Bruno’s formula

for k = 1:length(fin)

fseq(k) = f(k,t)*B(t,length(gin),k);

end

fout(t) = sum(fseq);

end

end %function definition

%%%

7. Appendix B: Wynn’s ρ Acceleration

Our matlab file for Wynn-ρ acceleration:
function [wynnrho2 wrbest] = wynnrhoHighPrecision(sequence,prec)

ls = length(sequence);

wynnrho = mp(zeros(ls,ls+1),prec);

wynnrho(:,2) = sequence;

numiter = 0;

for k = 3:(ls+1)

for n = 1:(ls+2-k)

wynnrho(n,k) = (k-2)/(wynnrho(n+1,k-1)-wynnrho(n,k-1))+wynnrho(n+1,k-2);

end

end

wynnrho2 = wynnrho(:,2:2:end);

wrbest = max(wynnrho2(:,end));

end

Our Mathematica file for Wynn-ρ:
g[n_] = (1 + 1/n)^n;

prec = 40;

nlength = 7;

c = N[Table[g[i], {i, 1, nlength}], prec];

El = ConstantArray[0, {nlength, nlength + 1}]; El[[All, 2]] = c;

Table[El[[m, k]] =

El[[m + 1,

k - 2]] + (k - 2)/(El[[m + 1, k - 1]] - El[[m, k - 1]]), {k, 3,

nlength + 1}, {m, 1, nlength + 2 - k}];

g[n_] = n; j = Table[g[k], {k, 2, nlength + 1, 2}];

wynnrhobest = Max[El[[All, Max[j]]]];

POST’S INVERSION AND SEQUENCE ACCLERATION 15

wynnrho1 = N[MatrixForm[El[[All, All]]], prec];

wynnrho2 = N[MatrixForm[El[[All, j]]], prec];

8. Appendix C: Aitken’s ∆2 Acceleration

Our matlab file for Aitken’s method:
function aout = aitkens(seq)

% input a sequence, output aitken’s accelerated sequence

ls = length(seq);

aout = zeros(1,ls);

for i = 1:(ls-2)

aout(i) = seq(i) - (seq(i+1) - seq(i))^2/(seq(i+2)-2*seq(i+1)+seq(i));

end

end

9. Appendix D: P. Dostert’s High Precision in Matlab

This code requires only the fixed point toolbox and achieves arbi-
trarily high precision.
function [wholeS,decS]=showNumberFull(fiIn);

binIn = fiIn.bin;

WordLength = fiIn.WordLength;

FractionLength = fiIn.FractionLength;

% Do the whole number part

for i=1:WordLength-FractionLength

BinWhole(i) = str2num(binIn(i));

end

WholeFac = 2.^(length(BinWhole)-1:-1:0);

% Do in chuncks of 48, for now...

MaxChunkSize = 48;

% Now we want to create a group of doubles, each using 48 bits. So we

% create a double from the 1st 48, a double from 49 - 96, etc...

i=0;

for j=1:floor(length(BinWhole)/MaxChunkSize)

i=j;

index = (i-1)*MaxChunkSize+1:i*MaxChunkSize;

wholeS(i) = dot(BinWhole(index),WholeFac(index)) ;

end

% Do the rest separately (the "end" part of the bit string)

index = i*MaxChunkSize+1:length(BinWhole);

if(length(index)>1)

wholeS(i+1) = dot(BinWhole(index),WholeFac(index));

end

% Do the decimal part

16 J. CAIN AND B. P. BERMAN

for i=1:FractionLength

BinDec(i) = str2num(binIn(length(binIn)-FractionLength+i));

end

DecFac = 2.^(-(1:length(BinDec)));

% Do in chuncks of 48, for now...

MaxChunkSize = 48;

% Now we want to create a group of doubles, each using 48 bits. So we

% create a double from the 1st 48, a double from 49 - 96, etc...

i=0;

for j=1:floor(length(BinDec)/MaxChunkSize)

i=j;

index = (i-1)*MaxChunkSize+1:i*MaxChunkSize;

decS(i) = dot(BinDec(index),DecFac(index)) ;

end

% Do the rest separately (the "end" part of the bit string)

index = i*MaxChunkSize+1:length(BinDec);

if(length(index)>1)

decS(i+1) = dot(BinDec(index),DecFac(index));

end

% -- DISPLAY THE NUMBER --

% Note: =0 is fine here... since each component is below double precision

counter = 0;

for i=1:length(wholeS)

if(wholeS(i) ~= 0)

if(counter == 0)

fprintf(’%g’,wholeS(i));

else

if(wholeS(i)>0)

fprintf(’+%g’,wholeS(i))

else

fprintf(’%g’,wholeS(i))

end

end

counter = counter+1;

end

end

for i=1:length(decS)

if(decS(i) ~= 0)

if(counter == 0)

fprintf(’%g’,decS(i));

else

if(decS(i)>0)

fprintf(’+%g’,decS(i))

else

fprintf(’%g’,decS(i))

end

end

counter = counter+1;

end

end

fprintf(’\n’);

POST’S INVERSION AND SEQUENCE ACCLERATION 17

10. Acknowledgements

We express our deepest graditude to Professor Moysey Brio, Dr.
Paul Dostert, and Dr. Patrick O. Kano for their continued support
throughout this project. Their work leading up to this project and
their help this summer were an integral part of our research experience.

Thank you to the University of Arizona, Program in Applied Math-
ematics and the VIGRE Program for funding our research.

This project was funded by the University of Arizona’s NSF Grant:
EMSW21–VIGRE Award 0602173.

References

[1] Bjorstad, P., Dahlquist, G. and Grosse E. Extrapolation of asymptotic expan-
sions by a modified Aitken ∆2-formula. BIT Numerical Mathematics, vol. 21,
no. 1, pp. 56-65. 1981.

[2] Delahaye, J.P. and Germain-Bonne, B. The set of logarithmically convergent
sequences cannot be accelerated. SIAM Journal on Numerical Analysis, vol. 19,
no. 4, pp. 840-844. 1982.

[3] Kano, P. and Brio, M., Application of Post’s Formula to Optical Pulse Prop-
agation in Dispersive Media. Paper has been submitted and is under review.
2009.

[4] Maple 12. http://www.maplesoft.com
[5] Mathematica 7.0. http://www.wolfram.com
[6] Matlab R2008B. http://www.mathworks.com
[7] Osada, N. A Convergence Acceleration Method for Some Logarithmically Con-

vergent Sequences SIAM Journal on Numerical Analysis, vol. 27, no. 1, pp.
178-189. 1990.

[8] Weniger, E. Letter to Saul Teukolsky. http://www.nr.com/webnotes/nr3webR1.pdf,
30 October. 2007.

[9] Wynn, P. On a procrustean technique for the numerical transformation of
slowly convergent sequences. Proceedings of the Cambridge Philosophical So-
ciety, vol. 52, no. 4, pp. 663-671. 1956.

J. Cain, Program in Applied Math, University of Arizona, Tucson,
AZ

E-mail address: cain1@email.arizona.edu

B. P. Berman, Program in Applied Math, University of Arizona,
Tucson, AZ

E-mail address: bpberman@email.arizona.edu

