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A DARWINIAN DYNAMIC MODEL FOR THE EVOLUTION OF

POST-REPRODUCTION SURVIVAL

J. M. Cushing∗ and Kathryn Stefanko†

We derive and study a Darwinian dynamic model based on a low dimensional discrete

time population model focussed on two features: density dependent fertility and a trade-
off between inherent (density free) fertility and post-reproduction survival. Both features

are assumed to be dependent on a phenotypic trait subject to natural selection. The
model tracks the dynamics of the population coupled with that of the population mean

trait. We study the stability properties of equilibria by means of bifurcation theory.

Whether post-reproduction survival at equilibrium is low or high is shown, in this model,
to depend significantly on the nature of the trait dependence of the density effects. An

Allee effect can also play a significant role.
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1. Introduction

Of fundamental interest in population dynamics are the life history strategies of

individuals (i.e. the ways in which they allocate resources and behavioral activities

toward reproduction, survival, growth, etc.) and the trade-offs that are involved in

these efforts.1,2 One basic question of long standing historical interest concerns the

trade-off between reproductive effort and post-reproduction survival. This ques-

tion has often focussed narrowly on semelparity (no post reproduction survival)

versus iteroparity. In response to arguments that evolution should favor semel-

parity,3 investigators pursued circumstances and mechanisms that would support

post-reproduction survival and its selection by evolution.4 These include trade-

offs between reproductive effort and post-reproduction survival, nonlinear density

effects, spatial effects, variable environments, and combinations of these. In this

paper we will investigate the first two of these by means of an evolutionary version

of a low dimensional, discrete time population dynamic equation as derived by the

methodology of evolutionary game theory.5 The model tracks coupled dynamics of

the population and of the population mean of a phenotypic trait that is subject to

natural selection. The trait of an individual is assumed to determine individual’s in-

herent fertility, but in trade-off with the probability that the individual survives the
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reproduction event so as to reproduce again. The individual’s trait, together with

the population mean trait, is also assumed to influence the effect that population

density has on the individual’s fertility.

The underlying population dynamic equation that we use is a basic, one dimen-

sional discrete time model for an unstructured population in which an allocation

fraction describes the fertility versus survival trade-off. The Darwinian dynamic

model includes a coupled equation for the dynamics of the mean trait.6 The model

studied here differs from the one studied in Ref. 7 in several ways, the most impor-

tant ones being that it includes a simplified fertility distribution with respect to the

trait and the inclusion of an Allee effects on fertility. The main goal is to determine

circumstances when post-reproduction survival is low and circumstances when it is

high.

The underlying population model and its asymptotic dynamics are presented

in Section 2. The evolutionary extension of the model is derived in Section 3. A

local bifurcation result, which follows from known general theorems, establishes the

basic dynamic feature of the model, namely, the bifurcation of positive equilibria

as the extinction state destabilizes and that forward bifurcations are stable and

backward bifurcations are unstable. The stability properties of positive equilibria

outside a neighborhood of this bifurcation point are studied for two special cases

that differ in the way density effects depend on the evolving trait. These two cases

highlight how density effects can play a crucial role in whether evolution selects for

low or high post-reproduction survival probability: the first case, which involves a

certain symmetry in the trait influence on the density effect (which is a common

assumption in Darwinian dynamic models5), leads only to zero post-reproduction

survival probability (semelparity) while the second case, which is built on a hierar-

chical (or asymmetric13) trait dependence, can lead to equilibrium states with high

post-reproduction survival probability (iteroparity).

2. Difference equation models for population dynamics with a

fertility-survival trade-off

Difference equations have a long history of use in population dynamics and in

studies of asymptotic dynamics, with a focus on basic questions of extinction versus

survival and equilibration, but also on more complicated dynamics such as periodic

cycles and chaos. A scalar difference equation for the dynamics of an unstructured

population, in the absence of immigration or emigration, predicts the population

density at a sequence of census times based on the assumption that at time t + 1

the population will consist only of survivors from the previous census at time t plus

newborns. While different sequencing scenarios can be modeled, we will assume a

short reproductive season, just prior to which the population census is taken, is

followed by a maturation period at the end of which another reproductive episode

occurs, a total of one time unit later.

By the fertility of an individual we mean the number newborns produced that
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survive to the next census. By post-reproduction survival we mean the probability

an individual survives so as to reproduce again. To account for a trade-off between

fertility and survival, we assume these are negatively correlated; that is, a resource

allocation that increases one will decrease the other. As a basic model for this

relationship we denote fertility by bf and post-reproduction survival by s (1− f)

where b and s are the maximal possible fertility rate and survival probability and

f is an “allocation” fraction. Then we have

xt+1 = rxt

where

r = bf + s (1− f)

b > 0, 0 ≤ s < 1, 0 < f ≤ 1

is the per capita population growth rate.

Note that if b ≤ s then xt+1 ≤ sxt which implies limt→+∞ xt = 0, for any initial

population density x0 ≥ 0. Therefore we assume

s < b.

Then fitness, which we take to be2,8, 9

ln r = ln ((b− s) f + s) ,

is maximized when f = 1, that is to say when post-reproduction survival is 0 and

the population is semelparous.3

We can model the effects on population density on fertility (and newborn sur-

vival) by including a multiplicative factor β (x) to the fertility term in bf, i.e.

by writing bfβ (x). We require that β (x) is positive for nonnegative x and that

β (0) = 1 so that bf retains the interpretation of inherent or intrinsic (i.e. density

free) fertility. We could do the same for post-reproduction survival by including a

factor on s (1− f), but in this paper we only consider density effects on fertility

(and newborn survival). This results in a nonlinear difference equation

xt+1 = r (xt)xt (2.6)

r (x) = bfβ (x) + s (1− f) (2.7)

for the population dynamics.

The equilibrium equation x = r (x)x shows that x = 0 is an (extinction) equi-

librium for all parameter values and that positive equilibria are positive roots of

the equation r (x) = 1 or

bfβ (x) + s (1− f) = 1.

With f and s fixed, positive equilibria depend on b. A solution pair [b, x] of this

equation is called a positive equilibrium. Note that [b, 0] is an extinction equilibrium

for all b. If the x component of an equilibrium pair [b, x] is a (locally asymptotically)
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stable equilibrium pair of (2.6)-(2.7), then we simply say it is a stable equilibrium

pair. A considerable amount can be said about this model with regard to equilibria

and their stability properties under the following conditions.

A1: Assume in the population growth rate (2.7) that

(a) 0 ≤ s < 1 and b > s ;

(b) 0 ≤ f ≤ 1 ;

(c) β (x) is a positive valued, twice continuously differentiable function on open

interval Ix containing the half line x ≥ 0.

A straightforward application of the linearization principle shows that the extinction

equilibrium x = 0 loses (local asymptotic) stability as b increases through the critical

value

b0 :=
1− s+ fs

f
.

Note that b0 > s. There exists a continuum C of positive equilibria

[b, x] =

[
1− s (1− f)

fβ (x)
, x

]
(2.10)

for all x > 0. The graph of this continuum in the (b, x)-plane meets the extinction

equilibrium [b0, 0] and the branch is said to (transcritically) bifurcate from x = 0 at

b = b0. Positive equilibria located on decreasing segments of the graph are unstable

and those locally on increasing segments are (locally asymptotically) stable at least

near bifurcation points.6,10 In particular the positive equilibria near the bifurcation

point [b0, 0] are stable if the bifurcation is forward (i.e. β′ (0) < 0) and unstable

if it is backward (i.e. β′ (0) > 0). A backward bifurcation in a population model

typically gives rise to a strong Allee effect,11 by which is meant a scenario with (at

least) two attractors, one of which is the extinction equilibrium.

In the next section we let natural selection determine model parameters in equa-

tions (2.6)-(2.7). We have a particular interest in Allee effects and towards that end

will utilize the factor

β (x) =
1 + ax

1 + cx+ ax2
, a, c > 0. (2.11)

This factor with a = 0 in (2.6)-(2.7) gives the well known discrete logistic (or

Beverton-Holt) equation. The coefficient c describes the intensity of the negative

effects due to intraspecific competition. If a > c then β′ (0) = a − c > 0 and an

increase in low level density x will increase fertility. Such a positive effect of density

is called an Allee component12 and we will call a the Allee coefficient. (Many other

mathematical expressions for the density factor β have been used to incorporate

Allee components into models.12)

Some straightforward analytic geometry shows that the graph of continuum C

of positive equilibrium pairs (2.10)-(2.11) that lie in the first quadrant of the (b, x)-

plane has the two possible configurations shown in Fig.1. When a < c there is a
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positive equilibrium of (2.6)-(2.7) for and only for b > b0. When a > c a positive

equilibrium exists if and only if b > b∗ where

b∗ :=
1− s
af

(
2
√

1 + a− c+ c− 2
)
> 0 (2.12)

in which case there are two positive equilibria for b∗ < b < b0 and one positive

equilibrium for b ≥ b0. Stability (or instability) of an equilibrium xe by means of

linearization can be studied by determining when

λ (xe) :=
dr (x)x

dx

∣∣∣∣
x=xe

satisfies |λ (xe)| < 1 (or |λ (xe)| > 1). The result is that when c < a the unique

positive equilibrium is (locally asymptotically) stable for all b > b0. On the other

hand, when c > a the larger of the two positive equilibria is stable when b∗ < b < b0
and the smaller is unstable, while the unique positive equilibrium is stable when

b ≥ b0. For details see the Appendix.

Note that when a > c there is a strong Allee effect, which has two major im-

plications: initial condition dependent survival or extinction for b on the interval

b∗ < b < b0 and a tipping point b∗ (called a tangent or blue-sky bifurcation point)

for which survival becomes impossible for b < b∗.

3. A Darwinian model

In this section we formulate a Darwinian dynamic version of the population model

(2.6)-(2.7) by means of evolutionary game theory methodology.5,14 The parame-

ter f determines a life history strategy in that it determines probability of post-

reproduction survival and repeated reproduction. Strict semelparity occurs if f = 1,

but in keeping with the critique of the binary distinction between semelparity ver-

sus iteroparity,4 we will simply refer to low and high post-reproduction survival.

Our goal is to investigate the life history strategy that evolution favors, specifically,

whether at equilibrium the level of post-reproduction survival is low or high.

We assume that model parameters are dependent on a phenotypic trait which

is subject to natural selection by Darwinian principles. The trait of an individual,

denoted by v, determines its allocation fraction f = f (v) between fertility and post-

reproduction survival. We also assume that the individual’s trait also determines the

intensity of the effect that population density has on the individual’s fertility. This

intensity is in relation to the traits of other individuals with whom it is competing

or cooperating, who will be represented in the model by the population’s mean

trait u. More specifically we assume, as is often done,5 the effects of density on an

individual with trait v depend on the difference z = v− u, i.e. β (x, z) is a function

of z = v−u. These assumptions imply that the per capita growth rate has the form

r (x, u, v) = bf (v)β (x, v − u) + s (1− f (v)) . (3.1)
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Under certain assumptions (including that the trait v is at all times normally dis-

tributed with a constant variance), the evolutionary game theory methodology pro-

vides the equations

xt+1 = r (xt, ut, v)|v=ut
xt (3.2)

ut+1 = ut + σ2 ∂v ln r (xt, ut, v)|v=ut
(3.3)

for the discrete time dynamics of the population xt and the population mean trait

ut. Here the notation ∂v stands for the partial derivative ∂/∂v. The constant σ2

(which is related to the assumed constant variance in the trait) is called the speed of

evolution. If σ2 = 0 then ut = u0 remains fixed (evolution does not occur) and the

model reduces to the first equation for xt with the resulting dynamics as described

in Section 2.

With r defined by (3.1) the model equations (3.2)-(3.3) become

xt+1 = [bf (ut)β (xt, 0) + s (1− f (ut))]xt (3.4)

ut+1 = ut + σ2 bf
′ (ut)β (xt, 0) + bf (ut) ∂zβ (xt, 0)− sf ′ (ut)

bf (ut)β (xt, 0) + s (1− f (ut))
. (3.5)

The assumptions under which we consider these equations are the following.

A2: Assume in the population growth rate (3.1) that

(a) 0 < s < 1 and b > s ;

(b) f (v) is a twice continuously differentiable function on an open interval Iv
of 0 that satisfies 0 ≤ f(v) ≤ 1 and f (0) = 1, f ′′ (0) < 0 ;

(c) β (x, z) is a positive valued, twice continuously differentiable function on

Ix × Iz, where Iz is an open interval of 0, that satisfies β (0, z) ≡ 1 for z ∈ Iz .

A2(b) is based on the assumption that there exists a trait at which an individual’s

fertility attains its maximum b and that. without loss in mathematical generality, it

is attained at trait v = 0. Note that inherent survival s (1− f (v)) equals 0 at v = 0

and hence an individual with trait v = 0 is semelparous. In A2(c) the assumption

β (0, z) ≡ 1 implies bf (v) is the distribution of inherent or intrinsic (i.e. density

free) fertility rates as a function of v.

If, as an example, the density factor is (2.11), then we have

β (x, z) =
1 + a (z)x

1 + c (z)x+ a (z)x2

where to complete a model formulation one needs to specify how the competition

coefficient c (z) and the Allee coefficient a (z) depend on the difference z = v−u be-

tween the individual’s trait v and the trait u of the typical individual in the popula-

tion. Frequently used for this purpose are Gaussian-like distributions c0 exp
(
−wz2

)
,

w > 0. This describes the situation in which the individual experiences the maxi-

mum density effect when it has the mean trait v = u and in which lower density

effects occur symmetrically in v around u. In contrast to this symmetric sub-model
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is the expression c0 exp (−wz), w > 0, in which larger values of v decrease the den-

sity effect, a situation we will refer to as hierarchical competition (or asymmetric

competition13).

The first step in analyzing equations (3.4)-(3.5) is to consider the existence and

stability of equilibria. If evolution occurs (i.e. σ2 > 0), then (x, u) is an equilibrium

if and only if x and u satisfy the two equilibrium equations

x = [bf (u)β (x, 0) + s (1− f (u))]x (3.7)

0 = bf ′ (u)β (x, 0) + bf (u) ∂zβ (x, 0)− sf ′ (u) . (3.8)

An equilibrium (x, u) = (0, u) is an extinction equilibrium. An equilibrium (x, u)

with x > 0 is a positive equilibrium. We consider these two types of equilibrium

pairs in the following two sections.

3.1. Existence and stability of extinction equilibria

The first equilibrium equation (3.7) is clearly satisfied by x = 0 for all values of b

and s, in which case the second equilibrium equation (3.8) reduces to f ′ (u) = 0.

(Note by A2 that b > s and ∂zβ (0, 0) = 0.) In other words, (x, u) = (0, u) is an

extinction equilibrium if and only if u is a critical point of f(u), in which case it

exists for all values of b and s. By assumption A2, (x, u) = (0, 0) is an extinction

equilibrium whose trait component u = 0 gives maximum inherent fertility.

To perform a stability analysis by linearization, we calculate the Jacobian matrix

associated with the Darwinian equations (3.4)-(3.5) and evaluate it (x, u) = (0, 0).

The result is the matrix (
b 0

� 1 + σ2 b−s
b f ′′ (0)

)
whose eigenvalues are

λ1 (b) = b > s, λ2 (b) = 1 + σ2 b− s
b

f ′′ (0) < 1.

(� denotes an unneeded term.) Stability by linearization occurs if and only if both

eigenvalues satisfy |λi (b)| < 1. A study of these two inequalities yields the Lemma

3.1, in which we need the two quantities

σ2
0 : = − 1

1− s
2

f ′′ (0)
> 0

b∗∗ : = s
σ2f ′′ (0)

σ2f ′′ (0) + 2
.

Note that b∗∗ satisfies s < b∗∗ < 1 when σ2 > σ2
0

Lemma 3.1 Assume A2.

(a) If σ2 < σ2
0 then the extinction equilibrium (0, 0) of (3.4)-(3.5) is (locally

asymptotically) stable for b < 1 and unstable for b > 1. At b = 1 the Jacobian

eigenvalues satisfy λ1 (1) = 1 and |λ2 (1)| < 1.
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(b) If σ2 > σ2
0 then the extinction equilibrium (0, 0) is (locally asymptotically)

stable for b < b∗∗ and unstable for b > b∗∗. At b = b∗∗ the Jacobian eigenvalues

satisfy |λ1 (b∗∗)| < 1 and λ2 (b∗∗) = −1.

Lemma 3.1 implies a destabilization of the extinction equilibrium (0, 0) as b

increases through b = 1 if the speed is not too fast, i.e. σ2 < σ2
0 . Because this desta-

bilization occurs as an eigenvalue increases through 1, we anticipate it will result

in a transcritical bifurcation of positive equilibria. This bifurcation is described in

Theorem 3.1.

On the other hand, Lemma 3.1 implies that if the speed of evolution is fast

enough, i.e. if σ2 > σ2
0 , then (0, 0) destabilizes at a lower value of b, namely as b

increases through b∗∗ < 1. This destabilization occurs because eigenvalue decreases

through −1. We therefore anticipate it will result in a period doubling bifurcation

and the creation of 2-cycle oscillations. We leave this conjecture for future study

and assume σ2 < σ2
0 .

3.2. Bifurcation of positive equilibria and their stability

The destabilization of the extinction equilibrium at b = 1 in Lemma 3.1(a) sug-

gests a bifurcation of positive equilibria as b increases through b0. With all other

parameters held fixed, we consider the existence of positive equilibri pairs (x, u) as

a function of b and define [b, (x, u)] as an equilibrium pair, which we call a positive

equilibrium pair if x > 0. Conditions under which a bifurcation of positive equilib-

rium pairs from the extinction equilibrium pair [1, (0, 0)] are provided by general

bifurcation theorems for evolutionary difference equation models that can be found

in Refs. 15–17. Specifically, from Theorems 1 and 2 in Ref. 17 we have the following

theorem.

Theorem 3.1 Assume A2 holds. If σ2 < σ2
0 and ∂xβ (0, 0) 6= 0, then in an open

neighborhood of [1, (0, 0)] there exists a continuum of positive equilibrium pairs

[b, (x, u)] of (3.4)-(3.5) whose closure contains [1, (0, 0)].

(a) If ∂xβ (0, 0) < 0 then the bifurcation is forward and stable, i.e. the positive

equilibria (x, u) exist for b > 1 (but near 1) and are (locally asymptotically) stable.

(b) If ∂xβ (0, 0) > 0 then the bifurcation is backward and unstable, i.e. the posi-

tive equilibria (x, u) exist for b < 1 (but near 1) and are unstable.

This theorem extends the bifurcation alternatives in Fig. 1 for the non-

evolutionary population model to the Darwinian model (3.4)-(3.5), at least in a

neighborhood of the bifurcation point [1, (0, 0)]. However, it does not address the

existence or the stability properties of positive equilibrium pairs outside a neigh-

borhood of the bifurcation point. The global existence of the bifurcation continuum

of positive equilibrium pairs follows from general theorems in Ref. 15, but whether

the two global bifurcation alternatives, and their stability properties, shown in Fig.

1 hold for the evolutionary model (3.4)-(3.5) remains an open question.
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The positive equilibria in Theorem 3.1 have trait components that lie near u = 0

and therefore imply a life history strategy of low post-reproduction survival (as pre-

dicted in Ref. 4). On the other hand, model equations studied in Ref. 7 show that

equilibria lying outside a neighborhood of the bifurcation point can, under certain

circumstances, have trait components u that yield high post reproductive survival.

The models studied in Ref. 7 assume negative density effects only (hence they ex-

hibit only a forward stable bifurcation) and assume the fertility distribution bf (v)

has, in addition to the global maximum at the semelparous trait v = 0, a local max-

imum at a positive trait significantly different from 0. The latter critical trait yields

a high post-reproduction survival and accounts for this possibility in positive equi-

libria far from the bifurcation point. A drawback of that example of evolutionarily

selected post-reproduction survival is that it occurs for large inherent fertility rates,

whereas in natural populations it is generally the opposite: semelparous populations

tend to have the higher inherent fertility rates. In the next section we consider a

different scenario which will produce high reproductive survival at lower inherent

fertility rates, a scenario in which Allee effects play a key role.

3.3. A application

Consider the Darwinian equations (3.4)-(3.5) with fertility distribution bf (v) given

by

f (v) = exp
(
−w1v

2
)

(3.11)

and trait dependent density factor (2.11)

β (x, z) =
1 + a (z)x

1 + c (z)x+ a (z)x2
(3.12)

where z = v−u. We consider the two cases: the case when the competition coefficient

c (z) is symmetric

c (z) = c0 exp
(
−w2z

2
)
, w > 0 (3.13)

and the case when it is hierarchical

c (z) = c0 exp (−w2z) , w > 0. (3.14)

In both cases c0 > 0 measures the negative effects on fertility experienced by an

individual with mean trait v = u. In both cases we take the Allee coefficient to be

a (z) = a0 exp
(
−w3z

2
)
, w3 > 0 (3.15)

so that the maximum benefit due to the positive effect of increased density a0 > 0

(say, due to protection of newborns by the population) accrues to newborns inher-

iting the mean trait v = u.

We assume

σ2 < σ2
0 = 1/w1 (1− s)
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so that Theorem 3.1 applies. A calculation shows ∂xβ (0, 0) = a0− c0. By Theorem

3.1 the bifurcation at b0 = 1 is forward if c0 > a0 and backward if a0 < c0.

The equations for positive equilibria are

1 = bf (u)β (x, 0) + s (1− f (u))

0 = bf ′ (u)β (x, 0) + bf (u) ∂zβ (x, 0)− sf ′ (u) .

Since f ′ (u) = −2w1uf (u), we can re-write these equations as

1− s = (bβ (x, 0)− s) f (u)

0 = −2w1u (bβ (x, 0)− s) f (u) + bf (u) ∂zβ (x, 0) .

Use of the first equation in the second equation yields, after some algebra, the

equation

u = bf (u) ∂zβ (x, 0)
1

2w1 (1− s)
.

Finally, after a calculation of ∂zβ (x, 0) we obtain

u = −c′ (0)x
1 + a (z)x

(1 + c (z)x+ a (z)x2)
2

bf (u)

2w1 (1− s)
. (3.18)

which is an equation satisfied by all positive equilibrium pairs [b, (x, u)].

Near the bifurcation point the population density x is low and the trait com-

ponent u of a positive equilibrium is close to 0 and, as a result, there is low

post-reproduction survival. From (3.18) we see (since the right side tends to 0

as x → +∞) that any equilibrium (x, u) with a high density x component also

has a low trait component u and therefore low post-reproduction survival. In the

two cases considered below, we see that whether or not there exist equilibria with

trait components that are sufficiently greater than 0 (so as to result in a significant

post-reproduction survival probability) depends on trait dependency properties of

the density term β.

3.3.1. Symmetric competition coefficient c (z)

In this case c′ (0) = 0 and (3.18) implies u = 0 for all equilibria (x, u). The x

component therefore satisfies the equation 1 = bβ (x, 0) which is the equilibrium

equation of the non-evolutionary equation (2.6)-(2.7) studied in Section 2, but with

s = 0 and β given by (2.11). It follows that all positive equilibrium pairs are [b, (x, 0)]

where (b, x) lies on one of the two bifurcation diagrams in Fig. 1. Specifically, there

exists a unique positive equilibrium pair [b, (x1, 0)] for each b > 1 and when c > a

these are the only positive equilibrium pairs. When c < a there exist two additional

positive equilibrium pairs [b, (x1, 0)] and [b, (x2, 0)] when b∗ < b < b0. (This is true

for all σ2 > 0.)

Thus, in this case of a symmetric competition coefficient, all positive equilibria

(regardless of the direction of bifurcation or stability properties) have trait com-

ponent u = 0. This means that the post-reproduction survival probability of a

Cushing
Highlight
z = 0
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“typical” individual (i.e. one that inherits the mean trait) is 0 and, in this sense,

the population is a semelparous.3

3.3.2. Hierarchical competition coefficient c (z)

When the trait dependent competition coefficient has the hierarchical form (3.14)

the trait components u of the positive equilibria [b, (x, u)] near the bifurcation point

[1, (0, 0)] are necessarily near 0, but they not equal to 0 as is the case when the

coefficient has the symmetric form (3.13). This can be seen from (3.18) and c′ (0) =

−2w2c0 < 0, which implies u is positive for any positive equilibrium pair [b, (x, u)]

with u near 0.

Although we have no rigorous proof, numerical simulations show that it is pos-

sible for positive equilibrium pairs to exist, outside of a close neighborhood of the

bifurcation point, for which the trait component u is sufficiently positive so as to

yield a high post-reproduction survival probability s (1− f (u)). This is illustrated

by the numerically simulated examples in Fig. 2 where (for a selection of param-

eter values) we see a sample orbit that approaches a positive equilibrium for each

value of b in an increasing sequence. As b increases, the equilibrium population

density x increases (not unexpectedly) while the equilibrium trait u decreases. The

post-reproduction survival probability at equilibrium s (1− f (u)) is, for the lowest

values of b in Fig. 2, over 0.5 (per unit time); for larger values of b, however, it is

less than 0.005 (per unit time). The explanation for this is that in this particular

example a0 > c0 and a backward bifurcation induced strong Allee effect occurs (as

in Fig. 1 for the non-evolutionary model). It remains an open problem for this evo-

lutionary model to establish rigorously the existence of stable, positive equilibria

with large trait components and determine whether or not a backward bifurcation

induces a strong Allee effect (as is suggested by the case b = 0.9 < 1 in Fig. 2).

4. Concluding remarks

The basic population dynamic difference equation (2.6)-(2.7) was formulated so as to

describe a trade-off between fertility and post-reproduction survival and to allow for

density dependence in fertility. We formulated an evolutionary version of the model

using evolutionary game theoretic methodology5,6 so as to allow inherent fertility

and post-reproduction survival of an individual, as well as the effects of density on

fertility on these vital rates, to depend on a phenotypic trait v of the individual

that is subject to natural selection. The resulting Darwinian equations (3.4)-(3.5)

describe the dynamics of the population density x and the mean population trait u.

Our goal was to investigate, via this model, what life history strategy evolution will

favor; specifically, to determine conditions under which evolution will favor low post-

reproduction survival (what can be called a semelparous life history strategy) and

conditions under which it will favor high post-reproduction survival (an iteroparous

life history strategy). We assume there exists a trait at which fertility is maximized

(namely, without loss in mathematically generality, v = 0).
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General theorems imply the creation of positive equilibria (via a transcritical

bifurcation) as the maximal fertility rate b increases and the extinction equation

x = 0 destabilizes. The usual alternates hold with regard to their stability, namely,

forward bifurcating equilibria are stable and backward bifurcating equilibria are

unstable. This local bifurcation theorem concerns only positive equilibria near the

bifurcation point, which necessarily have mean trait components near u = 0. This

means they are equilibrium states with low post-reproduction probabilities.

Any equilibria with trait components far from u = 0 that yield equilibrium states

with high post-reproduction survival must therefore occur outside the neighborhood

of the bifurcation point. Their existence and stability are very model dependent.

We illustrated this by a specific model with components components (3.11), (3.12),

(3.14), (3.15), and either (3.13) or (3.14). This example shows the key role that the

trait dependence of the density effects have on fertility. In the case of a symmetric

dependence (3.13) of the competition coefficient on the trait difference v − u we

proved that only equilibria with zero post-reproduction survival exist. This case

supports Cole’s assertion that evolution favors semelparity.3 We also showed, how-

ever, that a hierarchical dependence of the competition coefficient on v−u can yield

equilibrium traits with high post-reproduction probabilities. This is illustrated by

the numerical examples in Fig. 2. In that specific example the Allee component

plays a key role by providing a backward bifurcation induced strong Allee effect.

A rigorous proof of this, and of the existence and stability of equilibria with high

reproduction survival probability, remain open mathematical problems.

We conclude with another comment concerning the question of what life history

strategy is favored by evolution. In evolutionary theory of life history strategies

there is the concept of an evolutionary stable strategy or trait (ESS). For the trait

component of an equilibrium to be an ESS trait, not only must the equilibrium be

stable as an equilibrium of the Darwinian equations, but (in order to resist invasion

by similar mutant species) the trait must lie on a global maximum of the adaptive

landscape at equilibrium. That is to say, if (xe, ue) is a stable positive equilibrium,

then it is an ESS if (only if) the adaptive landscape ln r (xe, v, ue) attains a global

maximum at v = ue.
5

The adaptive landscapes at equilibrium for the simulated examples in Fig. 2 are

shown in Fig. 3. The equilibrium mean trait component does indeed lie on at a global

maximum of the fitness landscape for all but the two larger b values shown. This

example exhibits the following interesting scenario as inherent fertility increases.

1. At low fertility rates evolution selects an ESS trait that yields a

high post-reproduction survival probability (iteroparity).

2. At higher fertility rates evolution selects a ESS trait that yields

a low post-reproduction survival probability.

3. At the highest fertility rates evolution selects a trait that yields

an even lower post-reproduction survival probability, but the trait

is no longer an ESS.



February 29, 2020 17:52 WSPC/INSTRUCTION FILE output

13

Thus, as inherent fertility increases, evolution selects more and more in favor of a

semelparous-like life history strategy, but one which eventually loses its ESS status.

This is but one scenario possible for this specific example. Further analysis

of this example for other parameter values and, more widely, of other Darwinian

model components (3.4)-(3.5) will no doubt reveal other, even contrasting, scenarios.

The model, as simple as the population and trait dynamics are assumed to be,

offers a fruitful starting point for the investigation of these evolutionary questions

concerning life history strategies and provides interesting challenges for rigorous

mathematical analysis.

5. Appendix

The goal is to establish the two bifurcation diagram possibilities for the non-

evolutionary model equations (2.6)-(2.7) with β (x) is given by (2.11) that are shown

in Fig.1. For notational simplicity, let b̄ = bf and s̄ = s (1− f) and re-write the

positive equilibrium equation r (x) = 1

b̄
1 + ax

1 + cx+ ax2
+ s̄ = 1.

Treating b̄ = b̄ (x) as a function of x > 0, we have

b̄(x) = (1− s̄) 1 + cx+ ax2

1 + ax
(5.2)

and

b̄′ (x) =
1− s̄

(1 + ax)
2 q (x)

where

q (x) := c− a+ 2ax+ a2x2.

The quadratic q (x) > 0 for all x > 0 if c > a. If c < a, then q (x) has unique

positive root (which is then a critical point of b̄ (x))

x∗ =
1

a

(√
1 + a− c− 1

)
and q (x) < 0 for 0 < x < x∗ and q (x) > 0 for x > x∗. These properties of q (x)

give the following facts about b̄ (x): (a) c > a implies b̄ (x) is monotone increasing

(from 1 − s̄ to +∞) for x ≥ 0 and (b) c < a implies b̄ (x) is monotone decreasing

for 0 < x < x∗ and monotone increasing for x > x∗, reaching a global minimum of

b̄∗ = b̄ (x∗) , i.e.

b̄∗ =
1− s
a

(
2
√

1 + a− c+ c− 2
)

.

It follows that when c > a there exists a positive equilibrium x1 > 0 if and only

if b̄ > 1 − s̄, in which case it is unique. It also follows that when c < a there exist

exactly two positive equilibria x1 > x2 > 0 for b on the interval b̄∗ < b̄ < 1 − s̄
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and exactly one positive equilibrium x1 > 0 when b̄ ≥ 1 − s̄. Note that q (x2) < 0

and q (x1) since the roots lie on opposite sides of x∗. Reverting back to b = b̄/f

and s = s̄/ (1− f) , obtain two bifurcation diagrams in Fig. 1 where the bifurcation

point 1− s̄ for b̄ becomes the bifurcation point b0 = (1− s (1− f)) /f for b.

To study the stability of a positive equilibrium x = xe > 0 by means of the

linearization principle, we consider

λ (x) = (r (x)x)
′

= b̄
a (c− 1)x2 + 2ax+ 1

(ax2 + cx+ 1)
2 + s̄.

Evaluating this at a positive equilibrium xe > 0 and using (5.2), we obtain

λ (xe) = (1− s̄) a (c− 1)x2e + 2axe + 1

(1 + axe) (ax2e + cxe + 1)
+ s̄. (5.8)

By linearization xe is (locally asymptotically) stable if |λ (xe)| < 1.

First we see that

a (c− 1)x2e + 2axe + 1

(1 + axe) (ax2e + cxe + 1)
> −1

since this inequality is equivalent to

a (c− 1)x2e + 2axe + 1 > − (1 + axe)
(
ax2e + cxe + 1

)
or

a2x3e + 2cax2e + 3axe + cxe + 2 > 0

which is true. From (5.8) follows

λ (xe) > (1− s̄) (−1) + s̄ = 2s̄− 1 > −1.

We are left to consider λ (xe) < 1. First notice that this inequality is equivalent to

the inequality

a (c− 1)x2e + 2axe + 1

(1 + axe) (ax2e + cxe + 1)
< 1.

Multiply this inequality by the denominator and bring the left side of the result

to the right side. The result, after a cancellation of a factor xe, is the equivalent

inequality

0 < q (xe) .

We conclude that λ (xe) < 1 and xe is stable if q (xe) > 0. Reversing the in-

equality in these manipulations shows that λ (xe) > 1 and hence xe is unstable if

q (xe) < 0.

We showed above that when c > a, the unique positive equilibrium x1 that

exists if (and only if) b̄ > 1 − s̄ (equivalently b > b0) satisfies q (x1) > 0 and is

therefore (locally asymptotically) stable.

In the case c < a we showed above that q (x1) > 0 and q (x2) < 0. Thus, the

smaller equilibrium x2 > 0 that exists when b̄∗ < b̄ < 1− s̄ (equivalently b∗ < b < b0
where b∗ = b̄∗/f) is unstable, and the larger equilibrium x1 that exists for all b̄ > b̄∗

(equivalently b > b∗) is (locally asymptotically) stable.
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Fig. 1. shown are the two possible graphs of the positive equilibrium

pairs [b, x] of (2.6)-(2.7) with β (x) given by (2.11). The equilibrium

x1 > 0 is (locally asymptotically) stable and x2 > 0 is unstable.

The extinction equilibrium x = 0 is stable for b < b0 and unstable

for b > b0. (a) a < c implies a forward bifurcation and the exis-

tence of a unique, stable positive equilibrium x1 for and only for

b > b0. (b) a > c implies a backward bifurcation which creates a

strong Allee effect with a unstable equilibrium x2 > 0 and a stable

equilibrium x1 > 0 for b∗ < b < b0 and a unique stable positive

equilibrium x1 for b ≥ b0.
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Fig. 2. A sample solution (xt, ut), for each value of b0 in the shown

sequence of selected values, is seen converging to a positive equi-

librium for the Darwinian equations (3.4)-(3.5) with model compo-

nents (3.11), (3.12), (3.14), and (3.15). The remaining parameter

values are s = 0.9, c0 = 0.1, a = 10, w1 = 0.05, w2 = 20, w3 = 0.1,

and σ2 = 0.5. In order of increasing b values, the post-reproduction

survival probabilities at equilibrium s (1− f (ue)) are respectively

0.79, 0.59, 0.13, 0.040, 0.0049, and 0.0018 (to 2 significant digits).
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Fig. 3. Shown are the adaptive landscapes for the equilibria in Fig.

2. The open circles indicate that v = ue lies on a maximum where

r (xe, ue, ue) = 1 (since xe is a positive equilibrium). Note that as

b increases (to b = 60 and 100) a second (local) maximum appears

that eventually becomes the global maximum at which point ue is

no longer an ESS.


