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The purpose of this note is to prove an abstract operator version of certain
existence theorems for differential and Volterra integral equations which deal with
stability properties of solutions. We will do this in such a way that the results unify,
as well as generalize, many of the basic theorems concerning stability of such equa-
tions. Thus, our main result(Theorem2)is an abstract version of well-known
results for differential systems and was obviously motivated by the work begun by
Massera and Schaffer and others relating to admissibility [6]. (More precisely,
Theorem 2 is appropriately applied to the equivalent Volterra integral system
obtained by integrating a differential system.) In the same way, Theorem 2 can by
applied to integrodifferential systems to obtain known stability results ($¥mathrm{e}.¥mathrm{g}.$ , Theo-
rems 1 and 2 in [4], Theorem 1 in [5], and Theorem 10 in [10] $)$ . Also as a cor-
ollary we can derive a functional analytic theorem of Miller [7] which in turn has
many stability theorems of Volterra integral equations as corollaries. These appli-
cations are made more explicit in the remarks below.

Let $F$ denote a real Frechet space and let $B_{1}$ , $B_{2}$ denote two normed linear sub-
spaces of $F$ whose norms $|¥cdot|_{1}$ , $|¥cdot|_{2}$ respectively yield topologies stronger than that in-
duced by the metric on $F$ . We consider here the problem of describing (locally)

the set of those elements $f¥in B_{2}$ for which the operator equation

(E) $Lx=f+p(x)$

has a solution $x$ $¥in B_{1}$ . Here $L$ is a linear operator defined on $F$ and $p$ is an oper-
ator about which more is specified below. Our main result (Theorem 2 $(¥mathrm{i}¥mathrm{i})$ ) gives
conditions under which the set of $f¥in B_{2}$ yielding solutions of (E) in $B_{1}$ is locally
homeomorphic to the set yielding solutions in $B_{1}$ of the linear problem $Lx=f$ . We
begin by assuming the following hypothesis:

$H1$ : $L$ is a linear, one-one, closed operator from $F$ onto $F$ .

By the closed graph theorem $L$ and $L^{-1}$ are continuous on $F$ . In our motivation
for considering (E), $L$ is thought of as a linear Volterra integral operator of the
form
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(V) $Lx=x(t)-¥int_{a}^{t}K(t, s)x(s)ds$.

If $F=C^{0}[a,$ $+¥infty$ ) with the metrizable topology of uniform convergence on compact
subsets, then $HI$ is fulfilled under any conditions on $K$ which guarantee the existence
(global), uniqueness, and continuity of solutions with respect to $f[8]$ . For $S¥subseteq F$ ,
let $L(S)$ denote the range of $L$ restricted to $S$ . We also need

$H2$ : $¥{_{¥forall}¥mathrm{T}h¥in B_{2}^{2}¥exists g¥in B_{2}^{1}¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{w}¥mathrm{h}¥mathrm{i}¥mathrm{c}¥mathrm{h}g+h¥in L(B_{1})¥mathrm{h}¥mathrm{e}¥mathrm{r}¥mathrm{e}¥mathrm{e}¥mathrm{x}¥mathrm{i}¥mathrm{s}¥mathrm{t}¥mathrm{c}¥mathrm{o}¥mathrm{m}¥mathrm{p}1¥mathrm{e}¥mathrm{m}¥mathrm{e}¥mathrm{n}¥mathrm{t}¥mathrm{a}¥mathrm{r}¥mathrm{y}¥mathrm{s}¥mathrm{u}¥mathrm{b}¥mathrm{s}¥mathrm{p}¥mathrm{a}¥mathrm{c}¥mathrm{e}¥mathrm{s}B_{2}^{1}.’ B_{2}^{2}$

of $B_{2}$ such that

Lemma. Assume $HI$ and $H¥mathit{2}$ . Let $C$ be any subspace of $B_{2}^{1}$ complementary
to the subspace $B_{2}^{1}¥cap L(B_{1})$ . Then $¥forall h¥in B_{2}^{2}¥exists$ a unique $g$ $¥in C$ for which $g+h¥in L(B_{1})$ .
Denote $g=Ah$ ; then $A$ is a linear operator from $B_{2}^{2}$ into $C$ .

Proof. For $h¥in B_{2}^{2}$ there exists, by $H¥mathit{2}$ , a $g^{*}¥in B_{2}^{1}$ and a $u^{*}¥in B_{1}$ such that
$Lu^{*}=g^{*}+h$ . Write $g^{*}=f+g$ for $f¥in B_{2}^{1}¥cap L(B_{1})$ and $g$ $¥in C$ . Let $u^{**}¥in B_{1}$ be such
that $Lu^{**}=f$ and set $u=u^{*}-u^{**}¥in B_{1}$ . Obviously $Lu=g+h$ or $g+h¥in L(B_{1})$ .
As for the uniqueness of the element $g$ $¥in C$ suppose $g^{¥prime}¥in C$ is such that $Lu^{¥prime}=g^{¥prime}+h$

for some $u^{¥prime}¥in B_{1}$ . Then $L(u-u^{¥prime})=g-g^{¥prime}$ and hence $g-g^{¥prime}¥in B_{2}^{1}¥cap L(B_{1})$ as well as
$g-g^{¥prime}¥in C$ . Thus $g-g^{¥prime}=0$ . The linearity of $A$ is easily demonstrated. 1

Let $P$ denote the projection from $B_{2}^{1}$ onto $B_{2}^{1}¥cap L(B_{1})$ with respect to $C$ .

Definition. The linear operator $L$ is called $(B_{1}, B_{¥mathit{2}})$ -admissible if $Hl$ and $H¥mathit{2}$

are satisfied and the linear operator $A$ is bounded.

Theorem 1. If $L$ satisfies $HI$ and $H¥mathit{2}$ with $B_{1}$ , $B_{2}$ complete and $C$ , $B_{2}^{2}$ closed,
then $L$ is $(B_{1}, B_{¥mathit{2}})- adm¥dot{¥iota}ssible$.

Proof. We need only show $A$ is bounded. Since $B_{1}$ , $B_{2}$ , $C$ , and $B_{2}^{2}$ are all
complete, it is not difficult to verify that $D=¥{x¥in B_{1} : Lx ¥in C¥oplus B_{2}^{2}¥}$ is a Banach sub-
space of $B_{1}$ under the norm $|x|_{D}=|x|_{1}+|Lx|_{2}$ . Also since $C$ , $B_{2}^{2}$ are closed, the
projection $P^{¥prime}$ from $C¥oplus B_{2}^{2}$ onto $B_{2}^{2}$ is bounded. Thus, the linear operator $ L^{*}¥equiv$

$P^{¥prime}L:D¥rightarrow B_{2}^{2}$ is bounded. Using the above lemma and the invertibility of $L$ one can
easily verify that $L^{*}$ is one-one and onto $B_{2}^{2}$ . Banach’s theorem implies $L^{*-1}$ : $B_{2}^{2}$

$¥rightarrow D$ is bounded. Now $x¥in D$ implies $Lx=g+h$ for $g$ $¥in C$ and $h¥in B_{2}^{2}$ and the lemma
implies $g=Ah$ ; thus, $L^{*-1}h=x$ and

$|Ah+h|_{2}=|Lx|_{2}¥leq|L^{*-1}h|_{1}+|Lx|_{2}=|L^{*-1}h|_{D}¥leq|L^{*-1}||h|_{2}$

or

$|Ah|_{2}¥leq(|L^{*-1}|+1)|h|_{2}$ . I
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Remarks. (1) The definition of admissibility given above is a straightforward
generalization of that given and extensively studied by Massera and Schafier [6] for
differential equations where in this case $L$ is operator given in (V) with $K=K(s)$ .
For differential equations in Euclidean space we take $B_{2}^{1}=R^{n}$ and the space $L(B_{1})$

$¥cap B_{2}^{1}$ becomes the set of initial conditions giving rise to solutions of the homoge-
neous system lying in $B_{1}$ while $C$ is any complementary subspace (and hence closed).

(2) It is important to note, however, that the above definition of admissibility
is not equivalent to the notion of admissibility of linear operators as frequently
defined in the study of Volterra integral equations [2,3,7]. Miller [8, p. 252] de-
fines $L$ to be $(B_{2}, ¥mathrm{B}_{1})$-admissible if $L(B_{2})¥subseteq B_{1}$ . Since $L$ is assumed invertible this is
equivalent to $L^{-1}$ being $(B_{1}, ¥mathrm{B}_{2})$-admissible by our definition above with $B_{2}^{1}=¥{0¥}$ and
hence $B_{2}^{2}=B_{2}$ and $A¥equiv 0$ . The advantage in the greater generality $(A¥not¥equiv 0)$ of the
definition above is that in applications to integral equations we obtain existence
results in the case that $L$ is not necessarily a stable Volterra operator.

We now are ready to consider equation (E). Let $S(r)=¥{x¥in B_{1} : |x|_{1}<r¥}$ .
Concerning the operator $p$ we need the hypothesis

$H3$ : $¥left¥{¥begin{array}{l}¥mathrm{A}¥mathrm{s}¥mathrm{s}¥mathrm{u}¥mathrm{m}¥mathrm{e}L¥mathrm{s}¥mathrm{a}¥mathrm{t}¥mathrm{i}¥mathrm{s}fi ¥mathrm{e}¥mathrm{s}H2.¥mathrm{T}¥mathrm{h}¥mathrm{e}¥mathrm{n}p¥cdot.B_{1}¥rightarrow B_{2}^{2}¥mathrm{i}¥mathrm{n}¥mathrm{s}¥mathrm{u}¥mathrm{c}¥mathrm{h}¥mathrm{a}¥mathrm{w}¥mathrm{a}¥mathrm{y}¥mathrm{t}¥mathrm{h}¥mathrm{a}¥mathrm{t}¥¥|p(x)-p(y)|_{2}¥leq¥theta|x-y|_{1}¥forall x,y¥in S(r)¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{s}¥mathrm{o}¥mathrm{m}¥mathrm{e}r,¥theta>0,r¥leq+¥infty.¥end{array}¥right.$

Theorem 2. Assume $p$ satisfies $H¥mathit{3}$ and $L$ is $(B_{1}, B_{¥mathit{2}})$-admissible where $B_{1}$ and
$B_{2}^{2}$ are complete. Then the following conclusions hold: (i) $¥exists k>0$ such that if $¥theta<k$

and $|p(0)|_{2}<k$ then to each $g¥in L(S(kr))$ there corresponds an $h¥in C$ for which $a$

unique solution $x$ of (E) with $f=g+h$ exists in $S(r);(¥mathrm{i}¥mathrm{i})$ further, $¥exists$ constants $r^{*}$ , $k^{*}$

satisfying $0<r^{*}<r$, $0<k^{*}<k$ such that $¥theta<k$ , $|p(0)|_{2}<k^{*}$ imply the existence of $a$

one-one, bicontinuous correspondence $Q$ from the set of those $y¥in S(kr)$ for which
$Ly$ $¥in B_{2}^{1}$ onto the set of those $x¥in S(r^{*})$ for which $Lx-p(x)¥in B_{2}^{1}$ . This correspond-
ence $x=Qy$ is such that $P(Lx-p(x))=Ly$ .

Proof, (i) Consider the linear operator $L^{*}:$ $B_{2}^{2}¥rightarrow B_{1}$ defined by $ L^{*}¥equiv$

$L^{-1}(A+I);L^{*}$ is closed, for if $h_{n}¥rightarrow h_{0}¥in B_{2}^{2}$ and $Lh_{n}¥rightarrow h^{*}¥in B_{1}$ then $ Ah_{n}+h_{n}¥rightarrow$

$Ah_{0}+h_{0}$ in $B_{2}^{2}$ and, hence, in $F$ . The continuity of $L^{-1}$ on $F$ implies $L^{*}h_{n}¥rightarrow L^{*}h_{0}$

and consequently $L^{*}h_{0}=h^{*}$ . The closed graph theorem implies $L^{*}$ is bounded $(B_{2}^{2}$

is assumed complete). Given $g¥in L(S(kr))$ consider the operator $T:S(r)¥rightarrow B_{1}$ de-
fined by $Tx=y+L^{*}p(x)$ where $y=L^{-1}g$ . If we choose $ k<¥min$ $(|L^{*}|^{-1},$ $r(r+|L^{*}|$

$(r+1))^{-1})$ , then the estimates $|L^{*}p(x)-L^{*}p(z)|_{1}¥leq k|L^{*}||x-z|_{1}¥forall x$ , $z¥in S(r)$ and

$|Tx|_{1}¥leq|y|_{1}+|L^{*}|(|p(x)-p(0)|_{2}+|p(0)|_{2})¥leq kr+|L^{*}|(k|x|_{1}+k)<r$

$¥forall x¥in S(r)$ (which follow from $H¥mathit{3}$ and the assumptions on $¥theta$ , $|p(0)|_{2}$) show $T$ is a
contraction from $S(r)$ into itself. Thus, $B_{1}$ complete implies $Tx=x$ for some
$x¥in S(r)$ . But then $LTx=Lx$, which reduces to (E) with $h=Ap(x)$ .
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(ii) Given $y¥in S(kr)$ for which $Ly$ $¥in B_{2}^{1}$ we have, by the proof above, a unique
fixed point $x$ of $T$ in $S(r)$ . Denote $x=Qy$ . Since $x$ satisfies $x=y+L^{*}p(x)$ it fol-
lows easily that $Qy_{l}=Qy_{2}$ implies $y_{1}=y_{2}$ . Moreover, for $y_{1}$ , $y_{2}$ in the domain of $Q$

we have

$Qy_{2}-Qy_{1}=x_{2}-x_{1}=y_{2}-y_{1}+L^{*}(p(Qy_{2})-p(Qy_{1})))$

and consequently (by $H¥mathit{3}$ and the above choice of $ k>¥theta$) the estimate $|Qy_{2}-Qy_{1}|_{1}$

$¥leq(1-k|L^{*}|)|y_{2}-y_{1}|_{1}$ . Hence $Q$ is one-one and continuous. Further,

$Q^{-1}x_{2}-Q^{-1}x_{1}=y_{2}-y_{1}=x_{2}-x_{1}-L^{*}(p(x_{2})-p(x_{1}))$

and hence $|Q^{-1}x_{2}-Q^{-1}x_{1}|_{1}¥leq(1+|L^{*}|k)|x_{2}-x_{1}|_{1}$ ; that is, $Q^{-1}$ is continuous (on the
range of $Q$).

Now choose $k^{*}<¥min(k, 1/2kr|L^{*}|^{-1})$ and $r^{*}<¥min(r, 1/2kr(1+k|L^{*}|))$ . To
show $Q$ is onto the set described in the theorem we assume $x¥in S(r^{*})$ is such that
$Lx-p(x)¥in B_{2}^{1}$ and define $y=x-L^{*}p(x)¥in B_{1}$ . Then we claim $y$ is in the domain
of $Q$ and $Qy=x$ provided $|p(0)|_{2}¥leq k^{*}$ . By definition of $L^{*}$ we have $Ly=Lx-$
$p(x)-Ap(x)$ which belongs to $B_{2}^{1}$ . Further, by $H¥mathit{3}$ , $|y|_{1}¥leq|x|_{1}+|L^{*}|(k|x|_{1}+|p(0)|_{2})$

$¥leq kr$ by the way $r^{*}$ and $k^{*}$ were chosen. Thus, $y¥in S(kr)$ and $Ly$ $¥in B_{2}^{1}$ so $Qy=$

$x^{*}¥in S(r)$ is defined. Thus, by the definition of $¥mathrm{g}$ , $Tx^{*}=x^{*}$ or $x^{*}=y+L^{*}p(x^{*})$ or
$x^{*}=x-L^{*}p(x)+L^{*}p(x^{*})$ from which we have $|x^{*}-x|_{1}¥leq k|L^{*}||x^{*}-x|_{1}$ . Since
$k|L^{*}|<1$ we conclude $x^{*}=x$ and that $Q$ is onto. The last assertion in (ii) follows
immediately from the definition of Q. 1

Remarks. (3) From Theorem $2(¥mathrm{i}¥mathrm{i})$ one can derive many well known results
concerning the conditional stability (as well as stability and instability) of perturbed
systems of differential equations. Here $L$ is given by (V) with $K=K(s)$ and $F=$

$C^{0}[a,$ $+¥infty$ ) with $B_{l}=BC$ the Banach space of all bounded continuous functions
under the $¥sup$ norm, and $B_{2}^{1}=R^{n}$ . If $B¥subseteq F$ is a Banach space of forcing functions

for the differential system we take $B_{2}^{2}=¥{h:h=¥int_{0}^{t}m(s)ds$ , $m¥in B¥}$ and $B_{2}=B_{2}^{1}¥oplus B_{2}^{2}$

where $|f|_{2}=f(0)+|m|_{0}$ , $f(t)=|f(0)|+g(t)¥in B_{2}$ . The $(B_{1}, ¥mathrm{B}_{2})$ -admissibility of $L$ means
that to each forcing term $m¥in B$ the linear nonhomogeneous differential system has
at least one solution in $B_{1}$ . For example, Theorems 11, 12 in Coppel [1, Chap. 3]
follow by taking $B$ to be $L^{1}$ and $BC$ respectively.

In the same way, the generalizations of these results to integrodifferential sys-
tems found in [4], [5] and [10] as mentioned above (but proved there in a com-

pletely different way) can be derived from Theorem $2(¥mathrm{i}¥mathrm{i})$ .

(4) One can replace the Lipschitz condition on $p$ in $H¥mathit{3}$ by the condition
$|p(x)|_{2}¥leq¥theta|x|_{1}$ and derive a theorem similar to Theorem 2 using the Schauder Theo-
rem in place of the contraction principle. This is at the expense of assuming $L^{-1}$
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is compact, however, which turns out to be the case for many applications to dif-
ferential systems (see, for example, [1, Theorem 13, Chap. 3]).

(5) Frequently in applications involving Volterra integral equations the sys-
tems concerned have the form

$(E’)$ $x=f+K(x+q(x))$

where $K$ is a linear operator. If $K:F¥rightarrow F$ is continuous and if $I-K:F¥rightarrow F$ is
one-one and onto, then $(E’)$ is equivalent to (E) with $L=I$, $y=(I-K)^{-1}f$, and $p=$

$(I-K)^{-1}Kq$ . The identity operator I is $(B_{1}, ¥mathrm{B}_{1})$-admissible (with $C=¥{0¥}$ and $A¥equiv 0$)
for any Banach space $B_{1}¥subseteq F$ . If $B¥subseteq F$ is any Banach subspace of $F$ with a strong-
er topology than $F$ ; if $q:B_{1}¥rightarrow B$ ; and if $R=(I-K)^{-1}K$ satisfies $R(B)¥subseteq B_{1}$ (hence $R$

is continuous, by the closed graph theorem [7, Lemma 2] $)$ ; then $p$ maps $B_{1}$ into
itself. From Theorem $2(¥mathrm{i})$ we obtain the following

Corollary (MiUer, [7, Theorem 1]). If $K$ is a continuous, linear operator form
$F$ into $F$ such that I?K is one-one and onto; if $B_{1}$ and $B$ are Banach subspaces of
$F$ {with stronger topologies than that of $F$) for which $R(B)¥subseteq B_{1}$ , $R=(I-K)^{-1}K$ ; if
$q$ maps $B_{1}¥subseteq B$ such that $|q(x)-q(y)|_{B}¥leq¥theta|x-y|_{1}¥forall x$ , $y¥in S(r)$ and some $¥theta¥geq 0$ ; then
there exists a constant $k>0$ such that for $|y|_{1}¥leq kr$ , $|p(0)|_{2}<k$ , and $¥theta<k$ equation
$(E’)$ has a unique solution in $S(r)$ .

The application of Theorem $2(¥mathrm{i}¥mathrm{i})$ gives a more detailed account of the solutions
of $(¥mathrm{E}’)$ in $B_{1}$ at least for smaller $|p(0)|_{2}$ . As pointed out by Miller [7] many results
dealing with the existence of $B_{1}$ solutions and the stability of systems of perturbed
Volterra equations follow from this corollary (see, for example, results in [9]).
The conditions placed on the resolvent kernel of the linear equation which appear
in the literature can usually be interpreted as sufficient conditions to assure the
admissibility of the resolvent operator $R$ . One can also apply Theorem 2 to $(E’)$

directly with $L=I-K$ and $p=Kq$ ; this would yield results appropriate to proving
the existence of $B_{1}$ solutions to integral equations when the linear operator $I-K$ is
not stable.
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