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A multiparameter bifurcation theory is developed for families of asymptotically
periodic solutions of a general Volterra integal system. A Hopf-type bifurcation
theorem follows as a corollary. Within the bifurcating family is a strictly periodic
solution to which all other solutions in the family are asymptotically convergent. A
characterization of the stable manifold of the bifurcating periodic solution is thus
obtained as an existence result. An application is made to an integral equation
arising in population dynamics.

1. Introduction

Our concern in this paper is with the existence of asymptotically
(nontrivial) periodic solutions of the general system of Volterra equations

x(:)=g(r)+J;'K(s)x(:—s)dwr(x), )

where r is a general operator about which more is assumed below,
| K(s)|€L'[0, + o0), and g(1)—0 as t—+oo0. The approach taken here
utilizes a multiparameter (Liapunov-Schmidt-type) bifurcation theory,
where K and r depend on m > 1 real parameters, the main result of which is
Theorem 5.1. A one-parameter Hopf-type bifurcation theorem (Theorem
5.2) follows as a corollary. These theorems describe the existence of a
bifurcating family of asymptotically period solutions. More explicitly it is
shown that for certain parameter values (near certain critical values) there
is a family of forcing functions g(r) each of which gives rise to an
asymptotically periodic solution of (V). Furthermore, there is a unique g(¢)
in each of these families for which the solution of (V) is strictly periodic
and all other forcing functions in the family give rise to solutions that are
asymptotically convergent to this periodic one. Also, if the “limiting
equation” [namely, (V,) in Sec. 2 below] of (V) is autonomous in the sense
that translates of solutions are still solutions, then the families of forcing
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functions whose solutions are asymptotic to translates of the periodic
solution can be unioned to obtain the family of forcing functions whose
solutions are asymptotic to some translate of the periodic solution.

Thus, one feature of the approach taken here is that the nature of the
stability of the nontrivial periodic solution is obtained as the result of the
existence theorem (rather than from a separate stability analysis, such as a
Floquet theory).

The analysis is carried out on a direct sum space consisting of a (fixed
period) space of periodic functions added to a space of asymptotically zero
functions. Equation (V) is then decomposed by projection into a “limiting
equation” to be solved on the periodic space, whose bifurcation theory is
treated in Sec. 3 (as a generalization of the results in Cushing [4]), and an
equation on the space of asymptotically zero functions, which is treated in
Sec. 4. The main results are put together in Sec. 5 and an example from the
theory of population dynamics is worked out in Sec. 6.

2. Preliminaries

Let BC, be the Banach space of n-vector valued functions x(¢), continu-
ous for 7> 0, that satisfy x(7)—0 as 17—+ co0. Let C(p) be the Banach space
of continuous p-periodic functions. Both of these spaces have the supre-
mum norm |-|,. Set A(p)=C(p)®BC,, a space whose elements are
asymptotically p-periodic.

The following hypothesis will be made on the operator 7(x) in (V).

HI. r: A(p)—A(p) is continuous for some p>0, in which case we can
write r(x)=r,(x)+ry(x), i A(p)—>C(p), and ry: A(p)>BC,. As-
sBugle ,(0)=0 and r(x,+x0)—r(x,) € BC, for all x,EC(p) and x, €

0‘

In our analysis below we will use the following equivalent hypothesis.

HY. r: A(p)—A(p) is continuous for some p>0 such that r,(0)=0 and
1,(x,+Xo) is independent of x, € BC, for every x,€C(p) [i.e., r(x,
+x0)“rp(xp)].

Lemma 1. Hypotheses H1 and H1' are equivalent.
PROOF. If H1’ holds, then
r(x,+x0)=r,(x,)+r(x,+x,).
Subtracting r(x,)=7,(x,)+r(x,) from r(x,+x,), we find that
r(x,+xo)—r(x,)=r(x,+x,)—r(x,) EBC,,
so that H1 holds.
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Conversely, if H1 holds, then
r(xp+xo)—r(xp)=rp(xp+xo)+ro(xp+x0)
—=r(x,)—rfx,)EBG,

which implies 7,(x, +x,) —1,(x,) =0, i.e,, HI’ holds. O
Note that hypotheses H1 and H1’ both imply that r: BCy—BC, (just let
x,=0in HY').

The following hypothesis will be made on the kernel K.

H2. K(t) is an nXn matrix valued function of ¢>0 for which |K(¢)|€
L'[0, + o).

Lemma 2. If K(t) satisfies H2, then for all xEA(p) the linear operator
Lx = [{K(s)x(t—s)ds can be written as Lx=L,x+ Lox, where

Lx= j;”x(x)x,(:~s)deec(p),

Lox= —_[wK(x)xp(t—s)ds+ L‘K(:—-s)xn(s)dyeBCo.

PROOF. That Lx=L,x+ Lyx and L, EC(p) is obvious. The bound
o0 o0
If K(s)xp(t—s)ds} <]xp|mj: |K(s)|ds
t

together with H2 shows that the first integral in Lyx lies in BC,. To show
that the second integral in Lyx also lies in BC, let >0 be arbitrary and
choose T=T(e)>0 such that |xq(¢)|<e/[s°|K(s)|ds for t> T. Then for
t>T

erx(s}xo(z—s)dv!<f0T|K(z—s)|d,|xo|w+e,

which implies that limsup, |, | [{K(s)xo(t—s)ds|<e. Since £>0 is arbi-
trary we see that lim,_, , . [oK(5)xo(t—s5)ds=0. O

Under hypotheses H1 and H2, Eq. (V), as an equation for x=x X €
A(p), can be decomposed into the equivalent, uncoupled pair of syslerns

x(0)= [TK@x (=) ds+1,(x,),  xEC(R) (V)
xo(r)=g(r)—j; K(s)x,(t—s)ds+ry(x,+x,)

+ [K(s)xo(t—s5) ds. (Vo)
0
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The motivation for hypothesis H1 (or HI’) is both the decoupling of
(V,) and (Vp) and the application to “higher order” operators r(x) such as

r(x)= f "K(s)x*(t—s)ds,
0
which can be seen to satisfy H1’ by noting that
r(xp+x0)=fwK(s)x§(t—s)ds—me(s)xﬁ(f—s)ds
0 t

+er(s)(pr(t—s)xo(t—s)+x§(t—s))ds',
0
from which it is easy to see that
rp(xp+x[,)=f K(s)x2(t—s)ds,
0

and hence that H1’ holds.
Or more generally, consider the operator

r(x)= j; "K(t—5)f(x(s)) ds,

where K satisfies H2 and f: R"—R", f(0)=0, is continuous. For x=x, +
xo EA(p) we can write r(x)=r,(x)+ry(x), where

rp(x)=J{;mK(s)f(xp(t—s))ds,
ro(x)= wj;mK(s)f(xp(r—s))ds
+ L{K(s)(f(xp(t—s) +x,(t—5)) —f(xp(r—s))) ds.

Clearly, 7,(x) € C(p) and is independent of x,. As in the proof of Lemma
2, r(x) € BC,. Thus, r: A(p)—>A(p) for any p and satisfies HI.

3. Bifurcation of Periodic Solutions of (V,)

The purpose of this section is to prove the existence of nontrivial
periodic solutions of equations of the from (V,). This will be done by
means of a multiparameter bifurcation theorem that is a generalization of
that in Cushing [4]. As a corollary we shall obtain a classical one-parameter,
Hopf-type bifurcation theorem for (V,).

Our approach is often referred to as the “Liapunov—Schmidt method”;
specifically, we shall utilize Theorem 1 of Cushing [3] (also see Ref. [4]).
The key requirement for this method is the establishment of a Fredholm
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alternative for the linear systems

Ly=y(1)~ [ K(s)y(t=s)ds=0, (H)
Lw:-=w(!)-fDmK(s)w(t—s)ds'=f(.r), (NH)

where f€ C(p) for some fixed period p>0 and K satisfies H2. Associated
with (H) is the adjoint system

z(:)—j;”xt(s)z(;+s)¢s=o, (A)

where the superscript t denotes the complex conjugate transpose.

For complex n vectors v=col(v;), w=col(w;), let (v, w)=2,0,w*, where
* denotes complex conjugation. Let L?(p) denote n-vector valued, p-
periodic functions that are square summable on 0</<p and denote
(f, 8)=p ¢ (f(2), g(1)) dt. By a solution of (NH), (H), or (A) in L?(p) we
mean functions that satisfy these equations almost everywhere.

Lemma 3. (a) The homogeneous system (H) can have at most a finite number
m of independent p-periodic solutions in L*(p). The adjoint system (A) also
has exactly m independent p-periodic solutions in L*(p).

(b) If m=0, then (NH) has, for each f€L*(p), a unique solution
weL?*(p).

(¢) If m>1 and z,€EL*(p), 1 <i<m, are independent p-periodic solu-
tions of (A), then (NH) has a solution w& L*(p) if and only if (z;, f)=0
forall 1<i<m.

PROOF. (a) There is a one—one correspondence between functions in L*( p)
and square summable sequences of complex vectors (Fourier coefficients)
a,, n> 0. The function

+ oo

y()= 3 a,explinwt), w=27/p, a_,=a*,

solves (H) if and only if the a, solve
(I-K,)a,=0, n>0, (3.1)

where K, = [°K(s)exp(—inws)ds. By the Riemann-Lebesgue theorem
[6], K,—0 as n— + oo, which implies det(/— K, )—1 as n— + c0. Thus for
all sufficiently large n, det(/—K,)50 and a, =0. This implies (H) has at
most a finite number of independent p-periodic solutions in L?(p). That
(A) also has m independent p-periodic solutions follows from the fact that
the coefficients of a solution z(1)=31 > _b exp(inwt) must solve the
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adjoint system of (3.1):
(I-K,)'b,=0. (32)

(b) x(1)=2}2 _a,exp(inwt) solves (NH) if and only if
(I_Kn)an=):|’ (3'3)

where the f, are the Fourier coefficients of f(¢). If m=0, then (3.1) has no
nontrivial solutions for all n > 0, which implies (3.2) has a unique solution
a,=(I—K,)"f, for all n>0. That these Fourier coefficients define a
function in L?*(p) follows from the facts that all K, are bounded by
J&| K(s)| ds and det(/—K,)—1 (and is consequently bounded away from
zero), which imply that |a,|<¢| f,| for some constant ¢ >0 independent of
n. Then, since f€ L*( p) implies the f, are square summable, it follows from
this bound that the a, are square summable.

(c) This statement follows from the necessary and sufficient orthogonal-
ity conditions for the solvability of (3.3) when (3.1) and (3.2) have nontriv-
ial solutions. That the sequence of Fourier coefficients still defines a
function in L?(p) follows from the bound |a,|<c|f,|, which is still valid
for sufficiently large # and hence implies a,, is square summable. 0O

The above Fredholm alternative for (NH) is stated on L?( p). Under the
following additional hypothesis on K it is valid on the space C(p):

H3. K(s) satisfies H2 and (1+5)Y| K(s)| € L*[0, + o) for some y>1/2.

Corollary 3.1. If K(s) satisfies H3, then Lemma 3 holds with L*(p) replaced
by C(p).

PROOF. It is only necessary to show that the solutions constructed in the

proof of Lemma 3 lie in C(p) when f lies in C(p).
First we show that these solutions are bounded. Write

J;wK(s)w(t—s)ds-J:K(s)w(f—s)ds+ LwK(s)w(t-s)ds.

The Cauchy-Schwarz inequality implies that the first integral satisfies the
bound

| [ Ko wle=5) | <IK 1]

for >0 [|w|3:= [#|w(s)|? ds] and hence is bounded in ¢ > 0. Also, we have
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fort>0

me(s)w(r—s) dsl

P

‘(fpw(l+S)2”IK(s)|’ds)w(L°°(1+s)-21|w(,_s),zdg)"’

<(L”(1+3)21IK(‘,)|2¢)'/2( § f('“-t)ps_27fW(f—s)|2ds')l/2

J=1%"Jp

o 1/2 ) 1/2
<([Ta+srmixe)ra) p**!wlz( 21—27) .
Thus H3 implies that [{°K(s)w(z—s)ds is bounded in 7 > 0. It follows that,
since fE€C(p) is bounded in ¢ >0, Eq. (NH) implies that w(¢) is bounded
int20.
Finally, we argue that the solution w(#) is continuous by showing that
the integral in (NH) is continuous in ¢ > 0 when w€ L?( p) is bounded. But
this follows from H3 and the identity

LmK(.s)w(H—e-s)ds— j;mK(s)w(t—s)ds
=fw(K(s+a)—K(s))w(t—s)ds+feK(s)w(t+e—s)d.’s'.
0 0

The first integral tends to zero as e—0 [6, p. 199]. The last integral tends to
zero as e—0 because w is bounded and | K | € L'[0, + o). O

Corollary 3.1 is a generalization of the Fredholm alternative given in
Cushing [4].
Consider now the equation

Lx:x(r)—LwK(s)x(!—s)dsﬂr(x,A), AER™ (VD)

where K satisfies H3 and r, which now depends on m real parameters
A=col(A;), satisfies H4 below. Let N(L) denote the null space in C(p) of
the linear operator L defined in (H).

H4. r: C(p)XR™—C(p) for some p, where r(ex, \)=er(x, A, £) for all
small ¢ and all (x,A)EC(p)*XR™, where r: C(p)XR™ XR—-C(p) is
g > 1 times continuously {(Fréchet) differentiable and satisfies 7( y,0,0)
=r(»,0,0)=0 for some y e N(L).
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Corollary 3.1 implies that the range of the bounded linear operator
L: C(p)—C(p) has finite codimension and that both N(L) and the range
of L are closed and admit bounded projections. These facts and H4
together with Theorem 1 of Cushing [3] immediately yield the following
general bifurcation theorem for (VP").

Theorem 3.1, Assume K(s) satisfies H3 and that r satisfies H4. Assume that
the linear system (H) has, for period p as in H4, exactly m > 1 independent
p-periodic solutions and let z,(1)EC(p), 1 <i<m, denote m independent
p-periodic solutions of the adjoint system (A). If

HS. d:=det(z,, FM(}',O, 0))#0,

then (V;‘) haf:p-periodfc solutions of the form x(t)=ey(t)+ez(t, &) with
A=A(¢e) for all small e, where y is as in H4, z(-,e)€C(p), z(1,0)=0,
A(0)=0, and z, A are q times continuously ( Fréchet) differentiable in e.

REMARKS

1. In most applications A ER™ is the difference between a system parame-
ter and a critical value of this parameter (at which the linearization has
nontrivial periodic solutions) and x is the difference between the depen-
dent variable and some equilibrium state.

2. In Theorem 3.1 use is made of m explicitly appearing system parameters
and a branch of periodic solutions of a fixed period p is found. In
applications the parameters in the vector A need not all be explicitly
appearing in at least the original form of the system, but can be
introduced into the analysis by means of rescaling of independent
variables. For example, in one-parameter (Hopf-type) bifurcation theo-
rems for autonomous systems only one explicitly appearing parameter is
used while m=2. However, one can obtain such Hopf-type bifurcation
theorems by changing from variable ¢ to 7/p (thereby introducing a
second parameter p, the unknown period, into the analysis) and
applying Theorem 3.1 on the space of 1-periodic functions (or any other
fixed period space). This is in fact often the approach taken in proofs of
Hopf-type theorems [4, 8, 9, 10], and we shall apply it to obtain such a
theorem for (V') in Corollary 2 below. For a further, more detailed
discussion of the connection between Theorem 3.1 and Hopf-type
bifurcation theorems (at least for integrodifferential equations, but the
discussion carries over to integral equations unchanged) see Cushing [2,
3].

3. System (V,}) need not be autonomous in the sense that r, and hence the
system, may determine the period p in H3 and Theorem 3.1. Thus,
Theorem 3.1 can apply to nonautonomous, but periodic systems. For
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applications to such a case and for further generalization of Theorem 1

in Cushing [3] used above, see Ref. [5].

4. Since Theorem 3.1 is only a local result, it is only necessary that H4
hold on some neighborhood of (x, A)=(0,0), e=0. We have stated H4
as above simply for simplicity and clarity.

Next we derive a more classical, Hopf-type bifurcation theorem for (V,)
using Theorem 3.1 and the approach mentioned in Remark 2. The only
complication in proving this corollary arises in showing that the nondegen-
eracy condition H4 is equivalent to the familiar transversal crossing of
“eigenvalues” across the imaginary axis. This was done for the scalar
(n=1) case in Cushing [4].

Consider the system

x(0)- [TK@wx(=s)ds=h(n ., kER, (%)

where K and h now depend on one real parameter p and where A is “higher
order” in x. More specifically,

H6. h: C(p)XR—C(p) for all p, and if P: C(2m)—C(p) is the operator
defined by Px=x(27t/p), then the composite operator h(Px, ) can
be written A(Px, p)=h,(x, p, p): CQRn)XR*—-C(2w), where h, satis-
fies h,(ex, p, p)=e*h\(x, p, p) for small e and all (x, p, B)ECQRm) X
R?, where h is ¢ > 1 times continuously (Fréchet) differentiable.

Clearly, if h satisfies H6, then h, satisfies H4. In order to carry out the
change of variables as described in Remark 2 we also assume the following
further assumption on the kernel K.

H7. K(s,p) is a twice continuously differentiable (with respect to (s, ),
X n matrix valued function that satisfies | K(s, p)|, |0K(s, p)/ou|€
L'[0, + o0),(1+5)"| K(s, p)| €L?[0, + o0) in s for some y>1/2, and
s|K(s, p)|—0 as s— + oo for all (small) reals .

Let K(z, 1) denote the Laplace transform of K(s, p). Assume

HS. There exists a continuously differentiable (complex) root z=z(p) of
the characteristic equation

A(z, p) =det(1—K(z,p))=0

such that
a. 2(0)=iwy, wy>0, and Rez'(0) >0,
b. A,(iw,,0)70, and
c. one is an algebracally simple (i.e., unrepeated) eigenvalue of
K(iwgy,0).
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Theorem 3.2. Under hypotheses H6, H7, and H8, Eq. (V}') has nontrivial
periodic solutions of the form

x(t)=ey(2mt/p)+ez(2mt/p,e),  u=p(e),
P=P0+P(3), P0=2W/w0s

Jor small e, where u(e), p(e) are q times continuously differentiable real
valued functions for which p(0)=p(0)=0 and where y(-), z(-, ¢) are 2m-
periodic functions, z(1,0)=0.

PROOF. Changing variables from 7 to 2#¢/p in (V}'), we arrive at a system
of the form

x()=(\+eg?) [TK((A+05 s, A )x(1—s) ds=hy(x, A, Ay),
0
where A\, =w™'—w; ', A\, =p, w=27/p, which by H7 can be written
x(0)-a5" [ K(wg's,0)x(1—s)ds
0
=r(x,A;,A;),
rzz[fm(K(wo' 's,0) +wg 'sK (wg 's,O))x(t—s)ds'])\l
0
+[w0' 'fwKF(w,_,_ ls,U)x(r“s)dr]i\z +p(x,A1,A,),
0

where p (hence r) satisfies H4 and p A, (x,0,0)=0. Theorem 3.1 now applies
with m=2 to this equation prowded the nondegeneracy conditions H5
holds.

The number d in HS is, for the above equation, a 2X2 determinant in
which

;,\,(.V>0»0)=fm( K(wg 's,0)+wy 'sK (wg 's,0))y(t—s) ds
0
2q
=fo = (sK(w5'5,0))y(1—s) ds

F;\,(J?,0,0)=wo_'j(; K, (wg 's,0)y(1—s)ds,

where y =Re vexp(it) is a 2#-periodic solution of
y(’)“wo'lfwK(wgls,O)y(r—-s)dst,
0

that is, ©50 is an n vector satisfying
(1—K(iwy,0))o=0.
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Note that an integration by parts yields

o0
7y (7,0,0)= f sK(wg's,0)y"(1—5)ds.
0
The adjoint solutions z,(t) appearing in H5 are z,(¢)=Rewexp(it) and
z,(t)=Imwexp(it), where w0 is an n vector satisfying
(1—R(iwg,0))'w=0.

It is easy to see (from Jordan form) that H8(c) implies that we may choose
v and w such that (v,w)=1.

A lengthy but straightforward calculation shows that if v=a+ib, w=c¢
+id, and if we define the matrices

c; :=fmsK(wg's,0)cossd9, 8 :=fm3K(wg‘s,0)sinsds,
0 0

Cy= j;mwo' 'K, (wo 's,0)cos s ds, Sz:wfjww,; 'K, (wq 's,0)sin sds,

then
4d=[(C,a,d)=(C\b,c)+(S;b,d)+(Sa,c)]
'[(Cla!d)"'(szb’d)+(sza'c)_(c2b’c)]
= [(Cza’c)+(szb’c)_(82a’ d)+(clb’ d)]
-[(8,a,d)—(Sb,c)—(C a,c)—(C,b,d)].
We have to show that this constant 4 is nonzero under H8. This will be
done by arguing that 4 is a nonzero multiple of Rez'(0).
Let v(p), w(p) be continuously differentiable n-vectored values func-
tions of p satisfying
(1—-K(z(p), p))o(p)=0,  (I=K(§(p), 1)) w(p)=0,

where z(p), {(n) are roots of A(z,p)=0, det(/—K(¢,p))'=0 satisfying
2(0)=iw,, $(0)=iw,, respectively. Then v(0) =v, w(0)=w. Since (v(0), w(0))
=1, it follows that (v(g), w())70 for small p, and hence without loss in
generality we can assume (o(p), w(p))=1 for all small . Thus

(v'(0), w(0)) + (0(0), w'(0)) =0 (34

and a differentiation of (K(z(p), p)o(p), w(p))=(v(p), w(p))=1 with re-
spect to p yields

(R(iwo,0)0(0), w'(0)) +( K(iwo,0)0'(0), w(0))
+( K. (iwy,0)z’(0)v(0) + I?n(iwo,O) v(0), w(0))=0.
But since K(iny,0)v(0)=10(0), K(iw,0)'w(0)=w(0), we find from (3.4) that
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the first two terms of this equation add to zero, so that we obtain
(K, (iwo,0)0,w)z'(0) = — (K, (iw,0)0,w). (3.5)

Using
R,(iwy,0)= —w"%(C,—iS,) and K, (iw,,0) =0y (C,—iS,),

multiplying both sides by the complex conjugate of (fz(iwo,O)v,w), and
taking the real part of the result, we obtain from (3.5) the equation

4|(R (iwy,0)v,w)|*Re z'(0) =w,d. (3.6)

Hypothesis H8(c) and the results of the appendix show that (f,(i wg, D)o, w)
is a nonzero multiple of Az(iw,,0) and hence by H8(b) is nonzero. Identity
(3.6) and H8(a) imply that d0. O

Note the similarity between Theorem 3.2 and the classical Hopf bifurca-
tion theorem for ordinary differential equations. Roughly speaking, Theo-
rem 3.2 says that bifurcation occurs when a root of the characteristic
equation transversally crosses the imaginary axis (not through the origin)
as p passes through zero [see H8(a)] and that the root on the imaginary
axis when p=0 is “simple” [in the sense of H8(b, c)].

In many applications the kernel has compact support in s. For such
cases H8 can be restated so that the conditions described there need only
hold on the support of K and Theorem 3.2 remains valid.

4. A Stable Manifold Theorem

Define F to be the set of forcing functions f&€ BC, such that the unique
solution x=Sf of the linear Volterra integral system

x(:)=f(:)+f0'x(s)x(:—s)dc (4.1)

lies in BC,. Clearly, F is a linear subspace of BC, and the operator
§: F—BC, is linear.

Assume now that x, EC(p) is a solution of the limiting equation (V,).
For any fEF define g € BC, by

g(l):=f(z)~+~j;mK(s)xp(t—s)ais-—ro(xp+.5'f). 4.2)

[That g € BC, follows from Lemma 2 with x € C(p), i.e., with x,=0.] Then
the solution of the linear system

x(t)=g(t)— j:wK(s)xp(l—s) ds'+ro(xp+ Sf)

+L1K(s)x(r—s)ds'
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is x=S8f€ BC,. Thus, x,=x=Sf actually solves (V,) for the function g(1)
given by (4.2). Define the operator G: F—BC, by

G(f):=f(r)+-'[mK(s)xP(t—s)ds—ro(xp-l-Sf) 4.3)
and let M =M(x,) be the range of G.

Theorem 4.1. Assume r satisfies H1 and that K satisfies H2. Then x €A (p)is
an asymptotically p-periodic solution of (V) if and only if g € M(x ), Where
x, EC(p) solves (V,) and x, =Sf, where g=G(f).

PROOF. We have already shown that if x,€C(p) solves (V,) and if
g=G(f)EM(x,), then x=x,+SfEA(p) solves (V).

Conversely, suppose x=x,+x,EA( p) solves (V). By direct sum decom-
position and Lemma 2, x,, solves (V,) and x, solves (V;). Define

f(2) :=g(t)—ImK(s)xp(e’—s)ds+ro(xp +x4) EBG,.

Then clearly, xo, € BC, solves (4.1) for this f, which means that f€F and
xo=35f. Thusg=G(f)EM(xp). @

REMARKS

1. It is possible to take x, =0 in Theorem 4.1, in which case x in that
theorem is asymptotic to zero as r— + co.
2. If x,€C(p) solves (V,), then x, also solves (V) for 8(1)=g,(t), where

gp(r):=_[mK(s)xP(t—s)ds—ro(xp)EBCO.

In other words, there is a forcing function g€ BC, for Eq. (V) that gives
rise to a strictly p-periodic solution. Note that g=G(0), so that in fact
gEM(x,). Clearly, there is no other forcing function in the manifold
M(x,) that gives rise to a strictly periodic solution of (V).

3. Given any solution x,EC(p) of (V,), Theorem 4.1 completely char-
acterizes the manifold of forcing functions g€ BC, in Eq. (V) whose
corresponding solutions x(z) satisfy x(1)—x,(¢)-0, and in this sense
Theorem 4.1 is a stable manifold theorem concerning X,

4. If (V,) is autonomous in the sense that any ¢ translate of a solution is
again a solution (as is often the case in applications), then Theorem 4.1
can be applied to any translate x;(7)=x,(t+7) of x,. The union U,
M(x7) of the disjoint manifolds M(x;) is clearly the set of all forcing
functions g(7) that in Eq. (V) yield solutions asymptotic as t—+ o0 to
some translate of x,(¢).

This section will close with the study of some conditions under which a

neighborhood of g, € M(x,) is homeomorphic to a neighborhood of OE F.
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Consider again the linear equation (4.1). Denoting the Laplace trans-
form of a function x(z) by %(z), it follows that
#(2)=(1-R(2)) " f(2). (4.4)

The behavior of the solution of Eq. (4.1) depends on the location of the
roots of the characteristic equation

det(1-K(z))=0, 4.5)
about which we make the following hypothesis.

H9, The characteristic equation (4.5) has a finite number » of roots z,
satisfying Re z> 0. Each z, has finite (algebraic) multiplicity m, >0,
1<k <v, and satisfies Re z;, >0.

The roots of (4.5) occur in complex conjugate pairs. The inverse (/—
K(s))~" has a Laurent series of the form

JE:AJ:;(Z_Z:()")"'H&(Z) (4.6)

near z=z,, where A, is an nXn matrix and H,(z) is an analytic matrix
valued function. Define the polynomial

p(z)= kILIL(Z_Zk)m' 4.7)

If we let
B(z)=(I-K(2))/p(2), (4.8)

then B~ (z)=(I—K(z))"'p(z) is analytic in Rez>0 and (4.4) can be
written

#(z)=B"(2)f(2)/p(2). (4.9)
Thus f€ F if and only if f factors:
f(z)=p(z)i(z). (4.10)

Lemma 4. Suppose f=col( f;) € F. There exists a unique u' € BG, that solves
the initial value problem

p(D)u'=f, 1<i<n, D=d/dt, (4.112)
DI-Wu(0)=0, 1<j<n. (4.11b)

Furthermore D’~'u' € BC, for 1 <i, j<n and u' is given by the formula
W= f‘ " =04 ¢0)(0,...,0, £(s)) ds, (4.12)
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where A is the companion matrix of the polynomial p(z). The Laplace
transform of u(t)=col(u'(1)) satisfies (4.10).

PROOF. It s clear that u' defined by (4.12) solves (4.11a). That (4.11b) is
also satisfied follows from the fact that f(z) vanishes at the roots of p(z)
(including multiplicities). Thus (4.12) defines the unique solution of (4.11).
Since all eigenvalues of A4 (which are the roots of p(z)) lie in the right
half-plane Rez>0, it follows from f€BC, that D/~ 'u' € BG, for 1<i,
j < n. Equation (4.10) follows immediately from (4.11). O

Let

g(z)= 1T (z+z)™

k=1
and
h(t)=q(D)u(t). (4.13)
It follows from Lemma 4 that A() can be written
h(t)=f(2)+(q(D)—p(D))u (4.14)

and hence that € BC,. Using (4.10), (4.13), and Lemma 3, we can write
(4.9) as

£(2)=B""(2)h(2)/q(2).

We now make the definition

R _(z)=1-4q(z)B(z)=K(z)+(p(2)—q(2))B(z),  (4.15)
where the second equality follows from (4.8). Assume

H10. Equation (4.15) defines the Laplace transform of a function K_(¢)
satisfying | K_(¢)| € L'[0, + o).

This assumption implies that x(7) solves the equation
x(!)=k(r)+J:K_(r—s)x(s)dv. (4.16)

The characteristic equation associated with (4.16) is
0=det(1—K_(z))=detq(z)B(z),

which, by the construction of ¢ and B, has no zeros satisfying Rez > 0. The
Paley— Wiener theorem then implies that the resolvent R_(¢) of (4.16) lies
in L'[0, + o0). This proves
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Theorem 4.2. Suppose H2, H9, and H10 hold and assume fEF. Then the
solution x=Sf of the linear equation (4.1) is given by

x(r)-h(r)+J:R‘(r—s)h(s)ds, (4.17)

where h(t) is determined from f(1) by (4.14) and (4.12) and where R_(1),
the resolvent of (4.16), satisfies [5°|R_(¢)| dt < + o0.

Corollary 4.1. The linear space F is closed under the hypotheses H2, H9, and
H10.

PROOF. Suppose f,EF and f,—f€BC,. From (4.12) and (4.14) it follows
that the corresponding h, € BC, (as described in Theorem 4.2) converge in
BC, to an h€ BC,. Equation (4.17) and Lebesgue’s dominated convergence
theorem combine to imply that the solution of (4.1) corresponding to f lies
in BC,. This in turn implies that f€ F and hence that F is closed.

Corollary 4.2. The solution operator S: F—BC, of Eq. (4.1), under hypotheses
H2, HY9, and H10, and the operator G: F-BC, defined by (4.3) are
continuous.

prOOF. Consider x= Sf for f€ F. Equation (4.17) yields the bound
1571 < (14 [ IR ()] ds ) o
0

and a straightforward computation using (4.12) and (4.14) shows that
| D/u| o <¢)| flo and ||, <ec,|f|, for constants c,,c,>0. Hence the
norm of the linear operator S is bounded above by

isi<(1+ [71R () )es

The continuity of G now follows from the continuity of S and r,. O

We now have the final

Corollary 4.3. Suppose the kernel K(s) satisfies H2, H9, and H10. Suppose
ro: A(p)—BC, is continuously Fréchet differentiable in a neighborhood of
x=0 and rj(0)=0. Then for each sufficiently small solution x,E C(p) of
(V,) the operator G is a homeomorphism from a neighborhood of f=0 in F
to a neighborhood of g,=G(0)= [K(s)x,(t—s)ds—ry(x,) in BC,.

prROOF. From (4.3) we see that for x,=0 the Fréchet derivative G'(0)=1.
Thus, G'(0) is also invertible for small | x| . ]
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Corollary 4.3 says roughly that the “size” of the stable manifold of a
small solution x, of (V) (for g=g,) is locally, near g=g,, the same as that
of F near f=0,

5. The Main Results

We are now ready to state our main results, which are obtained by
combining the results of Sec. 3 and 4. Suppose that the Volterra equation
(V) contains m real parameters

x(t)=g(t)+ er(s)x(a‘—s) ds+r(x,\),
0

A=col(A,)ER™, &)
where

H11. for each A€ER™ the operator r(x,A) satisfies H1 and r(x, A)
satisfies H4

and K(s) satisfies H3. Then the bifurcation Theorem 3.1 can be applied to
the “limiting” equation

xp(r)=fDmK(s)xp(t—s)dv+rp(xp,A) (\’;,")

to obtain solutions x, EC(p) for certain A€ R™. For each such solution X
Theorem 4.1 can then be applied to obtain a family of forcing functions
8E€BC, whose corresponding solutions of (V) are asymptotic to x, as
-+ 0. More explicitly we obtain the following result.

Theorem 5.1. Suppose that the kernel K(s) satisfies H3 and that r(x,A)
satisfies H11. Assume that the linearized homogeneous system (H) has
exactly m> 1 independent p-periodic solutions. If the nondegeneracy condi-
tion HS holds, then for each small e there exists a family M =M(e)CBC,
of forcing functions such that for every g € M(e), Eq. (V) has a solution
x(1) satisfying x(t)—x,(t) € BC,, where x » EC(p) is the p-periodic solu-
tion of (V,) with A=\(¢) as described in Theorem 3.1.

By Remark 2 of Sec. 4 there is a unique g€ M(e) [in fact g(t)=g,(t)=
J*K(5)x,(t=s)ds —ry(x,, A)] for which the solution x(¢) of (V*) is equal
to x,(7). Thus, Theorem 5.1 contains a bifurcation result for p-periodic
solutions of (V*), but it goes beyond this to describe the stable manifold of
x,(7) in terms of the family of forcing functions M(e). Corollary 4.3 can
also be applied to describe the “size” of this stable manifold.
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Similarly the Hopf-type bifurcation Theorem 3.2 can be combined with
Theorem 5.1. Consider

x(1)=g(1)+ j;'x(s,p)x(r—s)dm(x,u), WER,  (V*)

where

H12. for each pER' the operator r(x, 1) satisfies H1 and 7,(x, p) satisfies
H6.

We then obtain the following one-parameter, Hopf-type bifurcation result
for (V*).

Theorem 5.2. Assume that the kernel K(s, p) satisfies H1 and that r(x, p.)
satisfies the condition H12. If the root conditions H8 hold, then for small e
there exists a family of forcing functions M=M(g)C BC, such that for
every gEM(e), Eq. (V*) has an asymptotically p-periodic solution x(t)
satisfying x(1)—x,(1) EBC,, where x (1) is the p-periodic solution of (V})
and p=p(e), p=p(e) as described in Theorem 3.2.

As in Theorem 5.1 there is a unique g€ M(e) whose corresponding
solution is strictly p(e) periodic and all other solutions for gEM(e) are
asymptotic to this periodic solution as /— + co. Again, given e, Corollary
4.3 can be applied to the manifold M(e) provided the kernel K(s, u(e))
satisfies H2, H9, and HI10.

6. An Application

A nonlinear scalar (n=1) Volterra integral equation that appears in a
variety of disciplines (e.g., population dynamics, epidemiology, and eco-
nomics) is the nonlinear renewal equation

b(f)=b0(t)+J:m(s)f(b(t—s))ds. (6.1)

For example, b(¢) might be the birth rate of a biological population. In this
case, b(1) is the (current time 7) birth rate of the survivors from the initial
population [at 7=0], f(b(t—s)) is the number of individuals born between
{—s and t—s+ds, and m(s) is the product of the probability of survival to
age s times the per unit population birth rate at age s. Thus, the integral in
(6.1) is the birth rate at time ¢ due to all individuals born since ¢=0. Here
the fecundity function f(b) has been assumed to be dependent on the
current birth rate. This fecundity function is typically chosen to be
nonnegative, to vanish at or near b=0 and decrease or even vanish
identically for large b. Also there are typically at least two nonnegative
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asymptotic equilibria, i.e., constant solutions of the limiting equation
b(0)= [ m(s)/(b(t~s)) db. (62)

[Note: by(#) is reasonably assumed to be in BC, or even to have compact
support.] Namely, (6.2) has equilibrium 5(¢)=0 and is assumed to have a
second equilibrium b(¢)=e >0, where e solves

e=f{e)£}mm(s) ds.

Our application will consist in applying our results to the question of the
existence on nontrivial, periodic solutions of (6.1) that bifurcate from e>0.

Although the results of Sec. 5 are sufficiently general to apply to (6.1)
for general fecundity functions f, we choose to make this example more
explicit by choosing a specific function f. Namely, we shall consider the
equation (see Hoppensteadt [7, p. 11] and Cooke and Yorke [1])

b(:)=bo(:)+pL’ﬁ(s)b(z—s)[1—b(:—s)]+ds, (6.3)

where B(s) >0, [°B(s)ds=1 is normalized, and u>0 is a constant. Here
{£}+=0for £<0 and {£}, =¢ for £>0. Thus, in this case fecundity drops
to zero when the birth rate b equals zero or unity (which can be accom-
plished without loss in generality by an appropriate choice of units).
Equation (6.3) has equilibria 5(¢)=0 and b(f)=e=(p—1)/p, so we as-
sume throughout that u>1 (u is the expected number of offspring during
the life of an individual or, in a sexually reproducing population, of an
individual female).
If we let x(1)=5(t)—e, then (6.3) becomes an equation for x:

x(0)=g(1)+ ['K(s, w)x(t=s) ds-+r(x, ),
K(s,p)=Q2-p)B(s),  r(x,p)=—p fo "B(s)x¥(t—s) ds,
80 =bo()~ (o= 1p™ [ “p(s) .
If B(s) is twice continuously differentiable and
B(s)>0, j:ﬁ(s)ds=1, f:(lﬂ)zvﬁz(s)dmoo

for some y >3 and (6.4)
sB(s)—0 ass—+co,

then it is not difficult to check that r satisfies H12 and K satisfies H7. Thus
in order to obtain Hopf-type bifurcation from Theorem 5.2, we need only
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fulfill H8. Note that H8(c) automatically holds in the scalar case n=1. In
H8 the characteristic function for this application is

Az, p)=1-(2-)B(2).
Suppose by way of illustration we take

B(s)=(n/T)"*'(s"/n!)exp(—sn/T) (6.5)
for some n=1,2,...and real T>>0. Here T is the age of maximum fecundity
and n inversely measures the “width” of the “reproductive window” (i.e.,
the age interval of active reproduction). Such a choice of B(s) satisfies all
of the conditions in (6.4). The characteristic equation becomes

1-(2—p)(n/(zT+n))"* ' =0, (6.6)

which has simple conjugate roots z=z(p) that transversally cross the
imaginary axis (away from the origin) as required by H8(a, b) if and only if
n>2. In this case the root

2(w)=n((p=2)"""Pexp(in/(n+1)=1)/T
crosses the axis at z(jp,) =i, where
po=2+sec”* (m/(n+1)),

w=(n/T)(po—2)""* Usin(n/(n+1)). (6.7)
Moreover,

Rez'(po)=(n/m(n+1))(po—2)"""*Pcos(n/(n+1))#0,

so that H8 holds.

We conclude that a Hopf-type bifurcation of a family of asymptotically
periodic solutions of (6.3) occurs from the equilibrium e=(p—1)/p for the
kernel (6.5) when n> 2 at the critical values ., of p and for periods near 2m Jw
given by (6.7).

Finally, in order to draw the conclusions concerning the stable manifold
contained in Corollaries 4.1-4.3, we need to verify H9 and H10. If we
restrict p in such a way that there is exactly one complex conjugate pair of
roots of the characteristic equation (6.6) satisfying Rez>0 and that all of
the remaining roots satisfy Rez<0, then H9 will hold. This can be done
by requiring that p>p, when n=2, 3, 4, or 5 and that po<p<2+
sec"*137/(n+ 1) when n> 6. For such p hypothesis H9 holds.

The characteristic function in this example can be written

11 (z—zj)

j=0

Az p)m s
(z+(n/T))
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where
ZJ=H((H_2)],("+1)¢)'_ l)/T, j=0,!,...,ﬂ,

are the roots of the characteristic equation (6.6) and ¢, =exp((2j+ 1)mi/(n
+1)) are the n+1 roots of —1. The hypothesis H10 is satisfied if the .
inverse Laplace transform of
f—1
(4zRez,) [I (z-2))

J=1

(z+(n/T))"""

lies in L'[0, + 00). But this is obvious, since this is certainly true of K(z, )
and since the second term is a rational function of z whose denominator
has degree larger than its numerator and whose poles all lie in the left
half-plane (namely at z=—n/T).

K_(z,p)=K(z,p)—

Appendix

Let M=M(z)=(m,;(z)) be an nXn matrix with differentiable entries
m;,(z) and suppose M(z,) has rank n—1 [and hence det M(z,)=0]. Let
v#0 and w#0 be in the kernel of M(z,) and its conjugate transpose,
respectively. Let A(z)=det M(z), A(z)=dA(z)/dz, and M'(z)=
(dm, (z)/dz).

Theorem. (M'(zy)v,w)=0 if and only if A'(z,)=0.
PROOF. Let ¢;;(z) be the cofactor of m,;(z) in M(z). Since the rank of
M(zp) is n—1, not all ¢; (z,) =0, and we assume without loss of generality
that ¢,,(z,)#0.

Let A;(z) denote the determinant of the matrix obtained by differentiat-
ing the ith row of M(z). Then as is well known,

A(z)= ._ilﬂ,(z). (A1)

Let v=col(v,) and w=col(w,). Then
2 m;(z)v,=0, 2 mi(ze)w=0, 1<i<n.
j=1 J=1

Ignoring the kth equation (1 <k <n), we consider the equations

n n
2 m;(z9)v,=—m;(24)0,, 2 m;:(zo)”}= _m?_;(zo)wf
F=2 Jj=2
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for i#*k, 1<i<n. Treating these are n—1 equations for v,,...,v, and
Wy,..., W,, respectively, we get, from the usual relation between the
determinant, the unknowns, and the Cramer determinants of a linear
algebraic system, the identities

ckn(zo)%=fkj(zo)uls "fk(zo)“}=c;k(zo)wl (A2)

for 2<j<n, 1<k<n. Since ¢,,(z,)#0 by assumption, these imply (with
k=1) that v, #0 and w, 70 (for otherwise v=0 and w=0). Without loss of
generality we may assume that v is scaled so that v, =¢;,(z,). Then from
(A2) with k=1 we find that

U=Cy» 1<j<n. (A3)
Clearly,
(M'(zo)0,w)= EI( Zlm}u(zo)vj)w:. (A4)
km1\ j=

Case 1. If ¢;;(24)#0, then from (A2) and (A3) we obtain

¢;;=0=cx;(20)c11(20)/ci(20), 2<j<n.
Thus

> m;u(zo)ﬂ;=5k(20)¢‘11(*’-0)/‘-'“(20)' (A5)

J=1
Also from (A2) with k=1 we have w* =c¢,(zo)w} /c,(z,) for 2<j<n,
from which we see that

w70 (A6)
and wi =wgc,,(20)/cr1(2,). Thus
2 mi( zo)owi + A, (zo)w}. (A7)
j=1

Case 2. If ¢;; =0, then v, #0 and (A2) imply that all ¢, ; =0, 1 <j<n.
This clearly implies that

A4(2)=0. (A8)
From (A2) we have cfi(zo)w; =c}i(zo)w, for all 2<j<n. Letting j=k, we

see that in this case w, =0.
Having considered these two cases we return to (A4) and find that

(M'(z,)v0, W)'_'W?(Al(zo) + 2 Uk&k(zo))!
k=2
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where o, =11if ¢;; #0 (Case 1) and o, =0 if €1 =0 (Case 2). From (Al) we
find that because of (A8) in Case 2, it follows that

(M'(z9)v,w)=wtA(z,),

which proves the theorem. |
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