SIAM J. APPL. MATH
Vol 33, No 4, December 1977

BIFURCATION OF PERIODIC SOLUTIONS OF
INTEGRODIFFERENTIAL SYSTEMS WITH APPLICATIONS TO
TIME DELAY MODELS IN POPULATION DYNAMICS*

J. M. CUSHING*

Abstract. A Fredholm alternative is proved for a general linear system of Stieltjes integrodifferen-
tial equations. This result is used to derive necessary and sufficient conditions for the bifurcation of
nontrivial periodic solutions of a nonlinear perturbation of the system containing n parameters. The
results are applied to several models from mathematical ecology which describe the dynamics of
various species interactions (included are models of mutualistic, competitive and predator-prey
interactions) under the influence of time delays. These applications illustrate how, for such models, the
existence of multi-dimensional manifolds of periodic solutions of various periods in the presence of
unstable equilibria can occur as a result of the presence of time delays at least for birth rates near
certain ciritical values.

1. Introduction. Our purpose here is to consider the bifurcation from
equilibrium of periodic solutions of a general class of Stieltjes integrodifferential
systems which occurs as a function of several parameters appearing in the system.
The motivation for this inquiry and for the form of the systems is found in the
theory of population dynamics with (possible) time delays.

Volterra, in the 1930’s [20], seems to have been the first to consider time
delays in the study of interaction species and many others have contributed to the
study of such systems since that time (see the bibliography in [14] for a list of
references). Several authors have considered the existence of periodic solutions of
ecological models for two or more interacting species when time delays are
present. The early work of Cunningham and Wangersky [4] on a predator-prey
model with a single time lag has received much attention, but is often criticised
mathematically [16]. Purely linearized studies of predator-prey interactions with
delays can be found in [12], [14], [15], [18] and of two competing species in [10].
Periodic solutions of forced predator-prey interactions with delays has been
studied in [6], [11]. The problems of the existence of nonconstant periodic
solutions in the presence of an equilibrium was considered for predator-prey
models in [2], [8], [13] and for general two species interactions in [7]. A detailed
ecological discussion and numerical simulation is made of a three species
predator-prey interaction with delays in [3].

The main result of this paper (Theorem 2) asserts the existence of noncon-
stant periodic solutions which bifurcate from equilibrium as certain parameters
pass through critical values for a general system of Stieltjes integrodifferential
equations. When applied to a system of the form

(1.1) N7 dN;/dt=bf(Ny, -+ ,N,), 1=j=n, n=2,

where f; is a functional of some sort which may (or may not) involve time lags or
time delays, this result generalizes the main result in [7] which deals with the case
n =2 and f; linear in its arguments. Most (but not all) models used in the above
cited references are of the form (1.1) as are in fact most differential models used in
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population dynamics. Some applications of Theorem 2 to such ecological models
are given in § 4 where, with one exception, these examples deal with models of
n =3 species interactions. An example dealing with an n =2 predatory-prey
interaction is also discussed and related to some recent work of May [14], [15]. A
different predator-prey example is studied by means of our approach here in [8]
where numerical evidence of our results here may also be found. For further n =2
examples see [7].

We do not consider the stability of the bifurcating periodic solutions in this
paper. The problem of determining the stability of a nonconstant periodic solution
is in general quite difficult for integrodifferential systems (and even for ordinary
differential systems). In this regard MacDonald’s recent paper [13] should be
pointed out. In this paper the bifurcation of periodic solutions is considered for a
n =2 predator-prey model with delays. MacDonald’s approach is to convert the
integrodifferential system to a larger differential system (a trick which works only
for special kernels and dates back at least to Volterra’s work [19]) and then apply
Hopf bifurcation techniques, some of which yield the stability of the bifurcating
periodic solutions [17]. These results of MacDonald for a predator-prey model
seem to be the only analytically obtained stability results for the bifurcating
periodic solutions of integrodifferential systems. Numerical evidence of this
stability for predator-prey models can be found in [8].

The proof of our main result Theorem 2 is carried out in § 3 by means of
Lyapunov-Schmidt expansions. The method and results differ from most bifurca-
tion results in that the problem considered here has many parameters instead of
just one. This approach requires a Fredhom alternative for linear Stieltjes
integrodifferential systems which is proved in § 2.

Finally we point out that as far as applications to models (1.1) in population
dynamics with delays are concerned our main result Theorem 2 is really (nonvacu-
ously) applicable only to systems with n =2. The reason is that in hypothesis (H4)
we assume # =r = 1 (r is the number of independent, nontrivial periodic solutions
of the linearized adjoint problem) in order to avoid an overdetermined set of
algebraic equations in the Lyapunov-Schmidt method. Thus, if =1 and f; in
(1.1) is an expression involving [* ., d.k (t —s)N;(s) where dk(s)=0, k(s)=0 for
all s =0 (as is usually assumed in delay models) then (H4) implies r = 1 which in
turn implies u =0. In this case Theorem 2 yields only the trivial branch of
solutions b; =0, N; =c where c is an arbitrary constant. As a result of this,
Theorem 2 does not apply to the single species model (1.1) with n =1, a model
which has received a great deal of attention in the literaure.

2. Periodic solutions of linear systems. Our goal in this section is to obtain
necessary and sufficient conditions for the existence of nontrivial periodic
solutions of a given period p (or, in short, p-period solutions) of the homogeneous
system

) yo=|

t

dsA(t__S)Y(S)

and to prove a Fredholm alternative for the nonhomogeneous system

(2.2) x’(t)=J‘_t d,A(t—s)x(s)+f(t)
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with p-periodic forcing function f(¢).
We assume throughout this paper that the systems have kernels which satisfy
the following hypothesis:
(H1) The n X n matrix A (¢)is (or more precisely its entries are) of bounded
variation on every finite interval of the half line =0 and satisfies
[ 1dA (1)|< +<o.
If x (¢) is continuous for all ¢ then so is

t

&f(x)EJ‘_ dA({t—s)x(s)= J‘OOO dA(s)x(t—s)

forall ¢ [1, p. 144]. As a result of this and of (H1) we see that if P(p) denotes the
Banach space of real, n-vector valued functions continuous and p-periodic for all ¢
under the sup norm |x|o = supo=,=,|x(¢)| then x € P(p) implies £ (x)e P(p). We
must also consider the adjoint system

(2.3) Z'(t)= —I dAT(s—1)z(s)

t
where AT denotes the transpose of A. Reasoning in a fashion similar to that above
for the right-hand side of (2.1), we find that (H1) and z € P(p) imply that the
right-hand side of (2.3) lies in P(p).

Let x - y denote the usual inner product on complex Euclidean n-space:
x - y =Y} x;7; where throughout this paper a bar over a letter means complex
conjugation and let (x(¢), y())=p ' [o x(¢t) - y(¢) dt for x, y € P(p).

By a solution in P(p) of any of the above systems we mean a function,
differentiable for almost all #, which reduces the equation to an identity for almost
all ¢. In view of the above remarks, (H1) implies that a solution in P(p) of any of
the above systems is necessarily continuously differentiable.

THEOREM 1. Assume A (t) satisfies (H1) and let p >0 be any given positive
real number. Then the following conclusions hold:

(a) the homogeneous system (2.1) has at most a finite number r=0 of
independent nontrivial (i.e. y(t)# 0) solutions y' € P(p);

(b) the adjoint system (2.3) has exactly r independent nontrivial solutions
zeP(p);

(c) if r=0 then the nonhomogeneous system (2.2) has, for every fe P(p), a
unique solution x € P(p);

(d) ifr = 1 then the nonhomogeneous system (2.2) has a solution in P(p) if and
only if (f, z) = 0 for every solution z € P(p) of the adjoint system (2.3),i.e.(f, z')=0,
1=j =r for any set z’ € P(p) of r independent solutions of (2.3);

(e) if Po(p), Poo(p) denote the Banach subspaces of those x € P(p) satisfying
(x,y")=0, (x,2')=0 respectively, then for every f < Poo(p) there exists a unique
solution x = Lf € Pyo(p) of the nonhomogeneous system (2.2) and the operator
L: Pyo(p)— Po(p) is linear and compact.

Proof. (a) To find solutions y € P(p) of (2.1) we substitute into (2.1) the
Fourier series

2.4) Z:,OZ,OO Cm €Xp (imwt), ®=27/p, Cm =C_m,
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for y(¢) where the Fourier coefficients c,, are complex n-vectors. If
(2.5) A =J dA;(s) exp (—imws)
0

then we find that (2.1) yields
(2.6) (A, —imwl)c,, =0, —o<m< + 00,

where [ is the n X n identity matrix. Note that the entries of A,, are bounded
independently of m under the hypothesis (H1) and as a result |det (A,, — imwI)| >
+00 as [m| > +00. Consequently det (A,, — imwl) is nonzero for |[m|=m,; =0 for
some integer m; =0 which implies that c,, = 0 for all |m|Z=m,. This proves (a).

(b) If the Fourier series (2.4) with coefficients d,,, in place of c,, is substituted
for z(¢) into the adjoint system (2.3) we find

2.7) (AX+imwl)d,, =0, —0o<m< 40,

where A% =AT, the complex conjugate transpose of A,,. Since the coefficient
matrix for (2.7) is just the conjugate transpose of that for (2.6), equation (2.6) is
solvable for some m if and only if (2.7) is. Moreover, the number of independent
solutions d,, of (2.7) is the same as that for (2.6). Let M=
{m: det (A, —imwl)=0}.

©) If f(1)=Ym2 o fm €xp (imwt), - = f.. and the Fourier series (2.4) for
x(t) are substituted into (2.2) we obtain the equations

(2.8) (A, —imwl)c, = —fm, —o<m< 400,

to be solved for c,,.. If r = 0 then by the proof of (a) above each coefficient matrix in
(2.8) is invertible and hence (2.8) may be uniquely solved for c,,. Thus (2.4) will
define a real valued solution x € P(p) of (2.2) for these unique c,, provided we can
show that this Fourier series defines an absolutely continuous function.

It is clear, since the entries of A,, are bounded uniformly in m, that the
determinant and the cofactors of A,, —imwl are of order m" and m" " respec-
tively. From Cramer’s rule we deduce the bounds

lco| =Kfo and mlcn|=K|f.| form #0
for some constant K >0 independent of m. Thus

+00 +00

Y mien' =K Y |ful=K7flE<+
where |f], is the L norm of fe P(p) on [0, p]: |fl. = (f, f)"/?. The Riesz-Fischer
theorem implies that x () defined by (2.4) lies in L> while the above estimate
implies x (¢) is absolutely continuous [9, p. 129].

(d) This part follows rather straightforwardly from the fact that (2.8) has a
solution c,, for m € M if and onlyif f,, - d,, = 0 for all solutions d,,, m € M of the
adjoint system (2.7) and that in this case there is a unique solution c,, orthogonal
to the solution space of (2.6) which satisfies |c,,| = K|f..|, m € M. We deduce the
absolute continuity of (2.4) just as in (c).

(e) It follows from (c) and (d) that L is well defined. It is easy to see that L is
linear and hence we need only prove that L is compact.
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Let f* € Poo(p) be a bounded sequence |f"|o=K and let x" =Lf". From the
inequality (2.9) for the Fourier coefficients c™ of x" and from the Schwarz
inequality we obtain for all n the inequality

+00

"= ¥ leWISKHfL
for a positive constant K* >0 independent of n. Since |f"[o=K implies |[f"[,=K
we see that the sequence x" € Py(p) is uniformly bounded. In addition since each
x" solves (2.2) with forcing function f" (t) we see that the sequence of derivatives
dx"/dt is uniformly bounded. That x" has a convergent subsequence now follows
from the Ascoli-Arzéla theorem. [

3. A bifurcation theorem. Let R" denote Euclidean n-space. For notational
convenience we define, for two n-vectors v = col (v;) and w =col (w;)e R", the
vector product v * w = col (v;w;)€ R". It is easy to see that

VEW=W XD, viwtz)=v*wtv*z.

If A =(a;)is an nXn matrix then we define v ° A = (vjau). Then v * (Aw)=
(v o A)w. We consider the system

t

(3.1) x'(t)=A * (L}o dsH(t—s)x(s)+g(x)(t))

where A is a constant n-vector, H is an n X n matrix valued function satisfying
(H1) and g is a perturbation functional satisfying the following hypothesis:
(H2) g:B(p)>P(p), p>0, B(p)={xeP(p): [x|o=p} is continuous and
|lg(x)()lo=0(|x|o) near x =0.
Note that g(0)(t)=0 so that x =0 solves (3.1) for all A e R".
The theory of § 2 above applies to the linearized system

t
(3.2) Y@ =ur | dHE=5HE)

—o0
with A = u o H. Next we assume that for some given period p that:

(H3) There exists a u € R" such that the linear homogeneous system (3.2)

has a nontrivial p-periodic solution.

In view of the proof of Theorem 1 in § 2 this is equivalent to assuming that the
finite set of integers M = M(w) (for which the matrix u ° H,, — imwl, o =27/p,
—00< m < + is singular) is nonempty. By Theorem 1 both (3.2) and its adjoint
system

(3.3) zZ'(t)=—u * rodsHT(s —1)z(s)

t
have a finite number r = 1 of independent solutions in P(p) which we denote by y k

and z* =col (z{)), 1 =k =r, respectively. Let C denote the r X n matrix given by

c=(p j Y zﬁ“f Yalt =) (5) )

q=1
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for 1=k =r, 1=j=n where H(s)= (h;,(s)) and y € P(p) is any solution of (3.2).
Finally we need the hypothesis:
(H4) Assume (H3)and let y € P(p) be any nontrivial solution of the linear
homogeneous system (3.2). Assume that n=r and that the rXn
matrix C has rank equal to .
Note that if u = col (u;)in (H3)is such that u; # 0 for all 1 =j =n then C may
be rewritten as C = (u; 'p ' |6 2y} dt) and clearly has the same rank as the r X n

matrix
(3.4) C*= (p_l Lp 28y o) dt).

Our main result is contained in the following theorem.

THEOREM 2. Assume that the kernel H and the perturbation p satisfy (H1) and
(H2) respectively. Assume that (H3) and (H4) hold for some p >0 and some
p-periodic solution y of the linear homogeneous system (3.2). Then there exists a
constant €,>0 such that the perturbed system (3.1) has nontrivial p-periodic
solution with Lyapunov—Schmidt expansion

(3.5) x(t)=ey(t)+ew(t,e) withd =u+y(e)

for 0<|e|=eo where y and w are as in (H4) and (H3) and w € Py(p), y € R" satisfy
‘W(t, e)lo = O('l—: |)’ !’Y(&‘)i = O(IE |)

Remark 1. It turns out that (H3) is necessary for the bifurcation as described
in Theorem 2 to occur. The added hypotheses (H4) is sufficient to insure the
bifurcation.

Remark 2. According to (H4) the matrix C has at least one r X r nonsingular
submatrix. Let J<{1,---,n} denote those subscripts j corresponding to the
columns of C forming a nonsingular submatrix. Then it turns out (see the proof
below) that the remaining components y;, je{l,: -, n}—J are arbitrary, i.e.,
v; = ey for any real y}.

Proof. If we substitute (3.5) into (3.1) and equate the lowest order (i.e. &)
coefficients on both sides of the equation we find that u and y must satisfy the
linear homogeneous system (3.2), which in fact they do by the assumptions (H3)
and (H4). The remaining higher order terms in ¢ yield the nonlinear system (after
a cancellation of an ¢)

(3.6) i&}g;—g—)=p*[; dH(t—s)w(s,e)+y*F(e,w)—G(e, w)

where

t

F(e, W)E_[ dH(t—s)y(s)+w(s, e))+te 'gley +ew)(),

(3.7) .
G(e,w)=—¢ u*gley+ew)(t)

to be solved for w € Po(p). If w € Po(p) solves (3.6) for some y € R" then (3.5)
solves (3.1). We will solve (3.6) by means of the Schauder fixed point theorem.
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The Fredholm alternative in Theorem 1 implies that in order for (3.6) to have
a solution w € P(p) it is necessary that the conditions

(3.8) (%, v *F(e,w))=(z", G(e, w)), 1=k=r,

be satisfied. Here, of course the z“ € P(p) are r independent solutions of the
adjoint system (3.3).

Given w € Po(p) we attempt to solve (3.8) by an appropriate choice of y € R".
The equation (3.8) constitutes 7 linear algebraic equations in # unknowns ;. Since
n =r (see (H4)), (3.8) has no more equations than unknowns. The coefficient
matrix of this system is the r X n matrix

t

(P'1 J'Op z,gk)(t)[e'lg,‘(ey +£W)(t)+J‘ il dshig(t —5)(yq(s)+ wy(s, g))] dt)_

-0 q=

For the choice w =0, ¢ = 0, this coefficient matrix reduces to C and hence has rank
r by (H4). Consequently the coefficient matrix has rank r for weBy(e1)=
{wePo(p): [wlo=e1} and |e|=¢; for £,>0 sufficiently small (and £, <p). This
means that we may solve (3.8) for y = y(e, w)forevery w € Bo(e;)and 0= |e|= ¢,
where n —r of the components y; are arbitrary. If these n —r components are
chosen to that y; =O(le|) then it is easy to see by Cramer’s rule that y =
y(e, w): (—&1, £1)XBo(e1)-> R" is a continuous operator which has (by (H2)) the
property that |y(e, w)| = O(|e]|) uniformly for w € Bo(e1).

Given w € Bo(g1)let w°= N(g, w)e Po(p) be the unique solution of the linear
nonhomogeneous system obtained by substituting w and y(e, w) into F and G in
(3.6). Here

N(e,w)=L(y(e, w)* F(e, w)—G(e, w))

where L is the compact linear operator of Theorem 1 and hence the operator
N(e, w): (—€1, £1) X Bo(e1) > Po(p) is completely continuous in w for each . If
w € Py(p)is a fixed point of N for some ¢ then clearly w solves (3.6). To prove that
N has a fixed point for all ¢ sufficiently small we only need show that for small ¢
the range of N lies in Bo(£1) and then invoke the Schauder fixed point theorem. To
do this we observe that from the definitions of F and G given in (3.7), hypothesis
(H2) and the above described order property of v, it follows that |y * F—G|o=
O(le|) uniformly for w € Bo(e1). Thus, since L is a bounded linear operator we
conclude that the range of N lies in By(e,) for |e| = &, for some sufficiently small
Eo<E€;.

Finally, we observe that |w (g )|o = [N (g, w)lo = O(le|) since w (¢ )€ Bo(1), and
hence from Cramer’s rule we also find that |y| = O(e|).

4. Some applications. As pointed out in § 1 most models used in discussing
the dynamics of interaction species are of the form (1.1) where N; is some measure
of the population size (numbers, biomass, etc.) of the jth species and b; is the
inherent net birth rate (or death rate if b; <0) at which the population grows
(exponentially) in the absence of all constraints. Suppose the function f; which
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actually describes the unit growth rate of N; has the form

= M@k,

—00

t

N (s) dskin(t_s))’ J:o dkii(s) =1,

dk,',' (S) = 0,
where f;(z1,* * +, z,): R" > R. Suppose that the system has an equilibrium N; =¢;,
i.e., suppose f;(e1, " * *, €,)=0, 1 =j =n, has positive roots ¢; > 0. If we center the

model on this equilibrium by letting x; = N; —e; then (1.1) takes the form (3.1)
with A =col (A;), A; = bje; and H(s) = (hj (s)) with
) =L er, - eYl(s)
0Zk

provided the f; have continuous partial derivatives. If further f; has, say, continu-
ous second order partials at the equilibrium then the remainder term g in (3.1) is
higher order in x and consequently satisfies (H2). This means that in order to
apply Theorem 2 we need investigate only the necessary properties (namely (H3)
and (H4)) of the linearized problem (3.2) with the above described matrix H. If
these two hypotheses (H3) and (H4) can be fulfilled for some period p then by
Theorem 2 nontrivial p-periodic solutions will bifurcate from the equilibrium e;
for birth rates near the critical values b; ~B8; = u;/e; where u = col (;) is as in
(H3). For simplicity we will assume that the equilibrium ¢; is isolated.

Referring to the linear theory of § 2 we see that (H3) s satisfied by solving the
algebraic systems

4.1) (u ° Hp —imwI)c,, =0, m

0,
for the complex Fourier coefficients ¢,, and choosing u such that not all ¢,, =0,
i.e., such that u o H,, —imwlI is singular for some m. Here @ =2#/p and

v

H, = j d;:H(s) exp (—imws).
0

Since ¢; is by assumption an isolated equilibrium it follows that co must be zero and
hence u ° Hy must be nonsingular. This means each component of u must be
nonzero. In this case we may divide the jth equation in (4.1) by u; to obtain an
equivalent system

4.2) (Hpm—imé& o Icy, =0, m >0,

where ¢ = col (wu ;') = col (¢). This form of the system is more convenient with
which to work in our examples below. Let M., = M, (¢) be the finite set of indices
m =0 for which H,, —im¢ oI is singular. As already pointed out 0¢ M,. Let
p(m)<n be the rank of H,,, —imé oI form e M. Then (4.2) has v(m)=n—p(m)
independent complex solutions ¢, # 0 each of which yields two independent real
solutions of (3.2) (see the proof of Theorem 1(d))

4.3) y(t)=Re ¢, exp (imwt) and y(t)=1Imc, exp (imwt).

Thus the number of independent real solutions of the linear systems (3.2) (and
(3.3))isr =23,,cp, v(m), an even number. Independent solutions of the adjoint
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system (3.3) are given by
(4.4) z(f)=Rew '¢°d, exp (imwt) and z()=Imo '¢°d, exp (imot)

where d,, # 0 solves the adjoint system (H}+imé o I)d,, =0, m >0.

Since w; # 0 for all j, (H4) can be satisfied by consideration of C* in place of C
as pointed out prior to Theorem 2.

To summarize: for the population models considered here, bifurcation of
nontrivial p -periodic solutions will occur from an isolated positive equilibrium for
b; ~ B; = 2m/(péie;) provided p and £ can be found for which M, # ¢, r = n and the
rank of C* equals r.

(1) An example of mutualism. As pointed out by May [14, p. 224] the
simplest, quadratically nonlinear Lotka—-Volterra models are wholly unsuitable
for even a simple discussion of mutualism since such models lead to ridiculously
unstable populations. Many mutualistic interactions involve significant delays (for
example, the effect that changes in the populations size of pollinators have on that
of the plants which they pollinate will be delayed until at least the next generation
of plants) which hopefully will provide a stabilizing effect on the model. (Note that
this hope is in contrast to the usual destabilizing effect of time delays.) We will
illustrate this mathematically by applying Theorem 2 to a simple (quadratic)
mutualistic model of Lotka-~Volterra type involving two plant species and one
pollinator.

First consider the nondelayed system

Nll =b1N1(—1—aN2+bN3),
(45) N’2=b2N2(“1“CN1+N3), a, b, c, b]>0
Né=b3N3(—1+N1 +N2),

Here N; >0 and N, > 0 represent plant species (with population sizes normalized
to make the interaction coefficients of the third equation both equal to one) and
N3 >0 represents a common pollinator species (normalized to make its iteraction
coefficient with N, equal to one). Both plant species benefit from contacts with the
pollinator and the pollinator benefits from contacts with either plant species. Note
that the plant species inhibit each other as might be expected from their competi-
tion for common resources. Also note that in the absence of pollinators (N5 = 0)
both plant species die out and vice versa.

We assume that (4.5) has an isolated, positive equilibrium N; = ¢; > 0; this is
easily seen to occur if and only if

(4.6) a—b+1>0 and bc+b—-1>0.

If the standard linearization analysis is done on (4.5) at ¢; one easily finds that this
equilibrium is unstable in the sense that the linearized system has at least one
eigenvalue with positive real part. Our purpose here is to show how time delays, if
introduced into the model (4.5), can ‘‘stabilize’’ the system for appropriate birth
rates b;. By ““stabilize”” we mean here something rather crude: that under certain
conditions at least one p-periodic solution will exist for at least one period. It is
usually the case in applying Theorem 2 and it will in fact be the case in the
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examples considered here that multi-dimensional manifolds of p-periodic solu-
tions will exist for at least one period p (and usually a continuum of periods p).
Suppose delays are introduced into (4.5) as follows:

t

i=b1N1<—1—aN2+bJ dskl(t“S)NQ;(S)),

t

@.7) Ny= szz(— 1—cN; +j _ dikalt —s)Ns(s)),

N§=b3N3(—1+N1+N2),
a,b,c,bj>0 and J dki(s)=1.
0

Here, as described above, we have possible delays in the effects felt by the plant
species due to contact with pollinators. Assuming (4.6) this delayed system has the
same equilibrium e; > 0 as (4.5). Following the discussion at the beginning of this
section we consider the 3 X 3 algebraic system (4.2) where for this example

—im§1 —a bE1
Hm—im§01=< —-c —imé&, E, )
1 1 —im§3

where E; = E;(m)= C;(m)—iS;(m) and
C(m) = I cos mws dk;(s), S;(m)= j sin mows dk;(s).
0 0
We must find & > 0 such that the rank p(m) of this matrix is two for exactly one
m>0. Then (H3) holds and r=2v(m)=2<3=n holds in (H4). A simple
calculation shows that this rank is two if and only if the & >0 satisfy the two
equations

(4.82) m(S2£€1+bS1£)=bcCr1+aCs,
(48b) m3§1§2§3 + H‘Iszl + mblez + acm§3 +bCSl +a52 =0.

When these conditions hold for some &; and exactly one m >0 then (4.2) may be
solved for one independent c,, #0 which defines the only two independent
solutions y of the linearized problem by means of (4.3).

Finally we need that the rank of C* be r = 2. To compute C* (a 2 X 3 matrix) is
alengthy, but straightforward calculation involving the adjoint system of (4.2) and
the resulting adjoint solutions (4.4). It turns out that if one takes y to be the first
homogeneous solution in (4.3) then the rank of C* is two if and only if

(4.92) —m2b51§§+m(aC2+bcC1)§2+acSz#O,
(4.9b) —m28,61 +m(bcCi+aC,)E; +abeS, # 0.

We conclude that Theorem 2 applies if (4.8) and (4.9) hold for some &; > 0. In case
(4.92) (or (4.9b)) we may take - (or 1) to be arbitrary as in Remark 2.
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Example 1 (no delays): If k1(s)= ka(s)= uo(s), the unit step function at s =0
so that (4.7) reduces to (4.5), then S; = 0 and C; = 1 for all m. Thus (4.8a) cannot be
satisfied for any & >0, m >0. Because (4.8) is necessary for bifurcation (see
Remark 1) we see that no bifurcation as described in Theorem 2 can occur for our
model (4.7) unless delays are genuinely present.

Example 2 (equal constant time lags): Although (4.8) and (4.9) are sufficient
for bifurcation under general delays as derived above, let us now simplify, for
purpose of illustration, to models with two equal constant time lags: k;(s)=u.(s)
where 7> 0. Suppose we choose a period p >0 so that

(4.10) _7:=5+8k
p 8my
for some integers k =0and mo=1.Then S; = C; = —(1/2)"/? and (4.8) reduces to
(4113) mo(§1+b§2)=bc +a,
(bc +a)2'?
4.11b =——
( ) & maéiés+acmo

for m = mo. If &; and &, are chosen so that (4.11a) holds one finds that (4.9b) holds
(since in this case &;<(bc+a)/mo). Thus all the hypotheses necessary for
Theorem 2 hold with m =my if &, &, satisfy (4.11a) and &; is determined by
(4.11b). (Note: given &5, &, and p by (4.10) one can see, with a little effort, that
(4.8a) holds only for m = m, and no other integer.)

We conclude then that nontrivial p-periodic solutions of the constant lag
system (4.7) with k; = u, bifurcate from the unique positive equilibrium guaran-
teed by (4.6) for periods given by (4.10) at the critical values of the birth rates
given by b; ~ B; = 27/(pé;e;) for any & >0 satisfying (4.11).

Note that since there are infinitely many choices for &1, £, one would expect to
see, for given fixed b; in the model (4.7), infinitely many p-periodic solutions.
Furthermore, our choice for p in (4.10) is not required in the analysis and if one
carries out the details for arbitrary p one finds that all of this can be done for
infinitely many periods p (for example, p close to those determined by (4.10)
would do). All of this implies that for a given set of appropriate parameters in the
model (4.7) one expects to see multi-dimensional manifolds of periodic solutions.
This phenomenon is common in the application of Theorem 2. For another
example (but for a different model) see [8] where numerical evidence is also given
for this phenomenon.

(ii) A competition model. As a second example of the possible stabilizing
effects of time delays we consider the model

N’1=b1N1(—1—bN2+aN3),
(412) N’2=b2N2(—1“dN1+CN3),

t

Ng=b3N3<1—J’ N3(s)dk(t—s)—N1—N2>,

a,b,c,d,b;>0 and J dk(s)=1.
0
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This model serves to describe the dynamics of two (predator) species N1, N> who
are in competition for a common (prey) resource N3. Here we have assumed no
self inhibition on the part of the competing species while (following May [15]) the
resource N3 has a self-inhibiting factor (i.e. a finite carrying capacity in the
absence of predators) with a possible time delay. If ’

4.13) a+b<bc+c, c+d<ad+a

then (4.12) has an isolated positive equilibrium e, > 0.

If no delay is present: k(s)=uo(s); then the equilibrium can be shown, by
means of the usual linearization analysis to be unstable. This is not inconsistent
with the familiar law of competitive exclusion.

Suppose k(s)=u,(s) for r=0. Then

—im§1 -b a
Hm—im§°I=< -d —imé; c )
-1 -1 —E—imé;

E =C—iS =cos mwt —i sin mwT.

This matrix is singular for some & >0 and m >0 if and only if
(4.14a) m?£,6,C+dbC+ad +bc =0,
(4.14b) mi¢1érEs—m 16,8 —meé —améy +dbmés —dbS =0

hold. If p is chosen so that

(4.15) S =sinmowr >0, —(ad+bc)/(bd)<cosmowr <0, w=2m/p,

for some integer mo >0 then it is easy to see that it is possible to choose & > 0 such
that (4.14) holds for m = my (e.g., &, >0 is arbitrary and &;, £; are determined by
(4.14)). Without going into the details here we can also show that the rank of C* s,
as required, equal to two for any allowable values of the parameters and any
homogeneous linear solution y.

To summarize: the competition model (4.12) under (4.13) has nontrivial
p-periodic solutions bifurcating from its unique positive equilibrium for periods p
satisfying (4.15) (which incidently rules out nondelay models 7 = 0) for values of b;
near the critical values B; = 27/(pé&;e;) where the constants & are determined by
(4.14) for m =m,. The remarks concerning multi-dimensional manifolds of
p -periodic solutions at the end of the preceding example are applicable here.

(iii) A predator-prey model with continuously distributed delays. The exam-
ples above all involve constant time lags. Undoubtedly more realistic models
involve continuously distributed delays of the form dk(s)=k'(s)ds [14], [15],
[20]. Since our analysis in §§ 2 and 3 also applies to such delays, we conclude with
an example of this type.
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Consider the predator-prey model

t

N’1=b1N1<1—K'1 Lm Nl(s)dskl(t—s)—aNz>,
(4.16) N’2=b2N2(—1+BLO Nl(s)dskz(t—s)),

K,a,8>0 and J dk;(s)=1,
0

in which the prey N, has a delayed self-inhibition (as in May’s model [15]) and the
effect on the predator of contracts with prey has a delay (as in Volterra’s model
[20]). We assume that

4.17) KB>1

so that (4.16) has a positive equilibrium e; > 0.

In the absence of delays: k;(s)=uo(s); the system (4.16) is well-known to
have a uniformly asymptotically stable equilibrium e;.

Following May [15] we will assume that the delay k, is small compared to
k. May in fact assumes that k,=uo. We will assume that k, is “close to” uo.
The presence of delays in (4.16) tends, roughly speaking, to destabilize the
equilibrium [2], [5], [8], [14], [15], although May [14], [15] argues for his model
(in which k, = u,) that if the product b5, is small enough (compared to the “size”
of the delay) then the equilibrium will be stable. We will use Theorem 2 to argue
that the system (4.16) may be “‘stable”, in the broader sense used above, for even a
wider range of values of 1b,.

Since the “carrying capacity’”’ K of the prey N; (in the absence of predators
N,=0) loses its stability as b, gets large compared to the “size” of the delay May
argues that there is then an overlap interval of values for the delay “‘size” 7 >0 for
which the predator-prey system has a stable equilibrium, while the prey alone, in
the absence of the predator, has an unstable equilibrium; roughly b7' <7<
(b1b,)"/2. This points to the possibility that predators may stabilize an otherwise
unstable prey population. Our application of Theorem 2 will add to this argument
in that this interval may possibly be widened (i.e. 7> (b1b2) /%) if by the
“stability”” of the model we include the broader meaning described above. Such a
possibility relating to periodic solutions was briefly mentioned in [15].

For (4.16) we find that

—-im¢&,—K'E; —a )

BE, —imé;
where E; is the usual Fourier integral for k;. This matrix is singular for & > 0 if and
only if & >0 can be found such that

m§2C1=KaBSz, m2§1§2=aBC2 +K_1m§251

Hm—im§°I=<

for some integer m >0. Following May suppose the delay due to &, is small:
ka(s)=(1—¢)uo(s)+er(s), [y dr(s)=1, € >0 small. Then

(418) m§2C1=£KaBS,, m2§1§2=aﬁ +K_1m§2S1+5(Cr_1)aﬂ,
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where C, —iS, = [ exp (—imws) dr(s), needs to be solved for & > 0. If this can be
done then another straightforward but detailed calculation shows that C* has the
required rank of two provided

(4.19) S> =S, #0.

Note that this latter technical requirement rules out the possibility of no delays in
the predator equation (i.e. (4.19) disallows ¢ = 0 and hence k> = u, ). This unfortu-
nately prevents our making an exact comparison with May’s results in [15] where
¢ = 0; however we will still attempt to relate our results to those in [15] by further
considering the model for ¢ small, but nonzero, and also by formally setting ¢ = 0.

To summarize: if (4.19) holds and if (4.18) holds for some & >0, m >0 then
bifurcation of p-periodic solutions will occur at the critical values B; of b; given by
the usual formula B; = 27/ (pé&e;).

For example, if we consider May’s model [15] in which dkq(s)=
(r7%s exp (—s/7))ds for >0 we find that Cy=a/(a’+b?), S1=b/(a’+b?)
where a = 1—(rmw)’, b = 2rmw. Suppose we assume that 7 and p are such that

2mmor/p=1—¢

for some integer m(>0. Then we find for m = m, that (4.18) and (4.19) hold for
€ # 0 small if S, >0 for ¢&; satisfying
1+, 2KafS,

= + ="+ 0(e).

2maKS, O(e), & o O(e)
Hence under these conditions bifurcation will occur.

To compare these results with those of May as discussed above welete =0 in

(4.18) and neglect the fact that the technical, sufficiency condition (4.19) fails to
hold. We find from (4.18) that C; = 0 which leads to

3

(4.20) 7/p =1/(2mom)
for some mo >0, in which case &, > (2moK) ™" is arbitrary and
4.21) & =2aBK/(mo(2moé:1K —1))>0;

here we use the fact that S; =1/2. To compare with the results in [15] we must
relate the product of the critical values 88, to the constant 7, which is the time at
which maximum delay occurs in k;. This we do by substituting & =27/ (pe;B;),
e1=B"", into (4.21) and using (4.20). This results in a quadratic equation in 7
whose only positive root is

T0=T70(B1, B2) = (—e1B81+(e1B1+ 16K ae:818:)"*/ (AKae318>).

This critical value of the delay 7o is precisely that calculated by May [15, eq. (21)]
in his stability study of this model. May showed that if 7<7o(b1b,) then the
equilibrium for (4.16) is stable. Note that 7o = (8182)"/>*+ O(K ") and hence for
large carrying capacities K this critical value of the lag is close to (8 182)""/? which
near bifurcation is close to the “natural” period (b16,)*’? of the periodic solutions
of the well-known Volterra-Lotka (nondelayed) model.

We see here (at least for £ # 0 small) that bifurcation of p-periodic solutions
occurs from equilibrium at the critical value 7 = 79(81, B2), to order ¢; and hence
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for those values of 7, b; at which periodic solutions of this model exist, by Theorem
2 it is evidently the case that = > 1o(b1, b>), to order &.

The above analysis concerns the model (4.16) when the lag in the predator
equation is small. For the opposite case (k; =u,) see [8].
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