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A COMPETITION MODEL FOR SIZE-STRUCTURED SPECIES*

J. M. CUSHINGT

Abstract. The asymptotic dynamics of a system of ordinary differential equations describing the
dynamics of n size-structured species competing for a single (unstructured) resource are studied. The system
is based on a single species growth model for a size-structured species due to Diekmann, Metz, Kooijman,
and Heijmans in which physiological parameters at the level of the individual are incorporated. It is shown
that all trajectories asymptotically approach a lower-dimensional positive cone where the dynamics are
governed by an easily determined lower-dimensional competition system of a type commonly studied in
the literature for unstructured populations. It is also shown that, regardless of the asymptotic dynamics or
the outcome of the competitive interaction, the average size of individuals for every species asymptotically
equilibrates to a positive value. These results permit a study of competitive exclusion in terms of the
physiological parameters and average size of individuals of the species. Illustrative applications are made
to competing species in a chemostat and to species competing for a renewable resource. The relationship
between competitive success and species size and other physiological parameters is discussed and related
to the Size Efficiency Hypothesis (SEH) for zooplankton communities.

Key words. competition, size-structured population dynamics, ordinary differential equations, global
asymptotic stability, average species size, competitive exclusion, Size Efficiency Hypothesis
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1. Introduction. Body size is one of the most important physical attributes of an
organism. It is a significant factor in determining an organism’s energetic requirements
and ability to exploit resources. It has an important effect on the nature of an organism’s
interaction with the physical environment and with other biological species, including
competitors and predators. Despite these obvious and recognized facts, relatively little
mathematical theory of size-structured population interactions exists and virtually no
dynamical models of competing size-structured species can be found in the literature.
For a discussion of the importance of size-structure in population dynamics and
multispecies interactions, particularly competitive interactions, see [20].

Zooplankton communities provide one example in which size structure has been
of primary significance in the study of multispecies interactions. The observation that
species of zooplankton tend to occur in associations characterized by body size and
that large size species tend to predominate in zooplankton communities, at least in
the absence of planktivorous fish, led Brooks and Dodson [1] to propose the Size
Efficiency Hypothesis (SEH). The two basic tenets of this hypotheses are (1) that large
size zooplankton species are more efficient at exploiting resources, which provides the
potential for the competitive exclusion of smaller species, and (2) that size selective
predation by large bodied (vertebrate) predators, which falls more heavily upon the
larger zooplankton species, can allow for the survival of smaller species or even in
some cases result in the elimination of larger species. This hypothesis has been the
main theoretical framework of much zooplankton research since its formulation and
many experimental studies have attempted to test its assumptions and verify its
implications [9].

* Received by the editors March 15, 1988; accepted for publication (in revised form) September 1,
1988. This research was supported in part by National Science Foundation grant DMS-8601899.

 Department of Mathematics and Program in Applied Mathematics, University of Arizona, Building
#89, Tucson, Arizona 85721.

838



A COMPETITION MODEL FOR SIZE-STRUCTURED SPECIES 839

While the second principle that (vertebrate or invertebrate) predator mediated
competition plays an important role in shaping zooplankton community structure
seems to be widely accepted, attempts to verify the first principle that larger species
are more “efficient” competitors have been equivocal {e.g., see Dodson [7], Hall et al.
[9], Neill [15], DeMott and Kerfoot [6] and the references cited therein). While some
studies support this assumption, the ambiguities of other attempts at verification are
usually attributed to any number of complications inevitably present in natural popula-
tions, such as habitat segregation, temporal environmental fluctuations, subtle specializ-
ations and life history adaptations, complex interspecies interactions, etc. It appears
that available data is yet insufficient to determine thé indisputable validity of this basic
tenet of SEH [9], [8].

The purpose of this paper is to derive and analyze a general exploitative competi-
tion model for the dynamics of n size-structured species competing for a single
(unstructured) resource and, by applying the results to specific models, hopefully shed
some theoretical light on the first tenet of the SEH.

The model derived here is based on a model of Diekmann et al. [5] for the growth
dynamics of simple (invertebrate) ectothermic animals whose resource uptake rate is
proportional to body surface area (e.g., filter feeding species such as Daphnia), and
is therefore particularly relevant to many competing zooplankton species. In the model
of Diekmann et al. a system of partial integrodifferential equations describes the
dynamics of the density of a size-structured (specifically length structured) population
and its dynamical resource (also see Metz and Dieckmann [14]). It is built from certain
submodels at the level of the individual for birth, death, and growth processes. The
exploitative competition model considered here is constructed by coupling n such
systems together through their exploitation of the common resource.

In the derivation in § 2 two simplifying assumptions are made about the competing
species: the energy utilized for metabolic maintenance is negligible relative to the
energy used for growth and reproduction and there is no significant juvenile stage.
From these assumptions a system of ordinary differential equations (2.9) for population
level statistics (namely, total population numbers, length and area) is derived from
the partial integrodifferential system.

In § 3 this ODE model is analyzed for general resource uptake rate functionals
and fundamental properties of solutions are studied, including boundedness and
positivity. The main result of § 3 (Theorem 2) is that all trajectories of the ODE model
(3.3) asymptotically approach a lower-dimensional positive cone where dynamics are
governed by a lower-order competitive system whose general structure is that of more
" familiar unstructured exploitative competition models. This lower-order system,
however, governs the dynamics of certain weighted averages of the population level
statistics, not simply total population numbers as is usually the case in ecological
models. Known results about the asymptotic dynamics of such unstructured competition
systems for various types of resource uptake functionals and inherent resource dynamics
can be applied to this “reduced” system in order to obtain results concerning the
asymptotic dynamics of the original size-structure competition model. This is done for
the well-known chemostat model and for a two species model with a self-renewing
resource in § 6.

One important feature of the competition model considered here is that important
physiological parameters originating in the basic submodels for individual birth,
growth, and death processes appear in the derived ODE model. As a result, we can
relate these parameters at the individual level to the asymptotic dynamics at the
population level and in particular to the outcome of the competitive interaction. These
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parameters are encapsulated in the ODE model in what is termed below as the efficiency
coefficient ;. Some necessary properties of this coefficient are given in § 4.

Another main result of the paper appears in § 5 (Theorem 4), where it is shown
that regardless of the nature of the asymptotic dynamics the model implies that the
average individual size (area or length) of each competing species equilibrates
asymptotically. These equilibria depend only on the individual physiological reproduc-
tive and growth efficiencies and the size at birth and not on any other system parameters
(death or resource uptake rates or the resource dynamics) nor on the presence or
absence of competitors. An average individual size is thus defined for each species by
the model and can be related to the competitive effectiveness of the species. This is
done in § 6 for the chemostat model and for the self-renewing resource model.

The application made in §6 to competition in a chemostat (which is often
considered as a laboratory model of a simple natural lake) relies on and extends known
model results for unstructured populations cultured in a chemostat to the case of
size-structured species. As in the simpler case of unstructured populations, it is shown
that only equilibrium asymptotic dynamics are possible. The results describe and fully
account for the extinction or survival of all species on the basis of model parameters
and they support the classical competitive exclusion principle in that at most one
species can survive.

One point that clearly emerges from this application to the chemostat is the
impossibility of relating average individual size in a simple, direct way to competitive
success. It is not always true in the chemostat model below that the surviving competitor
is the species with largest average individual size. In some extreme cases, such as when
all other factors are identical for all species, it does in fact turn out that average
individual size determines the competitive outcome (although the largest species is not
always the winner). More generally, however, another criterion emerges as the determin-
ing factor of competitive success, namely that the surviving species is the one with the
ability to exploit the resource to the lowest level while still being able to survive at
that resource level. Thus the advantage of size afforded to largest individuals due to
greater efficiency in total resource uptake can be mediated or even overcome by smaller
individuals with physiological and per unit size resource uptake properties which allow
it to survive at lower resource densities (a similar point is made by Wilson [21]). This
simple (and rather intuitive) criterion for competitive effectiveness has been noted in
the biological literature [15], [8] and, at least for the model considered here, is the
real determining factor of the competitive outcome. Perhaps, then, the results obtained
here provide some theoretical clue as to why species’ size has been found to be an
unreliable indicator of competitive success and suggest that this component of the
SEH theory for zooplankton community structure is overly simplistic.

These conclusions are further strengthened by similar results obtained in § 6 for
a competition model with a self-renewing resource, with the exception that there are
ranges of parameter values for which competitors can coexist on a single resource, not
in an equilibrium manner, but in an oscillatory limit cycle manner.

2. Model derivation. We begin with a capsule summary of the model of Diekmann
et al. [5]. A full treatment can be found in Metz and Diekmann [14, Chap. [.3].

A basic assumption is that individual food ingestion is proportional to its size or,
more specifically, to its surface area. If s denotes length and R denotes resource or
food density then resource uptake rate is f(R)s”> where the resource uptake rate (per
unit area) f(R) is dependent on resource density R. It is assumed that this rate is
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positive whenever the resource density is nonzero:
f(0)=0, f(R)>0 forR>0.

A typical such relationship is the Michaelis-Menten or Holling type II expression:

R

2.1) f(R)—ca+R, ¢c>0, a>0.

It is further assumed that ingested food is allocated between metabolic maintenance,
individual growth, and reproduction. Energy reserves are ignored. If metabolic mainten-
ance needs are assumed proportional to weight (or, up to a scaling factor, to volume),
if a fraction « of ingested food is utilized for individual growth and if 7 is a conversion
factor relating weight to food units then we arrive at a von Bertalanfly type growth
equation:

ds

1
7~ 8(R.s) where g(R, s) =3, [«f(R)—{s]s,

n>0, (>0, 0<k<l1

where [x], = x for x>0 and 0 otherwise. Here ¢ is the metabolism rate, i.e., the rate
(per unit volume) of food units needed for metabolic maintenance.

With regard to reproduction it is assumed that the remaining fraction (1 —«)f(R)
of ingested food is channeled to reproduction. If s, and s, denote the length at birth
of all individuals and the length at which reproduction starts, respectively, and if
reproduction ceases when the grow rate drops to zero (i.e., growth and maintenance
take precedence over reproduction), then the individual birth rate is given by

0, S, =5 <5,
m(R, s)={(ws}) (1 —k)f(R)s?, s5;i=5s=5(R),
(ws3) "(f(R)s?—¢s%), max {s,, s(R)} = s = 5(R).

Here w is a conversion factor relating food units to weight for reproduction, i.e., ws;
is the amount of food needed to produce one offspring, s(R) is the size at which
growth stops at food density R and §(R) is the size at which all food is needed just
for maintenance, i.e.,

s(R)=¢ 'kf(R)= ¢ f(R) = 5(R).

Finally it is assumed that the individual death rate d >0 is a constant independent
of size, time, and resource density R.

The above submodels for the growth, birth, and death rates can be incorporated
into dynamical equations for population level growth dynamical equations by using
the modeling principles and techniques of Metz and Diekmann [14] (also see Sinko
and Streifer [16]). If p(t, 5) denotes population density as a function of time ¢ and
length s, so that Ii; p(t, s) ds denotes the number of individuals with lengths between
s, and s,, then

a - a
5 P )T (8(R, 5)p(t 5)) = —dp(t,5), s <s<5(R), 1>0,
s

(2.2) p(t,s)=0, s>5(R), >0,

g(R, s;)p(t, s,,)=‘[ m(R, s)p(t, s) ds, t>0.

S
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To complete the formulation of the model the dynamics of the resource must be
specified. The simplest assumption is that the food resource density R is somehow
held constant over time. This case is investigated in some detail by Metz and Diekmann
[14]. The more realistic case when resource density can change due to the feeding
activity of the population and to other external causes will be considered here. If k(R)
denotes the inherent density dependent growth rate of the resource R = R(t) in the
absence of feeding by the population p, then

d 5
(2.3) d—I:=k(R)—f(R)J p(t, s)s> ds.

A typical resource growth law is
(2.4) k(R)y=(Ry,—R)d, Ry>0, d>0,

which corresponds to a constant replenishing of (nonreproducing) food particles and
a constant food loss (by, for example, dilution in a continuous flow culture such as
in a chemostat). Another is the classical logistic law

(2.5) k(R)=r<1—§>R, r>0, K>0

for a self-renewing resource. These will be utilized in § 6.

Equations (2.2)-(2.3) constitute the starting point for the competition model to
be considered in this paper. We are interested in the dynamics of several competing
species of the type meeting the assumptions described above all of which attempt to
utilize the same limiting resource R. It will be assumed that the n interacting species,
whose densities will be denoted by p,, 1 =i = n, interact with each other by means of
this common limited food resource and in no other way so that the interaction is of
the type usually referred to as “exploitative.” Thus, it is assumed that there is no
significant interference between individuals of opposing species that affect growth
dynamics (such as aggressive behavior, the production of toxic wastes, etc.). In this
way we can model the multispecies interaction by means of uncoupled equations (2.2)
for each individual species together with a modified resource equation (2.3) that affects
the coupling and the competition. Thus, for i=1,---,n we have the following
equations:

d 0
a_tpt(t’ S)+a (g,(R, S)pi(ta S)):_dsz(ta S)a sb,<s<§r(R), t>0’
N

p(t;s)=0, s>5(R), >0,
(2.6)

3

g,(R, Sb,)pi(t’ Sb,):J l m,(R, S)pi(ta S) dS, t>0s

s,
7

3

%=k(R)— Y f,(R)J p.(t, s)s> ds, t>0.

=1 Sh
Here the subscripted quantities represent the corresponding species specific quantity
from the single species model.

Partial integrodifferential equations of the type (2.2)-(2.3) or (2.6) and the study
of the implied asymptotic dynamics, even for specialized functional responses f and
resource dynamics k such as (2.1) and (2.4) or (2.5), present significant mathematical
difficulties and offer a stimulating challenge to applied mathematicians. Even the basic
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theory of these equations needs further development, although headway has been made
on similar equations (cf. Metz and Diekmann [14]).

The purpose of this paper is to give a complete global analysis of the asymptotic
dynamics of a simplified version of the competition equations (2.6). This will be done
under two simplifying assumptions. First, it will be assumed that the amount of ingested
food needed for metabolic maintenance is negligible compared to that utilized for
growth and reproduction. Thus, mathematically { =0 and accordingly s(R)=3§(R)=
+00. Second, it will be assumed that individuals need not grow significantly before
being capable of reproduction so that s,, = s;, = s;. Then so long as R remains positive
the model equations become for i=1, - - -, n the following:

i il
Q27) (@) 2 plt, ) fi(R) = pi(t, ) = —dpi(t, s), s;<s, >0,
ot 37], ds

(®) pi(t,s)= 3

WS

3ni(l—k;) (7
—MJ pi(t, s)s” ds, >0,

SA

oc

K(R) - 3 ﬁ(R)J it s)s?ds, >0

Si

dR
Il —_—=
() —

In lieu of the compact support implied in (2.6) it is assumed that p,(¢, 5) vanishes
at s =+00 and has finite moments

A,«(t)=J pi(t, s)s ds, L.-(t)='|' pi(t, s)s ds, Pi(t):J’» pi(t, s) ds
that represent the total area of all individuals, the total length of all individuals, and
the total number of individuals in the population, respectively. Rather than treat
equations (2.7)(a)-(2.7)(c) directly, an equivalent system of ordinary differential
equations for the quantities A;, L;, and P; will be derived.
If (2.7a) is multiplied by s* and the result integrated with respect to s from s; to
+00, the equation
1—k; 2k; d
(1=« )ﬁ(R)A,-+3—Kﬁ(R)L,- where’=E

i i

Al=—dA+

is obtained after an integration by parts and a utilization of (2.7)(b) in the boundary
term. If similar manipulations are carried out, but with multiples of s and one instead,
and if the notation

(2.8) aizu, Bi:ﬁ

w; i

is introduced, then we arrive at the following system of ordinary differential equations:
(29) (a) R'=k(R)=Y fi(R)A,  R(0)>0,
i=1

(b) Ag:_diAi+S:laiﬁ(R)Ai+%Biﬁ(R)Lis A;(0)>0,
(c) L?:_diLi+Srzaifi(R)Ai+%Biﬁ(R)Pi’ L;(0)>0,

(d) Pﬁz_diPi+si73aif;'(R)Ais P.(0)>0.
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To summarize, in the model system (2.9)(a)-(2.9)(d) for n size-structured species
competing for a single resource we have the following:

R(t) =the resource density at time ¢,
A;(t) =the total area of all individuals of the ith species at time t;
L.(t) =the total length of all individuals of the ith species at time ¢;
P(t) =the total number of individuals of the ith species at time ¢;
k(R) =resource growth rate in the absence of predation by all n competing species;
1.(R) =resource uptake rate of the ith species;
d; = death or removal rate of the ith species;

and the coefficients a, and B; are defined by (2.8) with the following:

«, = fraction of ingested resource utilized for individual growth by individuals of
the ith species;

7; = conversion factor relating weight to food units for individual growth by
individuals of the ith species;

w, = conversion factor relating weight to food units for reproduction by individuals
of the ith species.

The quantities @, and B; are reproductive and growth efficiency coefficients that
measure the efficiency of an individual’s utilization of food resources for reproduction
and growth respectively. Greater values of these parameters correspond to greater
efficiency.

3. The competition equations (2.9). Assume that the resource uptake functional
f(R) and the inherent resource growth rate k{(R) are continuously differentiable
functions of R =0 and that

k(0)=0and f(0)=0, f(R)>0for R>0.

Under these conditions it will be shown in this section that the long-time asymptotic
dynamics of the system (2.9) are governed and completely determined by the asymptotic
dynamics of a certain lower-dimensional (viz., n+1) system. This lower-dimensional
or “reduced” system (3.3) is of a type that is amenable to considerable global analysis
and in fact has been thoroughly studied in the literature for selected f(R) and k(R).
By this result we have a means for studying the global dynamics of size-structured
competition models of the form (2.7). This approach is illustrated by the applications
in §84 and 5.

The quantities A,, L,, P; are only biologically meaningful when nonnegative. The
proof of the following theorem appears in the Appendix.

THEOREM 1. The solution of the initial value problem (2.9) is positive for all time,
ie, R(1)>0,A,(t)>0,L(t)>0, P(t)>0 for all t>0.

To study equations (2.9)(a) and (2.9)(d) further a linear transformation will be
performed. Let p; = col (A;, L;, P;) denote the column vector of the population variables
for the ith species and write the last three equations (2.9)(b)-(2.9)(d) in the matrix form

3.1) p.=—dp;+f(R)Mip,

where M| denotes the transpose of the Leslie matrix
sile, s,-’za,» s{3

(3.2) M =] 3B, 0 0
0 3B 0

a,
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Note that this matrix depends only on the individual physiological properties s;, «,,
and B,. If T; is a nonsingular matrix and new dependent variables g; =col (xi,yi, Z;)
are defined by g; = Tp,, then equation (3.1) becomes

qi= _diqi+ﬁ(R)T;M;(Ttl')_lqi =—dg; +fi(R)(Ti_1MiTi)'qi~

Thus the linear change of variables g; = Tip; results in a similarity transformation of
the coefficient matrix M, in (3.1) and consequently introduces a means of simplifying
the system. The real form of the Jordan canonical form will be utilized and for this
purpose the following lemma concerning the eigenvalues and eigenvectors of M; (whose
proof appears in the Appendix) is of use.

LEMMA 1. The Leslie matrix M, has a strictly dominant positive eigenvalue ;>0
that possesses associated strictly positive right and left unit eigenvectors v; >0, w; > 0. The
remaining two eigenvalues vy, + viv/—1 are complex with negative real parts: v, <0, v; #0.

As a result of this lemma it follows that there exists a nonsingular matrix T; such
that T;'M,T, has the form

me 9 0
TTIM.Ti: 0 Yi v |, y:<0
0 —v ¥

The first column of T, is the positive right eigenvector v,> 0 and the first row of 7'
is the positive left eigenvector w;> 0. If ¢,;, ¢, ¢c3; denote the entries in the first column
of T, then the transformed system becomes the following:

(33) (@ R=k(R)- T f(R)Nenxi+eanteaz),  R(0)>0,

(b) xi=—dx;+ufi(R)x;,  x(0)>0,
(C) yéz_diyl+.ﬁ(R)(yiy1_Vtzl),
(d) zi=—dz,+fi(R) vy, +vz).

Note that x;(0) > 0 follows from x;(0) = v;p;{0). Also note that c,, is the first component
of w;, and hence is positive.

TuEOREM 2. For any solution of (3.3)(a)-(3.3)}(d), y;=>0 and z, >0 exponentially
as -+,

The proof of this theorem, as well as that of the following theorem, appear in the
Appendix.

THEOREM 3. Assume the following:

(H) all solutions of R'=k(R), R(0)>0, are bounded for t = 0.

Then all solutions of (3.3)(a)-(3.3)(d) are bounded for t = 0.

CoRroLLARY. Under hypothesis (H) all solutions of (2.9) are positive and bounded
for t=0.

Theorems 1-3 and x;(t)=vip;(t) imply that the w-limit sets of all solutions of
(3.3) lie in the sét R=0, x; =0, y,=0, z, =0 for all i. Moreover, this set is easily seen
to be a positively invariant set on which the dynamics of (3.3) are governed by the
following “‘reduced” system.

(34) (a) R=kR)-3 c\fi(R)X., R(0)>0,

(b) Xx{:_diXi_'-)u’ifr(R)Xu Xi(0)>0~
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Consequently, the asymptotic dynamics of the competition equations (2.9) can be
studied by means of this associated lower-dimensional system.

The transformed variable x;(f) = v p;(¢) is a weighted average of the population
parameters A,, L, P,. From (3.4) it is seen that the contribution of the physiological
parameters s;, ,, B, to the dynamics of the competitive interaction is through the
coefficients u;, ¢;, that are determined by the matrix M,;. The eigenvalue u; will be
referred to as the physiological efficiency coefficient of the ith species.

Note that by Theorem 2 an equilibrium of (3.3) must have y, = z, =0 for all i, and
hence must be an equilibrium of (3.4). There is, of course, a one-to-one correspondence
between the equilibria of (2.9) and those of (3.3).

4. The efficiency coefficient. In what follows it will be important to understand
how the physiological efficiency coefficient u, depends on model parameters. Since
the matrix M; depends only on the physiological parameters s;, «,, 3,, the same is true
of its eigenvalue y;. In this section some simple facts concerning the relationship
between these parameters and u, will be derived.

The characteristic polynomial of M; is

_ 3 -1 2_% -2 _Z -3 2

(4.1) hi(p)=p" —s; ap 331 aBip 9Si aB;
and u, is the unique positive root of this polynomial. If the characteristic equation
h{u) =0 is multiplied by (s,/@,)’ and if z = us;/ ;, then this equation is equivalent to

2 2 ;
(4.2) -2 -Zrz-=r1=0, r,=£.

3 9 i
The unique positive root of this equation z = z,(r,) is analytic in r, with z,(0)=1 and
is strictly increasing. This latter fact can be seen from an implicit differentiation of
(4.2) and

2 2 2 3 2 2
zﬁ(r,)=§(3z,»+2r,«)/(32,?—22,—gr,-) =§(3zi+2r,)/(z(z?—§zf—§ r,z,»))

2z, 1, 4 2,
=—1{(3z,+2r) —zi+—rz,+=r; | >0.
27 3 9 9

From this and from u; =z,(r;)a,/s; it follows that

I, Z, 922+ 6rz,+2r>
da; 3s; 3z244drz;+2r?

LemMa 2. The physiological efficiency coefficient u, can be written in the following
form:

wi = az(r)/s, r=Bi/a;

where z; is a strictly increasing function of its argument and z;(0) =1. The efficiency
coefficient u; is an increasing function of both the reproductive efficiency o, and the growth
efficiency B, and is a decreasing function of the size at birth s;.

5. Average individual size. Let
(A1) =A(0)/P(1),  [LI(t)=Li(t)/P(t)

denote the average area and length of an individual in the ith species at time . A
simple differentiation shows that these averages satisfy the following differential
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equations:
[A] =fi(R())(s7 e[ A +3B[ L1 - s a[AT),
[L] =f(R())(s; a[A]+3B,— s e[ AJLLD).

Fix i. Using the fact that R is bounded by Theorem 3, we find that under the change
of independent variable from ¢ to 7 defined by

(5.1)

_J'_ds_
"7 ) F(R(s))

the nonautonomous system (5.1) is transformed to the plane autonomous system
[A]= s. [ Al +§Bx[Li] - stai[Ai]z,

(5.2)
[L]= Sz_zai[Ar] +%ﬂi - Si_3ai[Az][Lr]

where “’” now denotes differentiation with respect to 7.

This planar system can be completely analyzed with regard to its global asymptotic
dynamics in the positive first quadrant. It is an undergraduate exercise to deduce from
the direction field for this system that the closure of the positive quadrant is positively
invariant and that there exists a unique nonnegative equilibrium, which is in fact strictly
positive. This equilibrium is given analytically in Theorem 4 below.

The 2 x 2 coefficient matrix of the linearization of (5.2) at the positive equilibrium
is straightforwardly shown to have a negative trace and positive determinant, which
implies that this equilibrium is locally asymptotically stable. Furthermore, if
V([A;],[L:]) denotes the vector field determined by the right-hand sides of (5.2), then
it is easily calculated that the divergence of [A; 1 '[L:]1 ' V([A], [L;]) is strictly negative
in the positive quadrant. Thus the Dulac principle rules out the existence of cyclic
trajectories in the positive quadrant. The Poincaré-Bendixson Theorem now implies
that all positive solutions of (5.2) approach the unique positive equilibrium.

These facts, together with Lemma 2, yield the following result.

THEOREM 4. Suppose (H) holds. Then for any solution of (2.9) we have

3
lim [A]() =5 =z(n)s?,
t—>+00 o,

. Bi < 1 n )
lim [LN)=si+7—=|1+; —]s.
lim [L;](r)=s; 3 1350

This theorem implies that regardless of the nature of the asymptotic dynamics
and of the outcome of the competition governed by the model equations (2.9) the
average areas and lengths of the individuals of each species asymptotically approach
positive limits. This is true even if an individual species tends to extinction.

Using this result, we can introduce in a meaningful way a measure of the “size”
of a species with the idea of studying how this size is related to a species’ competitive
advantage or disadvantage. For example, we could use the asymptotic average area
of an individual as given by Theorem 4 for this purpose; or we could as well use the
asymptotic average length of an individual given by the same theorem. For our purposes
either of these choices is suitable and leads us to the same qualitative results as does,
in fact, any weighted average of these two measures. Consequently, we define the
average individual size o, of the ith species to be a weighted average of asymptotic
average area and length of individuals as given by Theorem 4.
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Note that o; depends only on the individual physiological parameters «;, B8,, and
s; (actually the ratio r, = 8;/; and s;). It does not depend on the resource uptake f;
or the death rate d; (although the time scale in (5.2), and hence the rate of asymptotic
approach to ag;, does). It has been shown in § 4 that z, is a strictly increasing function
of r,. It is not difficult to show that the same is true of r;/z,(r;).

LemMA 3. The asymptotic size o, is a decreasing function of reproductive efficiency
a; and an increasing function of both growth efficiency B; and the size at birth s,.

6. Some applications. In this section two cases are considered for which the
reduced system has been well studied in the literature. An application of the results
above allow conclusions about these cases in which the competing species are size-
structured.

6.1. Size-structured species competing in a chemostat. A chemostat is a laboratory
device used for culturing micro-organisms into which a resource (nutrient or substrate)
is pumped at a constant rate while a constant volume is maintained by pumping the
(assumed well mixed) contents out at the same rate. The rate of change of the resource
concentration in the absence of any consumption by micro-organisms in the chemostat
is determined by the simple law (2.4) where R, is the input concentration of resource
rate and d is the washout or dilution rate. It is assumed that the death rate of the
competing species is negligible compared to the washout rate so that d; =d for all i
The chemostat model is also considered to be a reasonable laboratory simulation of
a simple naturally occurring lake.

Although a more general case could be analyzed by utilizing the results of Butler
and Wolkowicz [3], for simplicity only the case of monotonic resource uptake rates
will be considered here, i.c., it is assumed that

(6.1) f[(0)=0, fi(R)>0 forR=>0.

These conditions are certainly satisfied by the frequently used Michaelis-Menten (or
Holling type II) uptake rate (2.1). A more detailed discussion of this chemostat model
as well as the usefulness of the Michaelis—-Menten uptake law can be found in Hsu,
Hubbell, and Waltman [10], Waltman [19], Metz and Diekmann [ 14] and the references
cited therein.

The resulting size-structured competition system

R'=(R,~R)d - T, fi(R)A, R(0)>0,

2
A;z—dAi+f;(R)(si—laiAi+§BiLi>’ Ai(0)>0,
(6.2) 1
Li=-dL, +ﬁ(R)(Si2aiAi+§BiI)i)y L;(0)>0,
P =—dP,+f(R)sT’a,A;, P(0)>0

can be linearly transformed to the system
R'=(Ry—R)d— Y fi(R)(cnx;+cnyit+ciz), R(0)>0,
i=1

x;=—dx;+ u; f;(R)x,, x,(0)>0,

y: = —dy, +ﬁ(R)(YIy! - V,Z,-),
2i=—dz;+ f(R) vy + vz),

(6.3)
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which is associated with the reduced system

R'=(Ry~R)d~ ¥ cifii(R)X;,  R(0)>0,

i=

(6.4)
Xi=—dX;+u,f(R)X;,  X;(0)>0.

This system has the form of that studied by Butler and Wolkowicz [3] and their results
can be used to describe the global asyinptotic dynamics of all its solutions. These
results can in turn be used to obtain the global asymptotic dynamics of (6.3), and
hence (6.2).

For each i define the positive numbers A, by the equation

(6.5) d=pfi(hi),  A>0.

By the assumed monotonicity of f; the number A; is unique, if it exists. If A; does not
exist for some i, then —d + u;f;(R) <0 for all R>0 and it is easy to see from (6.3)
that x,(t) -0, as t>+c0. By Theorem 2 this implies that (A;(¢t), L,(¢), Pi(t))~>0, i.e.,
species i suffers extinction. Thus if A; fails to exist for all i then all species suffer
extinction. The constant A; is the “break even” resource density for species i at which
the growth rate of its weighted average x; is zero; for resource densities below (above)
the level A;, x; decreases (increases).

Assume that at least one A, exists. Furthermore, assume that these A; are distinct.
Without loss in generality, the species can be ordered so that

(6.6) M<Ay <A<+ <Ay, l=m=n
Corollary 3.5 of Butler and Wolkowicz [3] implies that X;(¢)—> 0 for all i=2 and that

R, ifA,>R,,
A, if A <R,

0 ifA;> Ry,

d Xt
an 1()—){X’l“>0 if A, <R,,

R(t)~- {
where X¥ = u,(Ry;—A;)/c,,. This result for the reduced system (6.4) together with
Theorem 2 are used in the Appendix to prove the following result for the competitive
system (6.2).

THEOREM 5. Assume that the uptake rates f,(R) satisfy (6.1). Let u;>0 be the
physiological efficiency coefficient of the ith species, i.e., the dominant eigenvalue of the
Leslie matrix M, given by (3.2). Let I be the set of indices for which equation (6.5) has
a positive solution \;> 0 and assume that the A, and R, are all distinct. Then for every
solution of (6.2) the following alternatives hold :

(a) If I = then R(t)—> Ry and (A (t), Li(1), P(t))=0 for all i as t > +0.

(b) Suppose I # & and the species are ordered so that (6.6) holds. Then

(A;(t), P(1t), L(t))»0 foralliZ2 ast->+wx
and
M>Ry=R(1)> Ry and (A\(1), Li(t), P(1))->0,
M<Re=>R(t)=>A, and (A1), L(1), P,(1))>(A,,L,P)>0
where
Ar=m(Ro=Ay),  Li=s,a;(Ro—A)Bui+s1' 1)/ 31,
Py =57 (Ro—Ay).
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This theorem is consistent with the fundamental competitive exclusion principle
in that it implies that at most one species can survive on a single limiting resource.
The surviving species is the one with the smallest A; value provided this value is less
than the input concentration R,. That is, the winning species is the one that can exploit
resource R to the lowest level and survive at that resource level, provided it is below
the input concentration R,.

From the defining equation (6.5) and the assumed monotonicity of the uptake
rate f; it follows that A; is inversely related to the efficiency coefficient u;. Thus it is
to a species’ advantage to increase u,. By Lemma 2 this can be accomplished by an
increase in either the reproductive or the growth efficiency «;, B; or by a decrease in
the length at birth s;.

An increase in the efficiency coefficient w; does not necessarily correspond to a
larger average individual size o;, however. By Lemma 3 this would occur if the growth
efficiency B; is increased, but a decrease in average individual size occurs if y, is
increased by means of either an increase in reproductive efficiency «; or a decrease in
the length at birth s;.

Thus it is seen that, at least for this competition model, there is no clear cut
relationship between competitive success and a species’ average individual size o;.
Competitive success is determined by the parameter A;, which is determined through
(6.5) not only by the physiological parameters encapsulated in the efficiency coefficient
ui, but by the resource uptake rate f;.

At one extreme all species could have identical efficiency coefficients (although
quite different physiological parameters «;, 8;, s;, and hence different average individual
sizes ;) in which case the surviving species would be determined solely by the per
unit area uptake rate f;. In this case average individual size is clearly not relevant to
competitive exclusion.

Another case is when the species are identical in their per unit area resource
uptake rates f; = f and differ only in their physiological parameters. In this case the
ordering (6.6) is equivalent to

B> o> >

and the winning species is the one with the largest efficiency coefficient (provided it
exceeds a critical value)

231 > Mer = d/f(RO)-

As can be seen by means of Lemmas 2 and 3, however, the species possessing the
largest efficiency coefficient may or may not be the species with the largest average
individual size.

For example, consider the case when all species are the same length at birth 5, = s
and have the same reproductive efficiency coefficients «; = . By Lemma 2, u; is an
increasing function of the growth efficiency coeflicient B3;. In this case the surviving
species is the one with the largest growth efficiency coefficient (provided it exceeds a
critical value) which is in turn, by Lemma 3, the species with the largest average
individual size at equilibrium. This conclusion, for this special case, is in agreement
with the SEH in that the larger species eliminates the smaller species.

On the other hand, if instead the species differ in this case only in their reproductive
efficiency coefficients «;, then the winning species has the largest «;, but by Lemma 3
the smallest average individual size. In a similar fashion we can see that if the species
differ only in their lengths at birth, then the surviving species has the smallest length
at birth s; and again the smallest species average individual size. These cases are not
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commensurate with the SEH in that they imply that the smallest competitor eliminates
the larger competitors. .

Although the model studied in this paper explicitly ignores juvenile states, the
results for this latter case could perhaps be interpreted in a very crude way as lending
some support for the so-called “juvenile bottleneck” phenomenon [20]. The reasoning
is that, all other things being equal, the species with the greatest reproductive efficiency
or the smallest length at birth survives by producing a population with a large proportion
of young individuals who, by the weight of numbers, exert insurmountable competitive
pressure on the other species and prevent them from producing population levels large
enough for their larger average individual sizes to become significant.

6.2. Competition for a self-renewable resource. As a second application consider
the case when the resource R is a self-renewing population whose inherent dynamics
are governed by the logistic equation (2.5). If Michaelis-Menten uptake rates are used,
the model equations are as follows:

R n
R=rl1-=JR-Y ¢
r( K) ; Ci

i=1 a,+R

A,  R(0)>0,

R 2
A;Z_d,A,'f‘Ci R <S,_1CY,A,'+‘3_ﬂ,~L,), A|(0)>0’
(6.7) ’
R [ _, 1
L::_d,-L,-‘*‘C, R s, alAr—*—gB!R B Lr(0)>03
R -3
Pi=—dP +¢ R s aA,, P,(0)>0.

]

For the case n=2 of just two competing predator species the reduced transformed
system (3.4) becomes

R' <1 —R)R i _R_ X, R(0)>0
=r — — i1 C; i
K &, GG a+R " ’

R
(6.8) Xi=—d X+ X, X,(0)>0,
a;+R

Xi=—dXot pses = X,,  X(0)>0,
a,+R

a system extensively studied by many authors, including Hsu, Hubbell, and Waltman
[19], Butler [2], Smith [17], Keener [12], and Waltman [19]. As for the case of the
chemostat model, in § 6.1 the results of these authors concerning this reduced system
(6.8) can be used to derive corresponding results concerning the asymptotic behavior
of solutions of the original size-structure model (6.7). The details for this case will be
omitted.

Unlike for the chemostat model in § 6.1, however, the case of a self-renewable
resource does not necessarily possess only equilibrium dynamics. The dynamics in this
case can be more complicated and do not seem to be completely known for all parameter
ranges, although many results have been obtained. Depending on parameter values,
cases that can arise are the following: both species go extinct; only one species survives,
either in an equilibrium state or in a nonconstant periodic oscillatory state with the
resource; or both species survive in a nonconstant periodic oscillatory state with the
resource. The last case is interesting because it is in opposition to the familiar tenet
that only one species can survive on a single resource.
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These various cases are determined primarily by the break even concentrations:
)\i:aidi/<ﬂ‘lci_di)$ l: 1,2

In terms of the parameters of (6.8) known results yield the following (see, e.g., Smith
[18]). Assume, without loss of generality, that the first species has the smaller A, value:
0<A, <Ay,

If u; <di/c; then X (1) 0, so that the only case of interest is u; > d;/c,.

If

<us= i (1 +ﬂ>
Mrp=pp = ¢ K/’

then both species go extinct, i.e., (X;, X,, R)> (0,0, K). If however u,> u{ then the
nature of the asymptotic dynamics and the outcome of the competition depends on

> as follows.
If

or d, a,
M2 < 3 —6—2(1+E>,
then species X, wins, i.e., X,(t)—>0. In this case there are two possibilities: either X,
equilibrates or (X,, X,, R) approaches (except for a one-dimensional manifold of
initial conditions) a nonconstant limit cycle in the face X, =0. The former occurs if
K<a,orif K>a, and u;<d,c; (K+a,)(K —a,)”", in which case

A A
(X1, X5, R)>(X*,0,1,) where X*¥=- <1 ——1> >0
while the latter occurs if K >a; and u;>d,e; (K +a)(K —a,)™".
If, on the other hand, w, > w3 then again X, wins with exactly the same possibilities
as above if in addition

c,d
(6.9) /-’«2<1_2l—‘v1-

6d,
However if the opposite of this inequality holds, then it is possible that both species
survive in the sense that there exists a stable nonconstant limit cycle in the positive
(X, X,, R) cone. This is analytically known to occur only under certain further
parameter constraints, namely for A, = A, and for small a,—a, >0 [18], [12].

If we view these various cases as constraints on the physiological efficiency
coefficients u; then, as with the chemostat model in § 6.1, we again find that to survive,
a species must possess an efficiency coefficient greater than a critical value. If two such
species compete then the species with the smaller A, value wins (unless the other species
has a sufficiently large efficiency coefficient and, in addition, if other system parameter
values are appropriately related, in which case the two species might coexist in limit
cycle sense).

By Theorem 4 the average individual size of each species is

dis:i; al
og=—1+—].
(1o ] A,

Just as in § 6.1 we see that there is in general no definite relationship between the
species’ average individual sizes and the outcome of the competition.

In passing it is interesting to note that the limit cycle coexistence case can occur
only if the species are sufficiently different in the sense that if s;,=5,, ¢;=¢,, a,= a,,
and d, =d,, then A, <A, is equivalent to u, > u, which implies that (6.9) holds.
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7. Concluding remarks. It has been shown above that under certain simplifying
assumptions the asymptotic dynamics’ of a complicated model for the interaction of
an arbitrary number of size-structured species competing for a single resource, can be
studied by means of a system of ordinary differential equations for the population
level statistics of total number of individuals, total population length, and total
population area. Trajectories of the ODE system have been shown to approach an
invariant, lower-dimensional positive cone on which the dynamics are governed by a
lower-dimensional (transformed) system more amenable to analysis and, in many cases,
subject to known global results. This approach is used in § 6 to study two specific
size-structured competition systems that are appropriate for zooplankton communities.

Two simplifying assumptions have been made in the derivation of the ODE system
(2.9)(a)-(2.9)(d). It has been assumed that for the individuals of each species the
energy utilized for metabolic maintenance is negligible relative to the energy used for
growth and reproduction. Second, juvenile stages have been ignored.

With a slight modification in the model a similar methodology can be carried out,
to a certain point at least, on a model that includes metabolic maintenance costs. In
the model (2.6) of Diekmann et al. the growth of individuals is never permitted to be
negative, i.e., while growth may cease, individuals do not shrink in size. This is a
reasonable assumption for organisms of the type that Diekmann et al. had in mind
(Daphnia have a hard external shell that does not appreciably shrink even during
periods of starvation). If, on the other hand, the growth rate is allowed to assume
negative values and we replace g(R, s) in § 2 by

8(R, ) =3 (wf(R) - 45)
n

then the same manipulations that lead to the system (2.9) for A;, L;, and P,, now lead
to the same system again but with modified death rates d;. Specifically, the d; in
equations (2.9)(b) and (2.9)(c) are replaced by d;+2¢;/3vm;, d; + ¢:/3vm;. Unfortu-
nately a linear change of variables no longer uncouples the system as it did in § 2.
Nonetheless we still have a more tractable size-structured competition model of
ordinary differential equations and one that may be useful in analyzing this case.

The inclusion of a juvenile period in size-structured competition models would
be of interest since the presence of juveniles is known to be important for many species
interactions [20]. The juvenile bottleneck phenomenon mentioned in § 6 is one case
in point. The key points of the approach taken above can be derived heuristically in
another manner that in fact does allow for the inclusion of a juvenile period. Write
the PDE in (2.6) as follows:

d
—pi = —dip; + f;(R) Bp;
P p: +fi(R)Bip

where B, is the appropriate differential operator. If the “ansatz”

pi(t,')=ai(t)n,~(-[ ﬁ(R)dT,')

is plugged into this equation, the result can be decoupled into the following pair of
equations:

d d
dt n; Bnnx Mty dt a; ( dl y.,f,(R))a,
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Here u; is an arbitrary constant, but under suitable hypotheses on B;, if u; is taken
as the dominant eigenvalue, then we can show that n; converges as t -+ to the
dominant eigenvector of B; and consequently that the asymptotic behavior of p; is
determined by the scalar equation for a;. Presumably, with enough work, this heuristic
approach can be made mathematically rigorous and in this way we can arrive at the
asymptotic equations (3.4) and the “ergodic” results of § 5 even with a juvenile stage,
although information about the important dominant eigenvalue x; may be more difficult
to obtain in this case.

In this paper we have considered only one of the basic tenets of the Size Efficiency
Hypothesis (SEH), namely that larger species have a competitive edge over smaller
species. The other primary assumption of the SEH, that size specific predation can
determine the structure of a competitive community of size-structured species, is not
addressed. By the addition of a predator species to the model system, the approach
taken here should be fruitful for this problem as well, especially in light of recent
results on predator mediated competition for unstructured populations [4] which could
be used to study the asymptotic limiting equations.

Another interesting modification of the model would be the incorporation of
size-structure in the resource population R, as there is a great deal of biological
literature on the importance of food particle size in the population dynamics of
micro-organisms [9].

Appendix.

Proof of Theorem 1. Suppose R is not positive for all time and let T>0 be the
first time at which R vanishes. Then R(T) =0 and R'(T) = k(0) by (2.9)(a). If k(0) >0,
this is a contradiction. If k(0) = 0, then by uniqueness R =0, which contradicts R(0) > 0.
Thus R must be positive for all time.

Next, suppose that A, is not positive for all time and let T, > 0 be the first time
at which A; vanishes. Then A(T,)=0 and (2.9)(b) imply L(T,)=0. If T, >0 is the
first time at which L, vanishes, then it follows that T; = T,. A similar argument using
equation (2.9)(c) shows that P, must have a first time Tp = T, at which it vanishes and
P'(Tp)=0. Finally the last equation (2.9)(d) with = T, shows that A(T»)=0, and
hence T,= Tp, which in turn implies T4=T, =T, =T. Thus A, L,, and P, simul-
taneously vanish at this time T >0. It follows from equations (2.9)(b)-(2.9)(d) and
uniqueness that A,, L;, and P, are all identically zero for all time, in contradiction to
the positivity of their initial conditions. Thus A; is positive for all time.

Suppose that L; is not positive for all time and has a first zero T, >0 where
Li(T.)=0. Equation (2.9)(c) implies that P,(T,)=0 and consequently that P, has a
first zero at a time T, =T, at which Pj(Tp)=0. Equation (2.9)(d) now implies the
contradiction that A(Tp)=0. Thus L, is positive for all time.

Finally suppose that P, is not positive for all time and has a first zero Tp > 0 where
P(Tp)=0. Equation (2.9)(d) implies the contradiction that A(Tp)=0. O

Proof of Lemma 1. Since both «; and B, are nonzero, the Leslie matrix M, is
irreducible and primitive and as a result the well-known Perron-Frobenius theory
implies the first sentence in Lemma 1.

With regard to the other two eigenvalues of M, consider the characteristic poly-
nomial (4.1). Since

h/(,u,) :3/.L2_2Srlai/~‘f —%Srzaﬁu

the following facts are easily seen: h(0)<<0, #'(0) <0, and h has two critical points
#_<<0, u, >0 at which h has a relative maximum and minimum, respectively. Clearly,
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if h(u_) <0, then h has only one real root, namely the positive root u;. But from
h'(u_) =0 follows

2 2 i
SslaBu tzsiaBl= b nl,
3 9 5,

which when substituted into h(u_) yields
h(po)=p(u_—s; '(a,+B))<0.
Finally from the first-order coefficient in h{u) it is seen that
0> —§572a.-ﬂ; =2uyit ’}’.2+ Vlz,

which implies y; <O. 0
Proof of Theorem 2. If equations (3.3)(c)-(3.3)(d) are multiplied by

[(1)=exp (d.-t — v Jlﬁ(R(u)) du)
and if
7. () =y (O,(2), 2.(t) = z()T';(¢),
then equations (3.3)(c)-(3.3)(d) can be rewritten as
)_’: = _Vifi(R)fi, Zi= Vif:(R)fi

from which it follows that 72+ z2 is constant, i.e., y.(t)+ Z:(t) = 7;(0) + 2;(0) or yi(¢) +
22(1) = (y2(0) + 22(0))/T2(¢). Since f,(R) is positive and vy; is negative this implies

YU +zi(1) = (y1(0) +27(0)) exp (—24,1). a

Proof of Theorem 3. It has already been shown that y;(7) and z;(t) are bounded
and that R(t) is positive for ¢ = 0. Since the eigenvector v, is positive and since p;(t)
is positive by Theorem 1, x,(t) = v,p(t) is positive for all =0 and all i. From Theorem
1 and (2.9)(a) it follows that R’= k(R) and hence by (H) and standard comparison
theorems that R(#) is bounded for t=0.

Add together equations (3.3)(b) multiplied by ¢;;/ u; and add the result to equation
(3.3)(a) to obtain

R+ 7Y Ayl k(R)- ¥ d 2 x,— (1)
=1 My =1 My
where

n

p=—2 S(R)(cpyitciz)—>0 ast—>+oo,
i=1

i=

Let d =min {d,}>0 and

w(t)= R(1)+ il enxi(D)] .

Then w(t)=0and w'=k(R)—d Y_, ¢\yX,/pi— ¢ or

w'(t)+dw(t) = y(1), Yy =k(R)+dR— ¢.
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Since ¢ = (1) is bounded and d > 0 it follows that w(?) is bounded for 1= 0. From
this and the positivity of R and x; follows the boundedness of x;. 0

Proof of Theorem 5. (a) If I =(J then, as was shown just preceding Theorem 5,
(A;(1), Li(1), P(t))>0forall i as t > +oo. It follows easily from (6.2)(a) that R(t) > R,.

(b) If I#, then the remarks preceding Theorem 5 show that
(A;(1), Li(t), P(1))~>0 for all j> m. Let I be the trajectory associated with a solution
(R, X\, Y1, 21, " " »Xn, ¥n» Zn) Of the transformed system (6.3) and let Q be its w-limit
set. Theorems 1-3 imply that  lies in the invariant face R=0, x; =0, y; =z, =0 for
all i. Let e, denote the equilibrium (R,, 0,0, - - -, 0) of (6.3) and let ¢, for j € I, denote
the equilibrium of (6.3) for which R=A;, y;=2;=0 for all i, x;=0 for all i+ and
x; = X} > 0. Finally let

_{eo ifjgl or jel andA;>R,,
=

e, ifjel and A;<R,.

(i) First suppose that {} contains a point P whose x; component is positive. The
trajectory I'p associated with the solution of (6.3) through P is also a trajectory of the
reduced system (6.4) through P because P € () lies in the invariant face y;, = z; =0 for
all i. The invariance of the w-limit set {) implies I', = Q. Corollary 3.5 of Butler and
Wolkowicz [3] implies, since the x, component of P is positive, that the w-limit set
of I'p is the equilibrium E,. Thus E, €. A straightforward linearization of (6.3) at
E, shows that E, is asymptotically stable. Thus Q ={E;} and I'> E;.

In summary, in this case, 1€ and A; <R, implies I'> ¢,, while either 1€ or
1e I and A,> R, leads to a contradiction since E, = ¢, has a zero x, component. We
conclude that in the latter event Q) must lie in the face x, =0, y; = z; =0 for all i, a case
that is considered next.

(ii) Suppose that € lies in the face x; =0, y; = z; =0 for all i. Suppose, however,
that there exists a point P € Q with a positive x, component. The trajectory I'p of (6.3)
through P <} lies in this face and is also a trajectory of the reduced system (6.4)
reduced further by elimination of x, (i.e., (6.4) with x, =0) for which Corollary 3.5 of
Butler and Wolkowicz [3] implies that the w-limit set of I'p is the equilibrium E,.

Next it will be shown that T approaches E,, i.e., Q ={E,}. Since I" approaches its
w-limit set, it follows by Theorem 2 that x,(¢) > 0 and y;(t) = 0, z(¢) - 0. Consequently,
the system

R'=(Ry~R)d - 3 cafi(R)x

+( —en iR+ T ﬁ(R)(c.-zywrc,-sz,-)),

xi=—dx;+ p fi(R)x;, i=2---,n
obtained from (6.3) by ignoring the equation for x;, which the solution
(R, Xy, Y1, 21," " ', Xn, Yu, Zn) automatically solves, is asymptotic to the system

R'=(Ry~R)d~ 3 1 fi(R)X,

X:z_dX,+/.L,f;(R)X,, i=2)...3n'

A straightforward linearization of this system shows that E, is asymptotically stable
in the face x, =0 as an equilibrium of this system. Since P € (}, the invariance and
compactness of the limit set ) implies I', = ) and E,€ . A theorem of Markus [13]
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(see also Hsu et al. [11]) applied to these two systems yields the desired result that
Q={E,}. .

If2¢1 or2el and A,> Ry, then Q ={¢,}, which is a contradiction since ¢, does
not have a positive x, component.

If 2e I and A, < R,, then Q ={e,}. However, a linearization of (6.3) at e, shows
that the stable manifold of e, lies in the invariant face x, =y, = z; =0. This is also a
contradiction since I does not lie in this face.

Consequently, in this case there exists no point P in ) which has a positive x,
component, i.e., {) must lie in the invariant face x, =x,=0, y; =z, =0.

The above argument can be repeated, with obvious modifications and with E,
replaced by E;, if () contains a point P with a positive x; component, and so on until
the conclusion that Q = {e,} is reached.

(iii) Suppose 1e¢I and A, <R,. By (i) and (ii) either Q) ={e;} or {e,}. But a
linearization of (6.3) shows that in this case ¢, is unstable with its stable manifold
contained in the invariant face with x, = 0. Since I is not in this face { cannot be {e,}
and hence O = {e,}.

(iv) The following conclusions result from (i)-(iii): If either 1€7 or 1e I and
A > Ry then Q ={e,}, while if 1€ and A, <R, then () ={e,}. This is equivalent to
Theorem 5(b).

REFERENCES

[1] J. L. BROOKS AND S. 1. DODSON, Predation, body size and composition of plankton, Science, 150 (1965),
pp. 28-35.
[2] G.J. BUTLER, Coexistence in predator-prey systems, in Modeling and Differential Equations, T. Burton,
ed., Marcel Dekker, New York, 1980.
[3] G.J. BUTLER AND G. S. K. WoLKOWICZ, A mathematical model of the chemostat with a general class
of functions describing nutrient uptake, SIAM J. Appl. Math., 45 (1985), pp. 138-151.
[4] , Predator-mediated competition in the chemostat, J. Math. Biol., 24 (1986), pp. 167-191.
[5] O. DIEKMANN, J. A. J. METZ, S. A. L. M. KoolJMAN, AND J. J. A. M. HEUUMANS, Continuum
population dynamics with an application to Daphnia magna, Nieuw Arch. Wisk. (4), 2 (1984),
pp- 82-109.
[6] W.R. DEMoTT AND W. C. KERFOOT, Competition among cladocerans: nature of the interaction between
Bosmina and Daphnia, Ecology, 63 (1982), pp. 1949-1966.
[71 S. 1. DODSON, Zooplankton competition and predation: an experimental test of the size-efficiency
hypothesis, Ecology, 55 (1974), pp. 605-613.
[8] J. GERRITSEN, Size efficiency reconsidered: a general foraging model for free-swimming aquatic animals,
Amer. Natur., 123 (1984), pp. 450-467.
[9] D.J. HALL, S. T. THRELKELD, C. W. BURNS, AND P. H. CROWLEY, The size-efficiency hypothesis
and the size structure of zooplankton communities, Ann. Rev. Ecol. Syst., 7 (1976), pp. 177-208.
[10] S. B. Hsu, S. HUBBELL, AND P. WALTMAN, A mathematical theory for single-nutrient competition in
continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), pp. 366-383.
[11] , Competing predators, STAM J. Appl. Math., 35 (1978), pp. 617-625.
[12] J. P. KEENER, Oscillatory coexistence in the chemostat: a codimension two unfolding, SIAM J. Appl.
Math., 43 (1983), pp. 1005-1018.
[13] L. MARKUS, Asymptotically autonomous differential systems in Contributions to the Theory of Nonlinear
Oscillation, vol. 3, Princeton University Press, Princeton, NJ, 1956, pp. 17-29.
[14] J. A. J. METZ AND O. DIEKMANN, The Dynamics of Physiologically Structured Populations, Lecture
Notes in Biomathematics 68, Springer-Verlag, Berlin, 1986.
[15] W. E. NEILL, Experimental studies of microcrustacean competition, community composition and efficiency
of resource utilization, Ecology, 56 (1975), pp. 809-826.
[16] J. W. SINKO AND W. STREIFER, A new model for age-size structure of a population, Ecology, 48 (1967),
pp. 910-918.
[17] H. L. SmiTH, Competitive coexistence in an oscillating chemostat, SIAM J. Appl. Math., 40 (1981),
pp. 498-522.




858 J. M. CUSHING

[18]

, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model,
SIAM J. Appl. Math., 42 (1982), pp. 27-43. .

[19] P. WALTMAN, Competition Models in Population Biology, CBMS-NSF Regional Conference Series in
Applied Mathematics 45, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[20] E. E. WERNER AND J. F. GILLIAM, The ontogenetic niche and species interactions in size-structured
populations, Ann. Rev. Ecol. Syst., 15 (1984), pp. 393-425.

[21] D. S. WiLSON, The adequacy of body size as a niche difference, Amer. Natur., 109 (1975), pp. 769-784.





