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The Dynamics of a Size-Structured
Intraspecific Competition Model with Density
Dependent Juvenile Growth Rates

J. M. Cushing and Jia Li

ABSTRACT. The dynamics of a size-structured population in which
adult fertility correlates with body size, and in which adult body size
at maturation is dependent (through competitive effects) upon popu-
lation density during juvenile growth, are studied. A simple discrete
model for a population with one juvenile size class and two adult size
classes, one consisting of larger and more fertile individuals than the
other, is derived and analyzed. The competitive effects on Jjuvenile growth
are separated into those due to competition from other juveniles and
those due to adults. Parameter regions are determined in which the
dynamics equilibrate, approach 2-cycles, or result in chaotic oscilla-
tions. The results suggest that intra-specific competition of this kind
between juveniles and adults is destabilizing for either small or very
large inherent net reproductive rates, strong competitive effects tend-
ing to result in a synchronous 2-cycle in which juveniles and adults
avoid competition. For intermediate values of the inherent net repro-
ductive rate, however, intra-specific competition has a stabilizing in-
fluence, promoting equilibration where there would otherwise be cha-
otic oscillations.

Introduction

Biological populations have a natural propensity for exponential growth
which in the long run, of course, must be held in check. Nonlinear models
of population growth do this by incorporating “density effects” which serve
to decrease either fertility or survival. The majority of models for population
growth describe highly aggregate population level variables, such as total
population size or biomass, and as a result can account for intraspecific
competition due to increased population density in only a very qualitative
manner. In order to better account for the mechanisms causing intraspecific
competition, it is necessary to use a structured population model in which
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relevant physiological or behavioral characteristics of individual organisms
are distinguished.

There are many means by which individuals of a species might compete
for common resources, and by which such competition might express itself.
One type of intraspecific competition which has received recent attention is
that which can occur between juvenile and adult members of the population
(May et al. 1974, Bellows 1982, Tschumy 1982, Ebenman 1987, Ebenman
1988a, Cushing and Li 1989, Cushing and Li 1991, Cushing 1991). The
possibility of niche overlap between juveniles and adults exists for species
with relatively “simple” life cycles, as opposed to those that undergo sig-
nificant metamorphosis or otherwise experience radical ontogenetic niche
shifts during their development. This includes most reptiles, fish, mam-
mals,and hemimetabolous insects.

The dynamical consequences of juvenile and adult competition has been
investigated by means of simple age-structured models by several authors
with the conclusion that such competition is usually destabilizing (May et
al. 1974, Bellows 1982, Tschumy 1982), but that under certain circum-
stances can be stabilizing (Ebenman 1987, Ebenman 1988a, Cushing and
Li 1989, Cushing and Li 1991, Cushing 1991). In these age-structured models
the effects of juvenile vs. adult competition result in either reduced juvenile
survival or adult fertility.

Another important effect of competition experienced by juveniles, which
is not included in any of these age-structured models, is that of slowed growth.
Body size is often a more important physical attribute than is chronological
age (Werner and Gilliam 1984, Ebenman and Persson 1988). Body size, not
age, is often the key factor in determining vital rates such as fertility, sur-
vival, and individual growth rates as well as susceptibility to environmental
hazards (such as predation and cannibalism), metabolic demands, etc. Thus,
intraspecific competition can slow juvenile growth, reduce size at matura-
tion, and consequently affect population growth by reducing fertility (Wilbur
1980, Botsford 1981, Prout and McChesney 1985, Ebenman and Persson
1988).

In an attempt to study the consequences of slowed juvenile growth due
to intraspecific competition, Ebenman (1988b) placed, in a rather ad hoc
manner, a time delay in his age-structure difference equation model and
concluded that strong competition of this sort has a destabilizing effect on
the population dynamics. As pointed out by Ebenman, however, it would
be more appropriate to analyze this phenomenon by means of a size-struc-
tured model. In a later paper, Ebenman (1988b) extended his model to in-
clude variable adult size. This extension, however, is sufficiently compli-
cated that virtually no analytical results are attainable and it must be analyzed
numerically. .

In this paper we consider a model of size-structured, intraspecific com-
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petition in which increased competition during juvenile growth reduces size
at adulthood and thereby reduces adult fertility. Our goal here is to derive
a model which is simple enough to be as analytically tractable as possible,
and yet still capture these essential features. We wish to understand the
asymptotic dynamics of the model and to draw some conclusions about the
stabilizing or destabilizing effects of this kind of intraspecific competitive
interaction.

Model Equations

We wish to write down a model for the dynamics of a population in which
an adult individual’s fertility is correlated with its body size, which in turn
is dependent upon the amount of competition experienced during juvenile
growth. In this paper we will consider only the simplest version of the kind
of discrete model we have in mind, which nonetheless captures these basic
features. We will ignore density dependent fertility and survival rates and
focus on the effects of density on growth rates. Such extensions of the model
will be studied in a future paper.

Imagine a population in which (surviving) juveniles mature at one of two
possible adult sizes after a fixed unit of time + = 1. The fraction &(W) of
surviving juveniles that mature at the larger adult size is dependent upon the
amount of competitive pressure experienced during juvenile growth, which
is measured here by a weighted total population size W = J + B,A, + B.A,.
Here J is the number or density of juveniles, A, is the number of smaller
adults, and A, is the number of larger adults. Thus the competition coeffi-
cients 3; = 0 measure the effect that an adult individual of size i has on
juvenile growth, relative to the effect of a juvenile individual. If we consider
a semelparous population in which there is no adult survival after one unit
of time, then the numbers present in each size category after the elapse of
one unit of time are given by

(@  Jat+1) =nfA1) + nfAr)
(®) A+ 1) =7l = SW())N()
(© At + 1) = wd(W(t)J(t). (2.1)

forz = 1,2,3,... Of course we are only interested in non-negative solutions
of Egs. (2.1), and in particular for initial conditions

J(0) =0, A,(0) = 0, A,(0) = 0. (2:2)

In Egs. (2.1), m is the probability that a juvenile survives to adulthood and
nf; is the number of offspring produced by an adult of size i during one unit
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of time. The coefficient n is used here to introduce the inherent net repro-
ductive rate (expected number of offspring per individual per life time at
low densities, taking survival into account) explicitly into the model and its
analysis. The inherent net reproductive rate is given by nfim(l = &(0)) +
nfywd(0) and will equal n if, without loss in generality, f, and f, satisfy the
normalization

fim(1 — &(0)) + frmd(0) = 1. (2.3)

These parameters are assumed here to be constants, i.e. not density depen-
dent.

The effects of increased population density on juvenile growth will be
assumed to be deleterious, and therefore ¢ is a decreasing function of W.
For analytic simplicity only, we will assume here that in the absence of
competitive effects, a juvenile will always grow to the larger adult size and
that, in the other extreme, at very high (infinitely large) densities all indi-
viduals grow to the smaller size. We then have the following condition on
the fraction &b(W):

beC'(R*, [0, 1), $(0) = 1, ¢(+=) =0, $'(W) <0.

In this case, Eq. (2.3) implies
fz = 1/11.'

Furthermore, we are interested in the case when larger adults are more
fertile so that

H<fi= 1/m.
Properties of the Model

Equations (2.1) have the trivial equilibrium (J, A;, A;) = (0, 0, 0). It is
shown in the Appendix (Theorem 1) that if n < 1 then (0, 0, 0) is globally
attracting. This makes biological sense in that if an individual cannot at least
replace itself at low population densities then the population will go to ex-
tinction.

On the other hand, for n > ny = fo/fi = 1/fim > 1 it follows from Theo-
rem 2 of the Appendix that the population will increase without bound. This
is an artifact of the simplifying assumptions made here. Namely, if the smaller
adult class can sustain the population even at arbitrarily large population
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densities then the population will grow without bound because no controlling

density effects on fertility or survival are present in this simple model.
Consequently, we focus our attention on values of the inherent net re-

productive rate between 1 and n, > 1. From the equilibrium equations

J = nfiA, + nf>A,
Ay = 7(l — dW)J
Az = TT(b(W

where W = J + B,A, + B.A, follows
J = nfim(l = &(W))J + nfymdb(W)J.
If J = 0, then clearly A, = A, = 0, i.e. the only equilibrium with no ju-

veniles present is the trivial equilibrium. A nontrivial equilibrium must have
J > 0, in which case we obtain

aN(W) = 1, N(W) = fim(1 — &(W)) + fimd(W),
an equation which states the biologically obvious fact that at any nontrivial
equilibrium the (density dependent) net reproductive rate nN(W) must be 1.
We can now derive a formula for the equilibrium states by noting that:
N(0) = 1, N(+%) = 1/no, N'(W) < 0.
Thus for ne(1, no) the equilibrium weighted population size is given by:

W= W(n) = N"'(1/n).

From this and the equilibrium equations above we obtain the equilibria

je W(n)
I+ Bym + (B, — B)TdH(W(n))
A = 7(1 = (W), A, = md(W(n))J. (3.1)

We have arrived at the result that there exists a unique, positive equilibrium
for all values of the inherent net reproductive rate n between 1 and ny. By
a positive equilibrium is meant an equilibrium in which all three classes are
present.

Note that the branch of positive equilibrium given by (3.1) bifurcates from
the trivial equilibrium at the critical value n = 1 and becomes unbounded
as n approaches n,. (See Cushing 1988 for a discussion of the generality of
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such global continuum branches of equilibria in discrete population models.)
We will study the stability of these equilibria below, but first we note that
the Jacobian of Eq. (2) at the trivial solution

nfy
0 (3.2)
0

Joo
cosg

has an eigenvalue A = +1 when n = 1, as is to be expected from the bi-
furcation of the nontrivial equilibria. Note, however, that when n = 1 this
Jacobian also has an eigenvalue A = —1. This indicates that perhaps there
is also present a bifurcating branch of 2-cycles. This borne out by Theorem
3 of the Appendix from which we find that for 1 < n < n, there exists, in
addition ro a unique positive equilibrium, a unique synchronous 2-cycle. By
a synchronous 2-cycle is meant a period two solution of (2.1) in which the
juveniles are synchronized to appear all together at alternating time periods,
i.e. a 2-cycle in which J(7) alternates between 0 and a positive value. Spe-
cifically, the bifurcating 2-cycles are given by

(@), Ai(1), A1)

_ ) (W(n),0,0),1=10,2,4,... @)
O, (1 — SGW(m)W(n), TbW(n)W(n) t=1,3,5,... =

for 1 < n < n,

Of interest now are the stability properties of the equilibria and 2-cycles.
Analytically, we can determine local asymptotic stability for n near 1.

First, consider the stability of the trivial equilibrium (0, 0, 0). We have
seen that this equilibrium is stable for n < 1. For n > 1, the eigenvalues
of the Jacobian (3.2), which are A = 0, =\/n, show that (0, 0, 0) is un-
stable. Thus, for n > 1 we expect a viable population, although it is not yet
clear what the asymptotic dynamics are.

To determine the local stability of the equilibria (3.1) we need to deter-
mine the eigenvalues A of the Jacobian

0 nf nf
M=|7n(l—-oW) —7d'W)J —-7md'WBJ —-md'WBJ| (3.4
wd(W) + wd'(W)J o' (W)BJ  wd' (W)B,J

of equations (2.1) evaluated at the equilibrium (3.1). If M = M(n) is treated
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as a function of n, then near n = 1 we can write M = M(1) + M'(1)(n —
1) + 0((n — 1)*) and

A= An) = A1)+ N(D(n=1)+ 0((n — 1.
If we denote the right and left (row) eigenvectors by

v(n) = v(1) + v'(1)(n = 1) + 0((n — 1)?),
w(n) = w(l) + w'(I)(n = 1)+ 0((n — 1)%

respectively, then a substitution of these expansions into Mv' = M/ yields
the formula (see Caswell 1989)

A'(1) = wDM' ()Y (1) /w1 (1). (3.5)

(w” denotes the transpose of w.) We are interested in the two cases (1) =
% 1, the eigenvalues of M(1), which is given by (3.2) with n = 1. The
eigenvectors v.(1), w.(1) of M(1) corresponding to these two eigenvalues
are

V+(1) = Il- Ov ‘IT], w+(l} == [Tr' ﬂfli 'ﬂ"fg]
vo(l)=[1,0, =w], w_(1) = [wf;, 0, —m]

respectively. The derivative M'(1) is straightforwardly calculated from (3.4).
These calculations and formula (3.5) lead finally to

1
A+=1-5(n—1)+0((n‘1}2}.
ey, Y Bm . i
A= ]+2(I+Bg'ﬂ)(n 1) + 0((n 1)9).

We conclude that for n > 1 sufficiently close to 1, the bifurcating positive
equilibria (3.1) are stable if B, < 1/m = f, and unstable if 8, > 1/7 = f,.

Each of the triplets in the 2-cycle (3.3) is an equilibrium of the first com-
posite of the equations (2.1). The 2-cycle is stable if the eigenvalues of the
Jacobian matrix of this first composite evaluated at one of the triplets (say
the first one (W(n), 0, 0)) are inside the complex unit circle. This Jacobian
turns out, amazingly enough, to be easier to analyze than that of the equi-
libria (3.1). This is because the first column has 0 as its second and third
entries, which means the entry in the upper right hand corner is one eigen-
value while the other two can be found from the lower right hand 2 X 2
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unstable d stable
2-cycles ¥ 2-cycles
4 J
4 / _ -
Y4 -
7 -
stable _ ~ unstable
equilibria 7 equilibria
1 n 1 n
.82 < 1/m 52 > 1/m

Figure 6.1. Two branches bifurcate from the trivial equilibrium (J, A;, A, = (0,
0, 0) at the critical value n = 1, one consisting of equilibria and the
other of synchronous 2-cycles. These branches are schematically rep-
resented in these graphs of the maximum of the J component of the
attractor against n. The solutions on the branches have opposite sta-
bility properties, depending upon the magnitude of the competition
coefficient B,.

corner matrix. Skipping the straightforward calculation of the Jacobian, it
turns out that one eigenvalue is A\ = 0 and that the other two are

A =1+ n(f, — f)md' (J(n)J(n)
Ay = mnfy + n(fy — f)md(W (n))

where

Wi(n) = nflA\(n) + nfyA,(n)
+ Bym(1 — &(W(n)))J(n) + B.mwd(W(N))J(n)

from which we find

M=1=(n=1)+0(n-1)?
LN=1+0=—mB)(n—1)+0(n— 1>.

Thus for n > 1 sufficiently close to 1, the bifurcating synchronous 2-cycles
(3.3) have the opposite stability of the equilibria (3.1), namely they are
stable if B, > 1/m and unstable if B, < 1/7.

The two possible bifurcation diagrams are schematically represented in
Fig. 6.1. These results indicate that, at least for populations with small in-
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herent net reproductive rates, strong adult competition affecting juvenile growth
and size at maturation is destabilizing. This is implied by the destabilization
of the equilibrium and the change from equilibrium to oscillatory dynamics
as [3, is increased.

Whether these stability conclusions concerning the equilibria and the 2-
cycles remain intact, and also whether other asymptotic dynamics are pos-
sible, for larger values of the inherent net reproductive rate n can be inves-
tigated numerically. Fig. 6.2 shows typical bifurcation diagrams, using n as
a bifurcation parameter, for the two cases B, < 1/m and B, > 1/m. Notable
from these diagrams are the facts that an equilibrium branch originally stable
(B; < 1/m) can lose its stability through a “Hopf™ bifurcation to an invariant
circle in which the attractors are aperiodic, and then regain it again for larger
n. In the case where the bifurcating 2-cycle is stable (B, > 1/m), the 2-
cycle ultimately loses its stability, sometimes to a restabilized equilibrium
and sometimes to a period doubled 4-cycle (not shown). It can also happen
that for certain n values there exist both a stable equilibrium and a stable
2-cycle. Thus, equations (2.1) can exhibit exotic dynamics.

Fig. 6.3 shows bifurcation diagrams using the competition coefficient {8,
as a parameter. Typically, with increasing {3, one sees the loss of equilibrium
stability to a stable 2-cycle for either n near 1 (as proved above) or for very
large n. For intermediate values of n (where one can find “chaotic™ aperiodic
dynamics; see Fig. 6.1), one typically observes an opposite scenario, where
the dynamics are unstable and “chaotic” for smaller values of B,, but are
stabilized to equilibrium dynamics for large values of §8,. In the latter case,
increased intraspecific competition can be said to be stabilizing.

Concluding Remarks

Model equations (2.1) describe in a relatively simple way the dynamics
of a size-structured population whose juveniles mature to either a small or
a large adult size depending upon the intensity of competition due to pop-
ulation density, and in particular due to competition from the larger sized
adults as measured by the competition coefficients 3, and §8,. Direct density
effects on adult fertility have been ignored, as have density effects on ju-
venile survival. By investigating the asymptotic dynamics of this model,
both numerically and analytically, we have seen that strong intraspecific
competition from adults of this kind can result in either equilibrium, oscil-
latory, or aperiodic “chaotic” dynamics, depending upon relative paramter
values in the model. The results suggest that for populations with either very
low or very high inherent net reproductive rates, this kind of intraspecific
competition is destabilizing. In these cases the dynamics of the model change
with increased competition coefficient from equilibration to periodic 2-cycles
in which juveniles and adults appear in alternate time intervals. That is to
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~.447E+81 .1BSE+83
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-, 358E+88
-.421E+81 .185E+B3

n

Figure 6.2. The juvenile component of the attractor with &(W) = exp(—W) in (2.1)
is plotted against the inherent net reproductive rate n. w = 0.9, f; =
0.01, £, = 1.11, B, = 0.5, B; = 0.9 (top), 1.5 (bottom)
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JABSE+B2
J
-.580E+BP
~-.7SBE+B1 .1G8E+83
L5
.185E+82
J
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B

Figure 6.3. The juvenile component of the attractor with &(W) = exp(—W) in (2.1)
is plotted against the competitive coefficient ,. w = 0.9, f, = 0.01,
fo = 1.11, B, = 0.5, n = 50 (top), 70 (bottom).
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say, increased competition results in the populations adjusting so as to avoid
juvenile and adult competition. On the other hand, the model also implies
that for populations with “intermediate” values of the inherent net repro-
ductive rate, strong intraspecific competition between adults and juveniles
is stabilizing in that increases in the competition coefficient cause the dy-
namics to equilibrate from otherwise chaotic aperiodic motion.

It would be interesting to see how robust these conclusions would be if
some of the simplifying assumptions were dropped. In particular, it would
be of interest to assume that juvenile survival is density dependent. This is
done in Ebenman (1988b) under the assumption that juvenile survival and
individual growth are inversely related to competition through a concept of
“plasticity.” Fertility in general is also density dependent. Model (2.1) as-
sumes that adults reproduce only once (semelparity) and die. How are these
conclusions affected by possible adult survival and repeated reproduction
(iteroparity)? We plan to study extensions of model equations (2.1) that in-
clude these phenomena in future research.

Appendix

THEOREM 1. If n < 1 then any solution of (2.1)—(2.2) tends geomet-
rically to (J, A, A;) = (0, 0, 0).
Proof: From (2.1b, c) follows A (1) + A,(1)= wJ(r) and from (2.1a)

J@ + 1) = nfim(t) + n(f> — f)AL(1)
= nfiml(t) + n(f; — fL)md(W( — $)J(r — 1).

Thus
0=J@+ 1)=nufiJ(t) + n(l — wf)Jt— 1)

and consequently 0 = J(1) = x(r) where x(r) satisfies x(0) = J(0), x(1) =
J(1) and

x(t+ 1) = nwfix(@) + n(1 — wfx(t — 1).

The quadratic characteristic equation associated with this second order linear
difference equation can easily be shown to have two real roots whose mag-
nitudes are less than one when n < 1. Thus, in this case, x(¢) and hence
J(r) tend geometrically to zero. Equations (2.1b, ¢) then imply both A(r)
also tend geometrically to zero.

THEOREM 2. If n > ny = f5/f,, then J(t) — +=.
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Proof: This follows immediately from the inequality

J(t + 1) = nfy [Al(t) +?Az(£) ] = nfi[A\(t) + A(1)] = ﬁ.f{t - 1.
1

Ny

THEOREM 3. For ne(1, ny) there exists a unique synchronous 2-cycle given
by (3.3).
Proof: The first composites of equations (2.1) are

J(t + 2) = nfim(l — $(W))(t) + nfomdb(W(t))J(2)
Ayt + 2) = w(1 — dW,())(nfid (1) + nf>A5(1))
Ayt + 2) = (W (1)(nfiA, (1) + nf2A5(1))

where

Wi(1) = nfiA,(1) + nfAx(1) + Bym(l — GW(D))W(1) + Byad(W(r)J(2)

whose equilibrium equations are

J = nfim(1 — &(W)J + nfand(W)J
Ay =7l = (W) (nfiA, + nfA;)
A, = wh(W)(nfLA, + nfA,).

It is easy to see that (J, A;, A;) = (W(n), 0, 0) solves these equations and
that this is the only solution in which J # 0 and A, = 0.
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