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Abstract. The existence of a stable positive equilibrium density for a com- 
munity of  k interacting structured species is studied as a bifurcation problem. 
Under the assumption that a subcommunity of k - 1  species has a positive 
equilibrium and under only very mild restrictions on the density dependent 
vital growth rates, it is shown that a global continuum of equilibria for the 
full community bifurcates from the subcommunity equilibrium at a unique 
critical value of a certain inherent birth modulus for the kth species. Local 
stability is shown to depend upon the direction of bifurcation. The direction 
of bifurcation is studied in more detail for the case when vital per unity birth 
and death rates depend on population density through positive linear func- 
tionals of  density and for the important case of  two interacting species. Some 
examples involving competition, predation and epidemics are given. 
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1. Introduction 

The equation 

O~p+aa(Vp)+6 =0,  t>O,  a > O  (1.1) 

(0, = O/Ot etc.) governs the dynamics of  the density p = p(t, a) >i 0 of a population 
consisting of individuals who have been categorized by a variable a >i 0 (age, 
size etc.) whose growth rate with respect to time t is ~. Here 6 is a population 
growth law which depends in general on time t, the variable a and the density 
p. Under  the assumption that all newborns have characteristic a = 0 and that no 
member  of  the populat ion can have characteristic greater than A < +o0, Eq. (1.1) 
is accompanied by the conditions 

vp[a=o =/3 (1.2) 

p(t ,a)=-O f o r a l l a ~ A  (1.3) 

where /3 is a birth rate. In general /3 depends on t, a and p, as does v. It is 
assumed here that both vital rates /3 and 6 vanish when density drops to zero 
(/3 and 6 ~ 0 when p -= 0). 
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Of fundamental importance in population dynamics are the asymptotic states 
of  the population as t ~ +co. When 8,/3 and v do not depend explicitly on time 
t and when v does not depend on density p, the existence and stability of nontrivial 
equilibrium solutions p = p(a)  of (1.1)-(1.3) were studied in [2] using bifurcation 
methods for very general 8 and/3. A birth modulus or a generalized inherent net 
reproductive rate defined by normalizing the linearization of  the birth rate/3 at 
p---0 was used as a bifurcation parameter. 

There are relatively few results which provide existence and stability of 
equilibria for systems of  interacting structured populations in any amount of  
generality; see [15, 16, 19]. In this paper we offer one approach which not only 
yields general results, but which we feel provides a conceptionally simple point-of- 
view with regard to these questions. We will study the existence and stability of 
equilibria for multi-species communities of  interacting structured populations 
whose dynamics are modelled by systems of coupled nonlinear equations of the 
form (1.1)-(1.3) by means of  bifurcation theory methods, both global and local. 
The approach taken here will be centered around the idea of  attempting to add 
a single species to a given community of  interacting species. Thus, for example 
in the simplest case of two species, we begin with the assumption that one species 
has, in the absence of the other, a positive equilibrium state (the results in [2] 
are pertinent to this assumption) and we then ask for what values of  a certain 
designated "birth modulus" or "inherent net reproductive rate" can the second 
species interact with the first and result in a nontrivial equilibrium state (i.e. one 
in which the second species has a positive equilibrium state). As will be seen 
bifurcation theory provides very powerful methods for obtaining answers to this 
question in a very general setting for communities of arbitrary size. Moreover 
these techniques offer a way, at least locally (but nonetheless still in a very general 
setting), to analyze the stability of the community equilibrium and to obtain 
lowest order approximations to equilibrium densities. 

The paper  is organized as follows. Preliminary matters, including the set up 
of notation and certain Banach spaces, are given in the following Sect. 2. In Sect. 
3 a global existence result for nontrivial equilibria is given for a system of k t> 2 
interacting structured populations in the form of  a globally defined continuum 
of  equilibria using a birth modulus of  the kth species as a parameter (Theorem 
1). The positivity and stability of  the equilibria on this continuum are also 
considered (Theorems 2 and 3). Stability, at least linearized stability locally near 
bifurcation, is shown to depend upon the direction of bifurcation. In Sect. 4 the 
important special case when the vital rates ~ and/3  are given in terms of per 
unit rates D and F 

fo = Dp, /3 = Fp da (1.4) 

is considered. The case when D and F depend on density only through a linear 
functional of  density (such as total population size ~A P da) is discussed and a 
method of  deriving information about the continuum of equilibria by means of 
certain invariants that must hold along the continuum (as developed in [2] for 
k = 1 species) is given under certain restrictions. This procedure is discussed in 
more detail for the simplest case of  k = 2 species in Sect. 5. In Sect. 6 the results 
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of the paper are illustrated by several applications. A summary is given in Sect. 
7. Finally, an appendix is included which gives the prerequisite linear theory (the 
systems considered here require an extension of the linear theory given in [2]). 

2. Preliminaries 

Let R = ( - ~ ,  +oo), R + =  [0, +c~) and let k/> 2 be an integer. The notation ..... 
"~ k will be used to denote k - 1  vectors, e.g. A =  (Ai)~_~l 1 for A~ ~ R. Then k vectors 

will be written in the form (A, A), A e R. Let A t denote the transpose of A. 
Assume (,4, A) > 0, i.e. A > 0 and all A~ > 0. The Banach space of continuous 

functions p :[0, A~]-> R under the usual sup-norm IPli = sUpto,A, jlP(a)I will be 
denoted by C(A~) and the product space C(A~) x .  �9 �9 x C(Ak-a) under the norm 
IPl = "~IP,]~ will be denoted by C(.4). 

The Banach space in which equilibrium solutions will be sought is defined 
as follows. Let A(A) denote the set ofaU pairs (/2, 13) for which 0 <  ~e  C(A)  and 
/ ~  k - 1  = (/x~)i=~ where/z~: [0, Ai )~  R is continuous and for which 

M i ( A , - )  = +oo, Mi(a) = (tz,(s)/v~(s)) ds. (2.1) 

Define 

vi(o) 
H i ( a ) = v - - ~ e x p ( - M i ( a ) )  forO<~a<~AiandOfora>Ai .  (2.2) 

The space/J  of those functions fi for which all p~ : R + --> R are continuous, p~ = 0 
for a >i Ai and pi/Fli e C(Ai) is a Banach space under the norm IPl = Eilp~/FI~li �9 
Note t h a t / I  = (Hi) e/~. 

I f /2  ~ is such that/~ - /2 ~ e C(A),  then we write/2 o ~/2. If  in this case we set 
M~ = So ~~ ds and replace M~ in (2.1) by M ~ and if (2.2) is used to define 
a function H ~ then/~o e B. 

k - 1  For notational convenience we write 13 ̂  ~ for the vector (viw~)i=l and we 
denote 0aft= (0ap~)~l ~ and S~f ids=(S  ~' p,~ds)~Z_ 1. For the case k = 2  t h e " ~ "  
notation will be dropped. Finally we let B + denote the set of positive fi ~ B(A), 
i.e. fi for which all p~ > 0 on the half open interval [0, A,). Note that H and H ~ e B +. 

We are interested in systems of k ~> 2 coupled, nonlinear equations of the 
form (1.1)-(1.3) when ~ = ~(fi, p) and fl = fl(fi, p) depend in a general way on 
the densities (fi, p). The equilibrium equations 

8a(~ ^/~) + g(/~, p) = 0 
(2.3) 

~(0) ^ ~(0) =/~(A p) 
Oa(vp)+~(~,p)=O 

(2.4) 
v(0)p(0) =/~ (.a, p) 

are to be solved for (fi, p) e/J(fi,) x B(A).  The equations which we wish to consider 
can be written in the form 

A A A A A ^ 

Oty+O~(~^ ~)+ l~~ ̂  ~+ L~(y)+ L2(y)+ h2=O 

t3(0) ^ 33(t, 0) = r~,(33) + tfi2(y) +/~, (2.5) 
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(2.6) 

(2.7) 

equilibrium 

O,y + Oa( vy) + l~~ + h2=O 

v(O) y( t, O) = nm( y) + ha 

yi(t ,a)=O for a>~Ai and y( t ,a)=O for a>~A 

for the k unknowns (~ , y )=( f ( t , a ) , y ( t , a ) ) .  The associated 
equations for (fi, y) = ( f ( a ) ,  y(a)) are 

ao(~^#)+#o^#+ ~ Lx(y) + s + #,~ = 6 
(2.8) 

,3(o)  A # ( 0 )  = , ~ , ( ~ )  + , ~ ( y )  + ~, 

0a(vy)+ Oy+h2=0 
(2.9) 

v(O)y(O) = nm( y) + hi. 

In these equations the s are linear operators and the rhi, m are linear functionals 
* 0  - "  0 . *  A 

for each t and n is a real constant. Also /z ~/z,  /x ~ /z  with (/2, ~)~A(A),  
(/~, v) ~ a (A). 

A 

Equilibrium solutions of (2.5)-(2.7) will be sought in B(A) x B(A), in which 
case (2.7) is automatically fulfilled. By a solution of Eqs. (2.8)-(2.9) will be meant 
a k-tuple (~, y) e/~(fi~) x B(A) for which viyi and vy are differentiable on [0, Ai) 
and [0, A), respectively. 

The prerequisite linear theory in which the /~ and hi do not depend on the 
densities fi, p is given in the Appendix. Our interest here is with the nonlinear 
case when the/~ and h~ are nonlinear expressions in (~, y). Systems of this form 
arise from systems of the model equations (1.1)-(1.3) under certain circumstances. 
For example, if we assume that the "reduced system" of equilibrium equations 
for the subcommunity of k -  1 species in which p is absent 

0a(13 ~ ~ ^ A p)+  t~(p, 0) = 0 
(2.10) 

A A 

~(0) ^ #(0) = #(p, 0) 
t ,  ~ A A 0 

has a solution fl~ B(A) and if we set f i = p - p  , y = p  then the full system of k 
equilibrium equations for (y, y) given by (2.3)-(2.4) has the form (2.8)-(2.9) if 
the following assumptions are made about the vital death 8, 8 and birth fl, fl rates: 

g ( # + # O , y ) = g ( # o , o ) + # o  * ~ ~ ~ A y+ LI(y)+ L2(y)+ h2 

6(~+ fi~ y)= lz~ h2 
(2.11) 

A ~ , ~  A A 

fl ( y +/3 ~ y) =/3(#3 ~ O) + trt I (y)  + rfi2(y) + hi 
# ( # +  -o p ,y)  = nm(y)+hl  

where/~i and hi are higher order in (fi, y) near (0, 0). n is a real parameter about 
which more will be said later 2 Specific hypotheses on the linear terms L;, rhi and 
m and the nonlinear terms hi, h~ will be made below. 

The major restriction on the density dependent vital rates made here is that 
they have expansions of the form (2.11) so that the linearizations at the "trivial" 
equilibrium (fi,/3) = (rio, 0) have the required forms in (2.8)-(2.9). An example 
is provided by the case when the vital rates are given in terms of per unit rates 
(as in (1.4)) 

= D(p, p), D D(~, p) and /~ =/~(fi, p), F =  F(p, p). (2.12) 
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Then the linear terms have the form 

/20-~- O ( p  , 0), Zl()~ ) = p ^ O f i D ( p , O ) ( y ) ,  L2(y) = ~o^ OoD(p* *0, 0)(y)  

~r~p , O) = ^ y+O~F(p , O)(y) ^ r ds 

(2.13) 

IO ~ "" ^0 rfi2(y) = apF(p , 0)(y)  ^ t~ ~ as 

0 -~0 I0 A tx = D ( p  ,0),  n m ( y ) =  F(~~ 

Here/2  = E3(6, 0) and ~ = D(0, 0) are taken as the inherent per unit death rates 
("inherent" means at low species density in the absence of all other species). 
The terms 0~/) etc are Fr6chet derivatives. Thus in fact systems (2.3)-(2.4) with 
per unit vital rates as in (1.4) and (2.12) do have the required form (2.8)-(2.9) 
after the densities are centered on a "trivial" equilibrium (t~, P) = (t ;~ 0). 

3. Bifurcating branches of positive equilibria 

(a) Existence. The reduced system (2.10) represents the equilibrium equations 
for the community of k -  1 species ~ in the absence of the kth species p. Under 
the assumption that this reduced system possesses a positive equilibrium ~ = ~o > 0 
we will look for positive solutions of the equilibrium equations (2.3)-(2.4) which 
bifurcate from the "trivial" equilibrium (/~, p) = (~o, 0) as a function of the real 
parameter n. This will be done by studying the equilibrium equations in the form 
(2.8)-(2.9) for (3~, y ) =  ( ~ - ~ ~  p) under the assumption that the vital rates 6, 6 
and/3,/3 satisfy (2.11). This approach can be viewed as an attempt to add a kth 
species to a community of k -  1 species which possesses at least one equilibrium 
in such a way as to obtain a community of k species which possesses at least 
one positive equilibrium. The stability of these equilibria will be studied in the 
next section. 

As in [2] the bifurcation parameter n > 0 is chosen so as to have a certain 
biological interpretation. The linear term nm(p) is an inherent birth law for 
species p (i.e. the birth law at low densities in the absence of density effects or 
h I ~ 0 ) .  It is assumed that 

/ / O ( a )  = .~ v-~-~a~ exp~ - ~ ~  O ~ a < a  
m(l~~ ~ O, / " - 

I0, a>~ A 

or, by rescaling n if necessary, that 

m ( n  ~ = 1. (3.1) 

Then m can be referred to as a normalized inherent birth rate and n can be called 
an inherent birth or fertility modulus. "Inherent"  in this case refers to the situation 
when species p is at low (technically zero) density and the remaining species are 
near (technically at) the equilibrium ~o. In most applications m is a positive 
functional, i.e. re(p) > 0 if p ~> 0 ( r  0) so that this condition holds. 
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In the case (1.4) of  a per unit birth rate this normalization takes the form 

F(p,  p)  = n f (~ ,  p) ,  f (~o ,  0)1i  o da = 1. (3.2) 

H ~ is the (inherent) probability of survival to characteristic a and hence n = 
SAo F ( ~  ~ O)H ~ da is the inherent net reproductive rate, i.e. the expected number of 
offspring per lifetime. 

An equilibrium pair is a pair (n, (p~, p)) c P = R x (/~ x B) for which (~, p) is 
a solution of  the equilibrium equations (2.3)-(2.4) for the corresponding value 
of  n. A positive equilibrium pair is a pair in P+ = R x (B+ x B +) and a nontrivial 
pair is one for which (~, P) ~ (~o, 0). 

A 

With regard to the Banach spaces B, B in which equilibria are sought, a 
natural choice given (2.11) would be to use t 2 = ~o =/xo. ~ , ~ For more flexibility 

, ~ 0  ^ 0 ^ however we allow i.t - ~ ,  ~ - / . t  where ~,/.t are specified functions in 
~ A 

ZI(A), zl (A). In doing this w e  are motivated by applications in which ,per unit 
death rates have the form D =/2 + ~(p~, 0), D = ~ + r(~, 0) where ~(0, 0) = 0, 

A 

r(0, 0) = 0; i.e./2 and ~ are "inherent",  density independent a-specific per unit 
death rates. In such cases, we have (see (2.13)) that t2~ ~,^o = r t p  ,O), o _ ~ =  

A 0 A A 0  A O  r(f$ ~ 0) and that /.t - # ,  f t~  provided ri(p , 0) and r(p , 0) are continuous 
functions of  a on [0, Ai] and [0, A]. (This means for these motivating models 
that regardless of  density effects, as embodied in f and r, the death rate for a 
near its limit value Ai or A is dominated by the inherent, density independent 
terms /~ and /~ or, put another way, density effects do not alter the maximal 
characteristic limits.) 

The needed hypotheses on the vital rates are summarized in H1-H3 below. 

HI :  (i ~, ~ ) ~ , ~ ( A ) ,  (it, v )~  A ( A )  and the reduced system (2.10) has a positive 
^ 0  # ~ +  solution p E ~  . 

Thus (2.8)-(2.9) have a trivial solution (rio, 0)c /~  x B. With regard to the vital 
rates 8, S and/3, fl we want to assume that they satisfy (2.11) with the normalization 
(3.1). For added generality the higher order terms are allowed to depend on n. 

A A 

H2: The vital death rates ~, ~ and birth r a t~  13, fl have the form (2.11) where 
A A ^ .,, 

A 0  A 0 ._> ._> k - - I  /x ~/ . t , /z  ~ /x  and (3.1) holds, where L~:B  B, L2 :B  B, rn1:B->R , 
m2 ^ : B ~ R k-l,  m : B-> R are linear and bounded and where/~i = hi(n,p,p)," " 
hi = hi (n, p, p)  satisfy h~ : P ~/~, hi : P ~ R and are continuous, take bounded 
sets to bounded sets and are of order o(1(~, P)I) near (0, 0) uniformly on 
bounded n ~ R sets. 

Note that under these assumptions (n, (/So, 0)) is an equilibrium pair for all n ~ R. 
We will also have occasion to use 

H3: In addition to satisfying H2, hi and hi are q 1> 2 times continuously Fr6chet 
ditterentiable near (1, (/~o, 0)). 

We want to study the existence and stability of positive solutions of the 
equilibrium equations (2.8)-(2.9) as they depend on the "birth modulus" n. Our 
approach will be to use bifurcation techniques. Thus positive equilibrium "pairs" 
(n, (r p)) c P, (p, p) > O, are sought which bifurcate from the "trivial" equilibrium 
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pair (n, (t3 ~ 0)) for some critical value of n. This might be viewed as a search for 
those birth moduli n at which the species p can invade a community of k - 1  
species at low density (although the global result below is not restricted to low 
density levels for species p). 

In order to use bifurcation techniques it is necessary to have an adequate 
linear theory for the type of equations obtained from the linearization of systems 
like (2.8)-(2.9). Such a theory was developed in [2, 3] for the single species case. 
For the multi-species case k 1> 2 an extension of this linear theory is given in the 
Appendix. By means of this extended linear theory the multi-species equilibrium 
equations can be handled in a manner quite similar to the single species case in 
[2-4] under one further "nondegeneracy" type condition on the subcommunity 
equilibrium t~ ~ 

H4: t~ ~ is nondegenerate, i.e. the linearization of the reduced equations (2.10) 
at t3 ~ has no non-identically zero solution in/~. 

A general principle of bifurcation theory is that bifurcation can occur at a 
"trivial" solution, in this case at (t3 ~ 0), only at values of the bifurcation parameter 
n at which the linearization at (t3 ~ 0) is degenerate. From (2.11) the linearization 
of (2.3)-(2.4) at (rio, 0) leads to (2.8)-(2.9) with /~i=0, h~ =0  and the only 
candidates for critical bifurcation points are given by those values of n for which 
this linear homogeneous system has a nontrivial (i.e. nonzero) solution (33, y ) =  
(330, yO)~/~ x B. Now y ~  implies, by the nondegeneracy condition H4, that 
330= 6 and consequently any nontrivial solution (330, yO) must have yO~ 0. But 
the normalization (3.1) and the fact that 0 _ /z  imply that (2.9) with hi = 0 (which 
is decoupled from (2.8) with h~ = 0) has a nontrivial solution in B if and only if 
n = 1, in which case all solutions are constant multiples of H ~ (see [2, 3]). 
Substituting 

y~ = H~ 
A A A 

into (2.8) (with h~ = 0, hi = 0) one can uniquely solve (2.8) for 33 ~ B by H4 and 
the linear theory in the Appendix. Denote this solution by 330. 

Thus the linearized equations have a nontrivial solution in/~ x B if and only 
if n = 1, in which case all nontrivial solutions are constant multiples of ()3 ~ yO). 
This means that n = 1 is the only candidate for a critical bifurcation value 
corresponding to the "trivial" equilibrium (t3 ~ 0). That bifurcation in fact does 
occur at n = 1 follows from the theorem below. Let E denote the set of nontrivial 
equilibrium pairs (n, (/3, p)) c P, i.e. pairs for which (t~, P) ~ (t3 ~ 0) solves (2.8)- 
(2.9) with the corresponding value of n and let cl(E) denote the closure of this 
set. Let B ~ denote those p ~ B such that ~a p i i  o da = O. 

Theorem 1. Assume that H1, H2 and H4 hold. Then el(E) contains two unbounded 
continua C + and C -  which contain (1, (13 ~ 0)) and for which (n, (~, p)) 
C • -{(1, (t3 ~ 0))} implies (~, p) ~ (~o, 0). 

Assume further that H3 holds. Then in a neighborhood of  (1, (r ~ 0)) in P the 
continua C + and C-  have the form 

/~ =/~(e) = t3~ e33~ e~(e),  p = p ( e ) = e y ~  n = l + y ( e )  (3.3) 
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for  small e > 0 and e < 0 respectively (say l e I< e~ Here ( ff~, w) : ( - e  ~ e ~ ~ B x B ~ 
and y:  ( - e  ~ e ~ ~ R are q times continuously differentiable and o f  order O(lel) 
near e = O. Moreover 3'1 := O~y(O) is given by 

7 , = � 8 9 1 7 6  I o O 2 h ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 8 9 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  (3.4) 

where 02h~ ., ) and 2 o �9 0 h 2 ( ' , ' )  are the second order (Frs derivatives o f  h~ 
and h2 with respect to (~, p)  at (n, (~, p)) = (1, (t3 ~ 0)). 

The proof  of  this theorem is, given the extended linear theory in the Appendix, 
very analogous to that of Theorem 1 in [2] for the single species case. A brief 
sketch which gives those details pertinent to the case k~>2 appears in the 
Appendix. 

Remarks. (1) Theorem 1 is a global existence result for equ~ibrium pairs in that 
the continua C • are unbounded.  If  in H2 the nonlinearities hi, hi are not globally 
defined, but instead are only defined on an open set S2 containing (1, (t3 ~ 0)) 
then both C • meet the boundary of  I2 (see Remark 1 [2]). 

(2) The number 3/1, when nonzero, determines the direction o f  bifurcation as 
e increases through 0 in that y~>0  (resp. <0) implies n = n ( e )  is increasing 
(resp. decreasing) near e = 0. The case Yl > 0 will be referred to as supercritical 
bifurcation while the case y~ < 0 will be referred to as subcritical bifurcation. As 
will be seen below this direction of  bifurcation is closely connected with the 
stability of the nontrivial equilibria on the bifurcating continuum. 

(3) Theorem 1 does not exclude the possible existence of  other nontrivial 
equilibrium pairs which do not lie on the continua C • 

(4) If the vital rates are given as in (2.12) in terms of  per unit rates which are 
at least twice continuously differentiable then H3 holds. In this case however 
one continuous derivative suffices for Theorem 1, as a careful reading of  the 
proofs in [2] and the Appendix show. Furthermore, in this case the crucial 
quantity 71 is given by the formula 

fo Yl --- yOfO OD~ ds da - yO ofo da (3.5) 
�9 t O  JO 

where fo =f(~o, O) and 
aD o = a~D(~ ~ O) ~o + apD(~O, O) yO 

Of ~ = Or ~ O) rio + Ovf(fio, O) yO. 

(5) If  one or more Ai or A is +oe then a crucial compactness property is lost 
in the linear theory and with it the proof  of  the global, unbounded branches C • 
However the local existence of the bifurcating branches in the parametric form 
(3.3), which is obtained by means of the implicit function theorem can still be 
obtained with only a suitable modification of  the corresponding Banach space 
B(Ai )  or B ( A ) ,  e.g. these spaces can be replaced by LI(0, +oe) or by a space of 
exponentially decaying functions when lim in f /x i (a )>  0 [4]. 

(b) Positivity. It follows from the definition of the Banach space B ( A )  and 
its norm that /7 lies in the interior int(B § of the cone B § Moreover / z ~  
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implies that /7 0 also lies in int(B+). Consequently p(e)  in (3.3) of Theorem 1 
lies in int(B § for e > 0 sufficiently small. A similar conclusion holds for t3(e) 
provided 

H5: t~~ ~ int(/~+). 

Under this assumption, about which more will be said in (d) below, the bifurcating 
branch C § consists of positive equilibrium pairs at least near the bifurcation 
point (1, (/3 ~ 0)). 

Theorem 2. Assume HI,  H3 and H4. I f  H5 holds or if  the death rate ~) is given 
by a per unit death rate (as in (1.4)-(2.12)), then the nontrivial equilibrium pairs 
on C + near the bifurcation point (1, (t3 ~ 0)) are positive. 

The equilibria from C § do not in general remain positive globally, however. 
This is true even in the single species case; an example appears in [2]. 

H5 is not needed in the case when g is given in terms of a per unit death rate 
because in this case each component pi of any equilibrium t; must be of one 
sign on [0, A~). Consequently p ( e ) >  0 in (3.3) for e > 0 sufficiently small and 
the continuum C + in Theorem 1 is always locally positive. Even in this case 
however the continuum still need not remain positive globally. This can be seen 
by classical, non-age structured model systems (e.g. Volterra-Lotka predator-prey 
or competition equations) in which equilibria can move across the first (positive) 
quadrant, passing from the fourth to the second quadrant, as parameters vary 
(see Example 1 in Sect. 6 below). In this respect, systems of two or more interacting 
species are different from the single species case studied in [2] for which C § 
remains in the positive cone globally in the case of a per unit death rate. 

(c) Stability. We are interested in the stability of two equilibria as it depends 
on the parameter n, namely the trivial equilibrium (t;, P) = (t 3~ 0) and the positive 
equilibria (t;(e), p(e))  given by Theorem 1 for small e > 0. A rigorous stability 
analysis will not be given here. Instead an informal linearized stability analysis 
will be carried out by linearizing the dynamical equations (2.5)-(2.6) at the 
equilibrium of interest and searching for nontrivial solutions of the form 
(33, y) exp(zt),  (0, 0) # (33, y) ~/~ x B, z = complex. If  no such solutions exist for 
Re z t> 0 then the equilibrium will be called stable while if at least one such 
solution exists for a z with Re z > 0 then it will be called unstable. The technical 
details of this procedure are quite similar to those for the case k = 1 in [2-4] and 
hence only a brief presentation of the important points is given here. We make 
no attempt to rigorously justify this standard procedure. A rigorous study of 
linearized stability for a closely related problem has been made by Webb [19]. 
Also see [15, 16]. 

This linearization procedure for the trivial solution (t; ~ 0) leads to the Eqs. 
(2.8)-(2.9) with /~2, h2 replaced by z33, zy respectively and with  hi = 0, h i  = 0. 

These linear homogeneous equations, in which the equation (2.9) is decoupled 
from (2.8), is to be solved for (33, y) # (0, 0). If  the assumption 

H6: t; ~ is a stable solution of the reduced system 

is made then such a solution (33, y) for which y = 0 corresponds to Re z < 0. Thus 
stability is determined by a study of the scalar equations for y r 0. The stability 



636 J . M .  Cushing 

results of  [2] apply directly to this problem. For this application we need the 
following hypotheses. 

H7: m( I I ~  V:= ds 

H8: 1~ cl{c(z)]Re z~>0, [ z [ ~ }  for all 0 < ~ e R  where 
c(z) := m ( I I  ~ exp( -zV)) .  

Under these assumptions the trivial equilibrium is stable for n < 1 (n -~ 1) and 
unstable for n > 1 (n ~ 1). 

With regard to the equilibria (~(e),  0(e))  from C + for e > 0 small as given 
by (3.3) it is possible to give a straightforward extension of the Lemma in [2] 
and its implicit function theorem based proof  for the case k I> 2 being considered 
here. Thus the linearization at these equilibria has an eigensolution of the form 
fi = rio+ ~(e),  y = H~ u(e)  corresponding to z = z(e)  where t~(0) = 0, u(0) = 0, 
z(0) = 0 and 

zl := dz(O)/ de = - y l /  m( I I~  (3.6) 

By H7 the sign of  zl and hence of z(e)  for small e > 0 is the opposite of that of 
Yl (whose sign determines the direction of bifurcation). 

Theorem 3. Assume that H1, H3, H5 and H7 hold and that Yl ~ O. Then the trivial 
equilibrium (~o, O) is unstable for n > 1, n ~- 1, and the nontrivial equilibria from 
C + are unstable i f  the bifurcation is subcritical and n ~- 1. I f  H8 also holds then 
the trivial equilibrium (~o, O) is stable for n < 1, n ~- 1, and the nontrivial equilibria 
from C + are stable i f  the bifurcation is supercritical and n ~- 1. 

The hypothesis H6 means that the subcommunity of  k -  1 species ~ to which 
the kth species p is being added has a stable equilibrium in the absence of  p. If  
A0 p is unstable, then the nontrivial equilibria from C + are unstable regardless of 
the direction of  bifurcation, i.e. the addition of a low density species p will not 
stabilize the community. 

As pointed out in [2], H7 is a generalization of  the requirement for age 
structured populations that the mean age of  reproduction is positive and the 
technical requirement H8 is always fulfilled by a per unit fertility rate. 

(d) The reduced system. The existence, positivity and stability results in 
Theorems 1-3 concerning equilibrium densities (t3, p) of k species utilize 
hypotheses H1, H4, H5 and H6 concerning the existence, positivity and stability 
of  an equilibrium t3 ~ for the subcommunity of  k -  1 species t3 in the absence of 
the kth species p. Theorems 1-3 can, however, be applied in turn to this reduced 
system (2.10) in order to establish these hypotheses. To do this the same 
hypotheses must hold for a reduced system for the dynamics of, say, the k - 2  
species Pl , -  �9 �9 , Pk-2 in the absence of species Pk-1 and Pk, using the inherent 
birth modulus of  species Pk-I as a bifurcation parameter. In this way one can 
derive existence, positivity and stability results for equilibria of  a community of 
k species by a repeated application of  Theorems 1-3 and, in order to get the 
process started, an application of  the results for a single species in [2]. (This 
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procedure of building a community of k species by adding one species at a time 
has been successfully used in other contexts as well [1, 7, 8].) 

4. Per unit density vital rates 

Many if not most models of population growth involve vital rates defined by per 
unit rates of the form (2.12). Moreover the dependence of  the per unit vital rates 
on the densities ~, p is most often through a dependence on specific linear 

A^ functionals of the densities, such as total population sizes ~o P da, ~A P da, or 
more generally on weighted integrals of the form (4.2) below. 

In the case of a single species it was shown in [2] how a bifurcation diagram 
plotting (n, P) for (n, p) ~ C + could very easily be obtained by drawing the graph 
of the relation 1 = n ~ ( x )  where ~ ( x )  is a certain real valued function of a real 
variable x (namely the normalized net reproductive rate at population size x). 
Simple analytic geometric methods can then be used to plot the graph from which 
a great deal of  information concerning the bifurcating branch C + can be deduced, 
for example the direction of bifurcation (hence local stability), the spectrum 
associated with C + (i.e. the set of values of n associated with positive equilibria 
from C§ boundedness or unboundedness of the set of  equilibria derived from 
C § possible hysteresis phenomena, etc. 

A similar method can be used to derive information about the branch C § of 
equilibrium pairs for systems of interacting species in certain restrictive cases. 
Suppose that the vital rates are given in terms of per unit rates (2.12) and that 
these per unit rates depend on population densities only through a dependency 
on specific linear functionals of density or "populat ion sizes" P =  P ( ~ ) =  

k - - 1  (P~(Pi))~I,  P =  P(P)  as follows. 

Di = I~i(a) + tpi(a, P(~) ,  P (p ) ) ,  1 <~ i <~ k - 1 

A A 

F~ = ~b~(a, P (p ) ,  P (p ) ) ,  1 <~ i <~ k - 1 
A (4.1) 

D =  p . (a )+  ~(a, P(~) ,  P (p ) )  

F = n(a(a,/5(~),  p (p ) ) .  

Here /3  :/~ -> R, P : B --> R are linear and bounded and satisfy P~(p,) >! O, P (p )  >~ 0 
for p~ i> 0, p i> 0 (p~ ~ 0, p ~ 0). An important example is given by the weighted 
integrals 

;o Io' 
A i 

Pi = wi(a)p~(a) da, P = w ( a ) p ( a )  da (4.2) 

which give total population sizes when w~ --- w --- 1. Here the 0~ = qJ~( ", ", "), 4~ = 
q~( . , . ,  �9 ), etc. are real valued functions of k +  1 real variables defined on [0, A~] x 
Rk- I  x R. 

Just as in the single species case (cf. [2]), if (~, p) solves the equilibrium 
equations and p~ is positive then 

1 = ~ ( / 5 ( f i ) ,  p(p)) (4.3) 
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where 

fo' (;o / ) r x):.= r .~, x)IIi(a) exp - Oi(s, x. x) v,(s) as da. (4.4) 

Similarly if p is positive then 

1 = nr P(p ) )  (4 .5 )  

where 

r  x):= f ) r  O(s,~,x)/v(s)ds)da.  (4.6) 

These equations simply express the fact that at equilibrium the net reproductive 
rate of each species (with positive density) must be exactly one. It follows then 
that the continuum of population sizes r = {(n, (/3, P))[(n, (/;, p))~ C +} has a 
graph which lies on the graph of the relations 

(a) 1 = r x), l<~i<~k-1 
(4.7) 

(b) 1 = n r  

As in [2] it can be shown, when/2 > 0 and /z  > 0, that F is unbounded if and 
only if C + is unbounded and that if (/;1, Pl) and (/;2, p2) are equilibria for which 
P(/;1) = P(/;2), P(PI) = P(p2) then (/;1, pl) = (/;2, p2). Thus from the relations (4.7) 
one can deduce properties of the set F and hence of the continuum C +. 

As one example, consider the local direction of bifurcation. Supercritical 
bifurcation will occur if 

a0 d r x) < 0 at (; ,  x) = (P , 0) (4.8) 
dx 

where (~, x) is subject to the constraints (4.7a). Here/30=/3(/30). Note that 

1 = r  ~ 0 ) ,  1 <~ i ~< k - 1. 

Using the implicit function theorem we can solve (4.7a) for 5 = ~(x), ~(0) =/3o, 
under the assumption that the ( k -  1) x ( k -  1) matrix 

j := ( o j r 1 7 6  0~r ~ := or ~ o)/oxj 

is nonsingular. Then the supercritical bifurcation condition (4.8) becomes 

-V r O)j-loxc~, (/30, 0) + 0xr176 0) < 0 (4.9) 

" [0 t~ "~k--1 (0 (~]k--1 w h e r e a x r  x iJi=l a n d V r  i ji=l. 
This local existence and stability condition (4.9) for a positive equilibrium 

guarantees that the species p can be added to the stable subcommunity of k -  1 
species /;, at least when its inherent net reproductive rate is greater than 1, its 
density is low and the subcommunity is near equilibrium. It involves the partial 
derivatives a ~ ,  0xr and hence depends on how the net reproductive rate of each 
species changes in response to changes in population sizes of all species. These 
partial derivatives can themselves be used to characterize the type of interactions 
between species or, as is more usual, can be related to the dependencies of the 
per unit death and birth rates/~,/) ,  etc. on population sizes through the defining 
relationships (4.1), (4.4) and (4.6). As an example the case of k = 2  species is 
considered in the next section. 
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5. Two species interactions 

The simplest and most fundamental multi-species interactions in theoretical 
ecology are those between just two species. In this case k = 2. To use a more 
familiar notation, let ~ = xl ,  x = x2, ~b = ~1, qb = qb2, etc. In this case the super- 
critical stable bifurcation condition (4.9) reduces to 

0 0 0 0 
--01 (~2 02 (~ 1/01 (~1 "~ 02~2 ~ 0 (5.1) 

under the assumption J = 01@~ # 0. 
In most models it is assumed that intraspecies effects of density are deleterious 

to growth and reproduction, i.e. growth rates decrease with an increase in the 
population's own size. This could be modeled by assuming that ~b~ decreases and 
@~ increases with increases in x~ (see (4.1)). Or more simply one could assume 

01t~)0 ( 0, 02 (~)0 ~"~ 0 (5.2) 

i.e. that an increase in each species' population size results in a decrease in its 
own net reproductive rate. Then the supercritical bifurcation condition (5.1) is 
equivalent to the determinant-like condition 

01~~ 02~0 0 o -- 01 ~)2 02 (~) 1 > 0. (5.3) 

Suppose we characterize the interaction according to density effects on net 
reproductive rates as follows: 

Prey-predator:  02(~~ < 0, 0 it/)0 > 0 

Competition: 02 ~)0 < 0, 01 (~)0 < 0. 

This categorization is non-age specific. A categorization based upon density effects 
on death and birth rates would in general be age-specific. Indeed for many 
interactions the type may well depend and even change with age, e.g. predation 
may only be between certain age classes of prey and predator. Nonetheless, it is 
only the net reproductive rates qbi which determine the local stability or instability 
of the bifurcation via the condition (5.3). 

Inequality (5.3) always holds in the case of a prey-predator  interaction. We 
conclude that the predator can always survive on the prey (at least at low density) 
provided that its inherent net reproductive rate when the prey is near its stable 
equilibrium density is large enough (namely greater than, but close to 1). 

On the other hand, for a competitor at low density to successfully invade a 
stable species it is not enough that its inherent net reproductive rate exceed 1, 
but that the constraint (5.3) hold as well. Inequality (5.3) in this case is subject 
to the same interpretation as similar constraints in classical competition models, 
namely that intraspecific competition (but here measured by the product 

0 0 
01~  1 02(~2) must be greater than interspecific competition (as measured by the 

01 (/)2 ~2(Pl) �9 product 0 o 

6. Examples 

The results and techniques of the previous sections are illustrated in this section 
by several applications. In the two species competition and the prey-predator  
models below a is taken as chronological age. In the epidemics model a is class 
age. In all examples v-= 1. 
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A two species competition model 

Suppose two species compete in such a way that the effects of  the competition 
manifest themselves through decreased fertility. It will be assumed first that the 
death rates are density independent and that the birth rates are  functions of  
arbitrary weighted functionals of density PI(P),  P2(P) as in Sect. 4. Specifically 

D, = iz,(a) ~ A ( A , )  (6.1) 

and Fi = nicbi(a, PI,/)2) where 

~b, = b,(a)[1 - c,xl - c~xj]+, j = 3 - i, i = 1 and 2 
(6.2) 

b i~C(A~) ,  0 < c ~  R, [x]§ = x  f o r x > - O a n d O f o r x < O .  

This Lotka-Volterra type per unit birth rate is suggested by the models in [12]. 
Consider first the species /91 in isolation from p2, i.e. consider the reduced 

system for Pl. The equilibrium equations for Pl are 

f? Oapl +/-LIP1 = 0, pl(0) = nl bl(a)[1 - c , ,P1p , ) ]§  da. (6.3) 

I f  b~ is normalized so that 

Io" (fo ) 1 = H~ da, H ~ exp - /~1 da (6.4) 

(/11 = H~ in this example) then nl is the inherent net reproductive rate of pl (in 
the absence of  P2). 

The existence and stability results from [2] apply to (6.3). Plotting the relation 
defined by 

f? 1 = nl H~(a)b l (a)[1  - CnXl]§ da = nl[1 - CnXl]§ (6.5) 

we get the graph in Fig. 1. 
Thus there exists a positive equilibrium pO of  the reduced system if and only 

if n] > 1 in which case it is unique. The bifurcation is supercritical and hence p ~ 
is stable at least for n~ near 1. Therefore, for ni > 1 near 1, the hypotheses H1 
and H6 concerning the reduced system are fulfilled. For this equilibrium the 
population size is explicitly found from (6.3) to be p o= ( n l -  1)/nlc11. 

1/Cll 

1 nl Fig. 1. The bifurcation diagram for the reduced 
Eq. (6.3) is easily obtained from the graph of 
the relation (6.5) 
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For the competit ion model (6.1)-(6.2) the functions @~ of Sect. 6 are 

~ 1  = nl[1 -- C11X 1 -- C1222] + 

I? ~2 = [1 - c21xl - c22x2]+ IIOb2 da, 

where b2 is normalized so that (3.1) holds, i.e. 

Io A2 II~ = 1/[1 - c21P~ da 

Here nl is chosen sufficiently close to 1 so that pO< 1/c21, i.e. 

1 Cll 
1 - - - < - - .  (6.6) 

nl  c21 

The supercritical (stable) bifurcation condition (5.3) is equivalent to 

A := C11C22- C12C21 > 0. (6.7) 

Using the invariants (4.7) one can deduce that the continuum of population 
sizes (Pa, P2) obtained from the equilibrium pairs from the unbounded continuum 
C + in Theorem 1 either leaves the positive cone at a point (n2, (P1, P2))= 
(n ~ (0, pO)) where 

pO = (n I - -  1)/n,c,2, n o = (1 - c2~P~ - c22P ~ 

or does not leave the positive cone for any n2>1 and (Pi,  P2)->(P1,  P~) as 
n2 ~ +co where 

1 za 

and the latter if 

1 - 1 <  c-021 2 (6.8) 
n 1 c22 

1 c~2<~ 1___" 
C22 n 1 

These cases are illustrated in Figs. 2 and 3. 

(6.9) 

{O, pOl 

Fig. 2. The two species model  (6.1)-(6.2) has n2:nO 

positive populat ion sizes which follow the indi- 
cated path G along the line 1-C~lX~-C12X2 = 

1 / n  l from (po, 0) to (0, pO) as n2 increases from 
1 to n o when conditions (6.6)-(6.8) hold. The 
bifurcating cont inuum C + in this case leaves 
the positive cone at n2 = n o 

(pO O) 
n2:1 
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{p~ 
n 2 =I 

Fig. 3. The two species competition model (6.1)-(6.2) 
has positive population sizes which follow the indi. 
cated path G from (P~ to (P~,P~) as n 2 > l  
increases to + ~  when conditions (6.6)-(6.9) hold 

The local stability condition (6.7) is in close analogy with the classical 
Lotka-Volterra model for competing unstructured populations. In the classical 
model, however, (6.7) guarantees global stability along the entire global branch 
of equilibria, so long as it remains in the positive cone. For the age structured 
case we are guaranteed (linearized) stability only near bifurcation, i.e. for ni 
greater than but near 1. The nature of the asymptotic dynamics for larger values 
of  ni remains an open question. It is known however that more complicated 
dynamics can in fact occur in this case. For example, time periodic oscillations 
can arise in both the single species equation (6.3) and the competition equations, 
as can chaotic-like oscillations [6, 9]. 

In the model analysed above the per unit death rates were assumed to be age 
specific but unaffected by density changes in either population; only fertility was 
affected by inter- and intraspecific competition. These assumptions might be 
particularly appropriate for the case of  so-called "exploitive" competition in 
which both species compete for a common resource but do not directly interfere 
with each other. The decrease in available resource due to increased population 
sizes causes a reduction in fertility, but negligible increase in the death rate. In 
the case of  "interference" competition one might have the case where contact 
between members of  the two species causes an increased probability of death 
(due to aggressive behavior, toxicity, etc.). In this case the death rate terms would 
more appropriately depend on population densities or sizes. 

Suppose for example in place of (6.1) that 

D~=/x~(a)+d~iP~(p~)+d~Pj(&), j = 3 - i ,  i = l a n d 2  O<~ducR 

so that per unit death rates increase linearly with population sizes (i.e. are 
"logistic-like"). 

In this case the single species (reduced) equation (6.3) becomes 

io ,1 o ~ p l + ( m + a l l P l ( p l ) ) p l = o ,  ol(o) = nl b l [ l -C.Pl (OO]+p,  da 

which can also be analysed by the methods in [2]. The bifurcation diagram 
obtained from the invariant 

1 n l [ 1  --  C l l X l ] +  o = Hlbl e x p ( - d n x l )  da 

appears qualitatively again as in Fig. 1. 
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The bifurcation analysis of the two species interaction can be carried out 
along the lines of the simpler case above. It is now based on the graph of the 
relations (4.7) where now 

Io" 41 = n1[1-CllXl-C12X2]+ HOb1 exp(-(dHxl+da2x2)a) da 

Io" 42 = [1 - c21xl - c22x2]+ II~ exp(-(d21xl + d22x2)a) da. 

The added integral factors in these functions complicate the details of the analysis, 
but nonetheless the condition (5.1) guarantees supercritical bifurcation and stable 
coexistence. The partial derivatives are now more involved, e.g. 

fo" o II~ exp(-dnP~ da 014 1 = --nlCll 

Io" - n~dl,(1 - C, lPO) FIOb~ exp(-dHPOa)a da. 

Clearly all 0i4 ~ < 0 so that this is a competitive interaction by the definition in 
Sect. 5. Also the inequalities (5.2) clearly hold, but to relate the condition (5.3) 
directly to the coefficients % dij in a simple way (such as (6.7) in the simpler 
case above) is not straightforward. This argues in favor of using the (normalized) 
density dependent net reproductive rates 4~ to interpret this stability condition. 

One can easily see, however, that 

014100242__ 0 1 4 2 0  00240 = (ell _~_ d11)(c22 q_ d22) - ( c ,2  + d12)(c21 + d21) 

for pO = 0, i.e. for n~ - 1, so that once again an analog to the classical coexistence 
condition (6.7), obtained by requiring that the RHS be positive, is obtained. 

A prey-predator model 

As a second example we consider the interaction between a prey species ~ = Pl 
and a predator species p = p2 in which the predation rate is (possibly) different 
for different prey age classes and for different predator age classes. In the absence 
of predation the prey's dynamics are assumed governed by (6.3) with P1 = S A1 pl da 
taken as total population size and the per unit birth r a t e  b 1 ~ constant> 0. (By 
the normalization (6.4), ba = 1/~ A~ 1I ~ da.) Predation is modelled by adding a 
term to the prey's per unit death rate which is (age specifically) proportional to 
the total population size of the predator, i.e. 

D1 = Ixl(a) + WoW(a)P2 

Io % >O, w(a) )O,  fo%W(a) da=l .  P2-~ P2 da, Wo 

The distribution and magnitude of the age specific predation rate are determined 
by w(a) and Wo, respectively. The benefit of predation for the predator species 
is manifested through an increased per unit, age specific birth rate F2 = n2q~2 where 

I? 42 = b2(a) W(pl), b2(a) >i 0, W(pa) = w(a)p~(a) da. 
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Consequently the model equations are 

OPl + (~1 + WPz)Pl = 0 

pl(0) = n,bl[1 - enP1]+P1 

0192 "-I-/~2P2 = 0 

p2(O) = n2 [ %  b2(a) W(p l )P2(a)  da .Io 
with the normalizations (6.4) and 

fa % bz(a) W(p~176 = 1, da 
=0 

Here Cll = constant > 0. 

.o oxp( fo 

J. M. Cushing 

(6.10) 

The reduced equation (6.3) has a unique positive equilibrium 

o / fo~H~ da (6.11) p l  -= ( n l  - 1)rl~ nlc,1 

for each nl > 1 which is stable at least for nl = 1. We assume in any case that 

1 < n 1 < 2 .  (6.12) 

Theorems 1 and 2 can be straightforwardly applied to obtain a continuum of 
positive equilibria for the predator-prey equations (6.10) which bifurcates from 
(po, 0) at n2 = 1. Of interest is the direction of bifurcation which, by Theorem 3, 
determines the (local) stability of these equilibria. The constant Yl whose positivity 
implies a supercritical stable bifurcation and an exchange of stability from the 
trivial equilibrium (po, 0) to the positive equilibria on the continuum as n2 is 
increased through 1 turns out for this example to be 

Yl = - W(Y~ W(P~ �9 (6.13) 

Recall that the pair (yO, yO) is an "eigensolution", i.e. it solves the equations 
linearized at (pO, 0) with n2= 1. A straightforward solution of these linear 
equations yields o o Y2 = H2 and 

Io 2 H ~ da 1 12 {7l 

o n1-1 [ 2-n~lfa ~ H~ wdceda+fo wda]. 
Yl = f n ~  bl n1--1 nlc, A, 1i ~ da 

#o 

Clearly (6.12) and the assumptions on w imply that 

y~ <0 ,  O<--a<A. (6.14) 

This leads to the not unexpected conclusion that (at least) near bifurcation the 
prey equilibrium density is decreased by predation for every age class. This is 
true even if only selected age classes are preyed upon as determined by the 
distribution w( a ). 

Moreover, (6.14) implies that Yl as given by (6.13) is positive and that 
supercritical bifurcation occurs. Thus we find in this model that the predator can 
survive, at low density, in stable coexistence with the prey if its inherent net 
reproductive rate at the prey equilibrium state pl ~ exceeds one. 
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As a simple illustration of how the bifurcation techniques developed here can 
be further used to analyse multi-species interactions consider the question of 
how the stability of the positive branch equilibria near bifurcation is affected by 
changes in certain system parameters. Specifically, we study how the stability of 
a branch equilibrium for a fixed n2 > 1, as measured by the "stability determining" 
eigenvalue (i.e. by the linearized eigenvalue of smallest magnitude), depends on 
the age class most preferred by predators. 

Note that 'Yl ~ 0 implies that locally the parameter e which parameterizes the 
bifurcating continuum of equilibrium pairs in Theorem 1 can be eliminated and 
the positive equilibria written in terms of the inherent net reproductive rate n 2. 
Similarly the linearized eigenvalue z = z(e), z(0) = 0, can be written as a function 
of  n2: z = z(n2), z(1) = 0. Then by Theorem 1 and (3.6) 

dz/ dn2ln2=l_ dz/ de dn2/de ~=o=-l/ f ;  2bz(a)11~ W(p~ (6.15) 

Any change in the system parameters which produces an increased magnitude 
of this expression will result in a new model which is "more stable" in the sense 
that for a fixed value of n2 sufficiently close to 1 this new system will have a 
(negative) stability determining eigenvalue of increased magnitude. 

The expression in the denominator of (6.15) is called the "inherent mean age 
of reproduction" of the predator [19] ("inherent" means at low predator density 
/92-- 0 when pl = pO and n2 = 1). It depends on virtually every parameter in the 
model (see (6.11)). According to (6.15) a change in system parameters which 
decreases this mean age will result in a more stable system in the sense above. 

For example, suppose that all parameters are held fixed (including n2---1) 
and only the distribution w(a) defining the functional W is changed in order to 
compare two predator-prey interactions with different predator age-specific prey 
consumption preferences. Since pO is a monotonically decreasing function of a, 
the distribution w which places more weight on the younger ages of prey will 
result in a larger value of W(p ~ and hence decreased stability. This is in agreement 
with the conclusion reached in [ 10] that predation on young prey is a destabilizing 
agent. It is the opposite of the conclusion reached by some earlier researchers 
[14, 17] using other models. The reconciliation of these antithetical conclusions 
seems to lie in the fact that such conclusions are very model dependent and, as 
A. Hasting puts it "age dependent predation is not a simple process" [11], a 
wide diversity of dynamical behavior being possible as various age-specific 
assumptions on fertility and death rates are made. 

An epidemic model 
Deterministic models of epidemics typically involve a threshold property accord- 
ing to which a disease will spread through a population if a critical parameter 
(measuring the "virulence" of the disease) exceeds a critical value. This is very 
suggestive of  the occurrence of a bifurcation phenomenon and in fact bifurcation 
theory methods can often be used to analyze such models. We give one brief 
illustration involving an epidemic in a population structured according to "class 
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age", i.e. the time spent in certain defined epidemological subclasses of the 
population. 

A so-called SIR model entails a categorization of  the (living) individuals in 
a population according to three classes: susceptible, infectives and recovered. 
Let p~, P2 and P3 represent the densities of  these classes as functions of  time and 
class age a. Assume that the exposure rate due to contacts with infectives is 
expressed by 

f? --pl(t, a) r(a, a)p2(t, a) da 

where r(a, a) measures the effect of class age a infectives on class a susceptibles. 
The equations 

Oapl+(tza+IA2r(a,a)p2(a)da)pl=O 

[ ~'f,(P,, P2)P, da p~(0) = nl 
~ O  

(6.16) 
O ap 2 "q- /z2p 2 = 0 

I0'I? p2(O) = r(a, a)pl(a) da p2(a) da 

are the equilibrium equations for susceptibles p~ and infectives P2 under the 
assumption that only susceptibles reproduce (with a per unit birth rate 
n l f l ( P l ,  Pc)) and that all newborns fall into the susceptibles class. The equations 
for the density P3 of the removed class are decoupled from those above and are 
solvable for P3 as soon as p~ and P2 are found. For further details concerning 
models of  this kind see [12, 13, 18]. 

Suppose that the reduced system 

OaPl"b l.ZlPl = 0  

p(O) = Jf f (Pl ,0)P,  da 

has a positive, stable solution Pl = pO. I f f  is normalized so that 

fo 4'f(O, 0)1I 0 = 1 da 

then the bifurcation results in [2] apply to the question of the existence of such 
a pO. This assumption means that the population in the absence of  the disease 
has a positive stable equilibrium state. In order to apply the results of  Sects. 3-5 
to (6.16) the kernel r is written r(a, or) = n2r*(a, a) where r* has the normalization 
(3.1), namely 

f f2 f f~ r*(a, a)p~ da11~ da= l. 

Then n2 measures the virulence of the disease in that it is the expected number 
of replacements for each infective lost to the recovered class (at low infective 
class densities when pl is at the equilibrium pO). 
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The bifurcation and exchange of stability results of Sect. 3 imply that if 
supercritical bifurcation occurs then for n2 < 1 the disease dies out asymptotically 
and pl reverts to pl ~ while for n2> 1 then the disease will persist in that the density 
of infectives will possess a positive equilibrium state. 

For example, if f l  is as in (6.3) with PI=~ al Pl da and r =  WoW(a) then the 
epidemic model (6.16) is equivalent to the prey-predator  model (6.10) and as 
seen above supercritical bifurcation does occur. 

7. Concluding remarks 

In this paper we have studied the existence and stability of positive equilibrium 
densities for systems of k/> 2 interacting structured populations. This was done 
by applying bifurcation theory methods using a normalized birth modulus n of 
the kth species as a bifurcation parameter. This approach results in the existence 
of a global continuum of nontrivial equilibria for the community of k species 
which bifurcates from any given equilibrium state for the community of k - 1  
species (with the kth species absent) at a unique critical value of the parameter 
n (Theorem 1). This branch is locally positive (Theorem 2) and is locally stable 
with an exchange of stability occurring from the equilibrium for the subcommunity 
of k - 1 species to the equilibrium for the community of k species if the bifurcation 
is supercritical (Theorem 3). 

The direction of bifurcation is determined by the quantity 71 given by (3.4) 
which depends on the nonlinear responses of the kth species' vital rates to changes 
in the densities of all species (including its own). More specifically 3/1 is the 
difference between two terms which are kinds of "averaged" effects of the 
nonlinear density dependencies in the kth species' death and birth rates taken 
over all species and all type classes. If this "averaged" effect corresponding to 
the death rate exceeds that corresponding to the birth rate then the bifurcation 
is supercritical. In this event the kth species at low density can successfully be 
added to or " invade" the stable subcommunity of k - 1 species provided its birth 
modulus (or inherent net reproductive rate) exceeds unity. 

The existence result in Theorem 1 is global in the sense that the continuum 
of nontrivial equilibria is unbounded (or connects to the boundary of the domain 
on which the hypotheses hold). This continuum however need not remain in the 
positive cone of positive equilibria, as the competition example in Sect. 6 shows. 
A point at which the continuum intersects the boundary of the positive cone 
corresponds to another equilibrium of a subcommunity with at least one species 
absent and indicates a circumstance under which these species may be threatened 
with extinction. 

The stability of the nontrivial equilibria locally near the bifurcation point in 
the event of supercritical bifurcation may not persist globally along the branch. 
This can be seen for example by familiar models for the total population size of 
nonstructured prey and predators whose positive equilibria can lose stability and 
give rise to a Hopf  bifurcation to a time periodic limit cycle. Hopf-type bifurcation 
to time periodic densities was studied for age structured models in [5]. Even 
more complicated, chaotic-like oscillations can occur due to age structure in 
simple models which otherwise exhibit equilibrium dynamics [6, 9]. The study 
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of such complicated and global dynamics for structured population interactions 
via nonlinear models of the McKendrick type studied in this paper offers sig- 
nificant mathematical challenges for further research. 

0 A --1 �9 0 k--1 ( / /  ^ v) .= (1//7~ v~),~,, 

which can be written as 

Appendix 

In this Appendix the linear theory for systems of the form (2.8)-(2.9) is developed and a brief  sketch 
of the proof  of  the Theorem 1 is given. 

Consider the k -  1 linear nonhomogeneous equations for )3 ~./~ = /7(A)  

y(O) = /~/1(33) q- hi ( h l )  

and its associated homogeneous system 

O. ( f i ^ f i )+ f i~  p + / ~ i ( f i ) = 6  
( i 2 )  

)~(0) =/~l(fi)-  

Here f i o f i ,  fheB, f l i E R  k - m  and / ~ , : / ~ / 7 ,  rfi:B-->R k-~ are bounded and linear. Equation (A1) 
is equivalent to the equation 

S; .~= O~ ^ (~,(~)+#7, - (s  + #7~) ̂  (s~~ ̂  ~)- '  do~) 

l I~ t t , ( a ) / v , (a )  dot) 
= v(~,,  ~2) + r ;  (A3) 

where 

V(/~,, ]~2) := ~t~ ̂  (/~l - / ;  /~2 ̂  (/~t~ dot ) ,  K)3 := V(rhl(33),/~1 (fi)). 

It is clear that V: R k-~ • .+ ~ is linear and compact. Thus K :/7 ~ /~  is linear and compact. It follows 
that 1 - K  is Fredholm and consequently if k e r ( I - K ) =  {0} then ( I - K )  -1 exists and is bounded. 
In this case (A3) has a unique solution fi = ( I  - K)  -1V(/~I,/~2). Setting S := ( I  - K )  -1V we conclude 
that if the homogeneous system (A2) has no nontrivial solution in /~ then (A1) has, for each 
(/~t, h~) ~ R k-1 • B ~, a unique solution )~ e /7  and the solution operator S : R k-1 X J~ + /~  defined by 
(/~,/~2) ~)3 is linear and compact. Note that K33 and V(/~,/~2), and hence the solution f of  (A3), 
are continuous differentiable functions of  a. 

Consider now the linear equations (2.8)-(2.9). The linear theory in [2] applies to the scalar 
equations (2.9). Since the normalization (3.1) holds, the homogeneous counterpart  of (2.9) has a 
nontrivial solution if and only if n = 1. 

Suppose (A2) has no nontrivial solutions in/7. I f  n ~s 1 then (2.9) has a unique solution y = S(hl, h2) 
given by a l inear  compact solution operator S: R x B ~ B [2]. (2.8) then has a unique solution 33 ~ B 
with this y substituted. Thus if n # 1, then (2.8)-(2.9) has a unique solution (~, y) = Y((/~I,/~2), 
(h~, h2)) given by the compact linear solution operator Y: ( R k-~ x B) x ( R x B) -> B x B defined by 

Y= ( S( rn2( S( hl, h2) )+ /~ ,  s S( h~ , h2))+ ]~2), S( hl, h2)). 

On the other hand if n = 1 then (2.9) has a solution if and only if (hi ,  h2) ~ (R x B) • i.e. if and 
only if the "orthogonali ty condi t ion" 

holds [2]. In this event (2.9) has a unique solution y ~ S~ h2)~ B ~ i.e. satisfying ~A HOyd = 0, 
given by a compact linear solution operator S o : (R • B) l ~ B ~ Substituting this solution y into (2.8) 
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one can then obtain a unique solution of (2.8) via the compact linear solution operator S. Thus, if 
n = 1 then (2.8)-(2.9) is solvable if and only if (hi ,  h2) ~ (R x B) ~ in which case there exists a unique 
solution ( ; , y ) =  Y~ h2)) in B •  ~ given by a compact linear solution operator 
y ~ 2 1 5 2 1 5  B x B  ~ 

With this linear theory in hand a proof  of Theorem 1 can be constructed in a manner  very 
analogous to that for Theorem 1 in [2]. The key observation is that if the nonlinear equations 
(2.3)-(2.4) are centered on the "trivial" equilibrium (/3 ~ 0) by setting )3 = ~ _~o,  y = P  and by using 
(2.11), then a nonlinear system results whose linear terms uncouple (as in (2.8)-(2.9)). 

Letting n = h + 1/2 and using the solution operator S we write the equation for y in the form 
y = hAy + H(A, )3, y) where A : B -~ B is linear and compact and H : R x B x B ~ B is completely 
continuous and of order o(I)3[ + l Y[) near ()3, y) = (~, 0) uniformly on bounded h intervals. With this 
expression substituted into the equations for )3 and with the use of Y the equations for )3 can similarly 
be rewritten in operator form )3 = )tA)3 + H(h,  )3, y). As a result the centered equations are equivalently 
rewritten in operator form (~, y) = hL()3, y) + G(h, )3, y) where L = (A, A) is linear and compact as 
an operator from /~ • B to B x B and G = (H, H)  : R x/~ x B ~ B x B is completely continuous and 
of order o(I)3 ] +IY]) near ()3, y) = (~, 0) uniformly on bounded h intervals. The proof  now proceeds 
as in [2]. 
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