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1. Introduction. This paper was motivated by many recent papers [1-11]
concerned with the existence and uniqueness of positive solutions of nonlinear
elliptic problems. (For applications of such problems see [2, 9, 12] and the
references there cited.) Most of these studies were concerned with problems
which do not possess a trivial (¢.e., an identically zero) solution, although some
results for problems having a trivial solution can be found in [5, 6, 12]. This
latter problem leads to a bifurcation phenomenon and is the one with which
this paper deals. Specifically, we consider the problem

(1.1 Au = N, ), ze D,
Bu = 0, xedD,

wherez = (z,, -+ , Z,,) and

Au= 3 Dieu@ Do) + au@u, Di = 3/o,

i,i=1

Bu = o(z) g—%% + B(@)u, ze D,

g%:—)) = g_:,l a:;(@ni(x) Du, xedD.
Here D is a bounded region of type C'** [13] in m dimensional Euclidean space,
n,(x) is the 7** component of the outwardly directed unit normal to the boundary
oD of D at x € D, and A is a real parameter to be determined as part of the
solution. We assume that a;;(z) = a;;(x), ao(@) = 0, a(z) > 0or = 0, 8(z) > 0,
and f(u, z) are given functions of their arguments for which «, 8 ¢ C°(dD) and
a;; , Goe C°* (D%, D C D*, D = D + 8D. Furthermore it is assumed that L is
elliptic; 7.e.,

m

> a;@EE > 0, MZ g =0, zeD.
i=1

1,5=1
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The following assumptions concerning the nonlinear term f(u, z) will be used
below. Let R denote the set of real numbers.

H1: f£ ) = r(@)t + £9(, o) where r(z) e C°(D), 7(z) < 0, g(t, 2) e C°(R X D),
and g(¢ x) = O() as £ — 0;

H2: £, ) £ 0, (¢, x) e R X D;

H3: g ) = go(@)E” + 0(*) as § — 0 where g,(z) £ C°(D) satisfies go(z) = 0
or < 0 onD (but # 0) and p is a positive integer.

By a solution of (1.1) we mean an ordered pair (u, \); the smoothness of u will
be brought out below. Clearly (0, ) is a solution for all real \.

The local existence of solutions to (1.1) bifurcating from the trivial solution
at characteristic values of the associated linearized problem (cf. §2) of odd
multiplicity is known and follows from general theorems on nonlinear completely
continuous operators on Banach spaces [14]; in particular, this follows for the
first characteristic value \; of the linearized problem which, under the above
assumptions, is always simple. Moreover, the associated characteristic solution
is of one sign in D while all other characteristic solutions corresponding to any
other characteristic value vanish somewhere in D [15].

In this paper we use the following terminology: in a given Banach space, a
continuum C (Z.e., a compact, connected set) is said to join two closed subsets
A, BfANC # J, BN C # . A set D is said to be a continuum joining
a given element b of the Banach space to ““ =’ if for every bounded open set
containing b there exists a subset of D which is a continuum joining b to the
boundary of Q. We propose to show below that under the above hypotheses and
in an appropriate Banach space (i) the nodal properties of the linear solutions
described above carry over locally to the solutions of the nonlinear problem (1.1),
(ii) there exist branches of positive and negative solutions each of which is a
continuum joining (0, A;) to “«”’, and (iii) for each characteristic value \, > )\,
of the linear problem of odd multiplicity there exists a branch of solutions which
is a continuum joining (0, A,) to either ‘=’ or to some (0, \;), k £ 1, n. Our
main results are contained in Theorem 2.3, Corollary 2.5, and Theorem 3.2
where the exact statements concerning (i)-(iii) are given. In §4 we give some
results concerning the asymptotic nature of the global branch of solutions
bifurcating from (0, A,).

The techniques used here were motivated by and are very similar to those
used in [16, 17] to study the case m = 1. Similar techniques are used in [18, 19].

2. Preliminaries. The assumptions made above guarantee the existence
of a fundamental solution for A on D [13] from which a Green’s function
Gi(z,y), 7 = 1, 2, can be constructed in the usual manner for both problems (1.1)
with a(z) > 0, a(x) = 0 respectively. The integral operator L;¢ = [ G:(z,
Y)e(y)dy is a linear, compact mapping of C°** (D) into C*(D) [13]. Thus, (1.1)
with either a(x) > 0 or a(z) = 0 may be reformulated as ®;(u,\) = 0,7 = 1, 2,
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respectively, where ®;(u, \) = u — AL;fu, fu = f(u(z), ). We introduce two
Banach spaces E; = C'(D) and E, = {ue C'(D):u(x) = 0, x & dD} under the
norm ||u|| = max |u(z)| 4+ X max |[Du(z)| . By H1 the nonlinear operator f is
continuous and bounded as a mapping from C'(D) into C°(D) and, hence,
L.;fu is a completely continuous operator from E, into itself, 1 = 1, 2, [14]. It is
easily shown that L;ru is the Fréchet derivative of L; fu at u = 0. It is well known
[14] that bifurcation of nontrivial solutions to ®;(u, \) = 0 can only occur
at (0, \,),n = 1,2, --- , where \, is a characteristic value of L,r; that the spec-
trum of L,r is at most countable; and that the spectrum can have only 4 « asan
accumulation point. This linear problem is equivalent to the problem Au =
M(z)u (with the corresponding boundary conditions) which has been well
studied (e.g., see [15]). It is easily seen from Green’s first identity and H2 that
for both cases a(z) > 0, a(zx) = 0, we have A\, > 0 for all n. Moreover, it has
been shown [15] that any characteristic solution u; corresponding to A, is of one
sign in D and, hence, any characteristic solution u, corresponding to N\, , n # 1,
changes sign in D (since [, w,u,r dz = 0, n 5 1). It is now clear that A, is simple,
for if two independent characteristic solutions existed for A, then an appropriate
linear combination would change sign in D; on the other hand A, , » # 1, may
be multiple; e.g., Helmholtz’s equation in two dimensions on a square [15].

From a theorem of Krasnosel’skii [14, p. 196] we have the existence of a local
continuous branch of solutions to (1.1) in E; (for problem 7z = 1, 2) bifurcating
from (0, \,) for those A\, of odd multiplicity (in particular, \,). We now wish to
show that the solutions on these branches have the nodal structure mentioned
above for characteristic solutions of the linear problem. We begin by defining
the sets S;(\) = {ue E;:®,(u, \) = 0, ||u|| # 0}, Nt = {ue E:u > 0on D},
N% = {ueEy;:u>0onD,du/dv <0ondD}, N? = {ueE;:uchangessign in D},
and N; = {ue E;:—ueN%}.

Lemma 2.1. (a) Ni are open subsets of E; ,j = %, 0and ¢ = 1, 2.
(b) UnderH1,H2,forall\eR,j = =+,0andi = 1,2, wehave S;(\) NoNi = .
(c) Ni, for fixed i, are mutually disjoint.

Proof. (a) That Ni , N? are open is obvious from the definition of ||-|| .
Suppose v ¢ N} and u, e B, — N7 , u, — u; then passing to a subsequence if
necessary we may assume u, all change sign in D or all satisfy du,/dv = 0
somewhere on dD. In the first case u, has a local, negative minimum at some
z, ¢ D where of course Du(z,) = 0for all 1 £ ¢ < m. Passing to a subsequence
if necessary we let z, — 2, & D. Since u,(2,) — u(x,), u.(2,) < 0, u(z,) = 0 we
conclude z, ¢ D where u(z,) = 0. But also D.u,(z,) — Du(z,) and, hence,
du/dv = 0 at x, & 4D in contradiction to w ¢ N} . In the second case we have
du,/dv = 0 at z, e 0D; passing to a subsequence we have z, — 2, ¢ dD and,
hence, du/dv = 0 at x, € dD once again contrary to u ¢ N} . Thus, N7 is open.
Similarly N7 is open.

(b) From Green’s first identity and H2 it is easily shown that nontrivial
solutions to (1.1) (with either @ = 0 or @ > 0) exist only for A > 0. Suppose
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we S;(\) N dN?% ; then v = 0 on D and u(x,) = 0 for some z, ¢ D. By H2 it
follows that A =< 0 and by a well known max-min principle for A we conclude
Zo € dD. But the boundary condition Bu = 0 with a(x) > 0 implies also that
du/dv = 0 at x, , in contradiction to a known theorem [20, p. 65] unless v = 0.
But v = 0 contradicts w ¢ S;(\) and, hence, S;(\) N\ N} = . Similar proofs
may be constructed for the other intersections S;(\) N aN? .

Part (¢) is obvious.

Let §(u, ) be a function for which f(u, ) = r(x)u + uj(u, z) satisfies H1,
H2 and define ®;(u, \, &) = u — X\ [ Gi(z, y)[tf + 1 — t)fldy, 0 < ¢t < 1. The
following lemma is proved, with only slight modifications, exactly as a similar
lemma in [17]; the proof is accordingly omitted here. Let S;(\, §) = {ue E; :
®,(u, N\, 1) = 0, ||u]| # 0} and ¢ = {\,} denote the spectrum of L;r.

Lemma 2.2. Letinf & = + o, assume H1, H2 hold, and set N; = N*\U N7 .
Define the functions

r;(\) = inf {|Ju]]: weS:\, &) N (E; — N;) forsome ¢te[0, 1]},
E;

ri(\) = inf {|ju|]: weS:(\, ) N\ (E; — N} forsome ¢te [0, 1]},

E;
ol = inf {|ju]|: weS:\, ) "N? forsome te[0,1]}, 4= =,0.
Eq
Then r:(\), p2(\) and r3(\), pi(\), § = ==, are positive and lower semi-continuous
on (B — o) U {\} and B — {\} respectively.

We may now prove the following theorem which describes the nodal structure
of local solution branches to (1.1). We set B;(¢) = {ue E;:||u|| < €}.

Theorem 2.3. Assume H1, H2. To each \ ¢ R there exist two constants e(\) > 0,
8(\) > 0 such that for we [N — (), N + 6\, all te [0, 1], and 7 = 1, 2,

(a) A= N= 8, ) NBye(\) CN;;
B reo — (M= 8.0\ 1) N Bi(e(N) C N ;
©) N o= S;(\, ) N\ B,(e(\)) NN = F.

Furthermore, if H3 holds for both g and § with the same integer p, then e(N), ()
for \ e ¢ may be chosen such that for all t € [0, 1]

@ SN oB.(e) = 0= 1,2

Proof. (a) Forany0 < 6(\;) < :dist \y, o — {M}), set e(A;) = $inf {r;(n),
ra(u)} for we [Ny — 6\, \i + 6(\,)]. By Lemma 2.2 e¢(A;) > 0 and part (a)
follows from the definition of 7;(\) and Lemma 2.1(b).

(b) Forany 0 < 6(\) < % dist (A, ¢ — {\}) set e\) = % inf {r{(u), r5(u)} for
pe[h — 8(\), A + 5(\)]. Once again part (b) follows from Lemma 2.2 and the
definition of 79(\).
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(¢) Forany 0 < 6(\) < % dist (), 0), set e(\) = % inf {pi(u)} > Oforue [\ —
A, A+ d(\)]andi =1,2,j = +,0.

(d) From a known result in bifurcation theory [10, p. 154], the local bifurcation
of nontrivial solutions of (1.1) near (0, \,) is one-sided since go(z) = 0 (= 0),
but % 0 (and the direction of bifurcation is determined by the sign of g,(z));
in particular then there exists a constant p, > 0 such that no nontrivial solution
of (1.1) exists for X = A, satisfying ||u|| = p, . Clearly, if g, § satisfy H3 with
the same integer p then tg + (1 — t)§ satisfies H3 with the integer p for all
t e [0, 1]. It is clear from the theory presented in [10, p. 154] that p, can be taken
independent of . Thus,

@.1) S, ) N 3Bi(o)) = & forall tel0, 1].

Now suppose that part (d) is false with e(\,) = p, and, hence, there exist func-
tions wy e S;(ux , £) M B (p,) for u, — N, , &, — £, £ [0, 1]. Since &;(wy, , e , &) = 0
implies {w;}, a bounded sequence, is the image of a bounded set under a com-
pletely continuous operator, {w,} has a convergent subsequence. Assume
w, — W, & K, ; then by the continuity of the operator &, it follows that
&, (Wo , My L) = 0. Whereas ||wo]| = p. we have a contradiction to (2.1) and,
hence, part (d) is true.

We conclude this section with a Leray—Schauder degree calculation. The
degree of a mapping ® on a bounded open set @ with respect to 0 will be denoted
by d(®, Q). (A summary of the properties of the Leray-Schauder degree needed
here may be found in [16, 17, 18]. For a complete treatment see [14].)

Theorem 2.4. Assume H1, H2, H3 and let e(\), 6(\) be as in Theorem 2.3.
Set e,(\) = 3 min {e(\,), e\)}. Then for e (A, A\ 4 5(\)), Ae (0 — 3(\), M),
Mg o, n # 1, of odd multiplicity we have
d(®:(N), [Bi(e(\)) — Bi(e(N))] N N7

©.2)
—d(®;(N), [Bi(e(\)) — Bi(e.(N)] MY NY) = 2.

Also for n = 1 we have for both j = =+
(2.3) d(®:(w), Bi(e() — Bile(w)] N N = sgn (u — \)

for either all we (\;, Ay + 6(\,)) or all we (\; — 8(\.), \,) where sgn a = a/|a| for
a real and nonzero. Here we have set ®;(u, \) = ®,(7).

Corollary 2.5. (a) There exist two local branches of solutions to (1.1), one
consisting of positive and one of negative solutions, bifurcating from (0, \,).

®) If \ae o, n # 1, 15 of odd multiplicity then there exists a local branch of
solutions which change sign in D bifurcating from (0, \,).

Proof. All degrees in the theorem and its proof below are well defined, for
by Lemma 2.1 and Theorem 2.3 no solutions exist on the boundaries of the sets
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involved. Using A as a parameter, the homotopic invariance of degree implies
for any t ¢ [0, 1]

d(®:(, 1), B(e(\)) = d(@:(R, 1), B(e(\)))
while the additivity property in turn yields
(@, 0), [Bi(e\)) — Bu(ea(W)] N N
2.4 + d@0, 0, B0
= d(@:(X, 1), [Bi(e(\) — Bi(ex(AD]I N N
+ d(@:R, 1), Bi(&(V)).

However, since v — ML,ru is invertible for X\ ¢ o, A, is of odd multiplicity, and
Theorem 2.3(¢c) holds we have (see [14, p. 136])

(2.5) d(éi(/"‘) t)y Bi(en(ﬂ)) m N?) = d(éi(“) t); B,-(G,,(M)))
= (%, 1),0,0) = (-1, B N

where m is the sum of the multiplicities of all A, < u, M, & 0. Using (2.5) at
w = A\, A and the fact that A\, has odd multiplicity together with (2.4) at ¢ = 1,
we obtain (2.2).

To prove (2.3) we first note that the above argument and, hence, (2.2) with
+2 and all ¢ ¢ [0, 1] are valid with n = 1 provided N} is replaced by N, =
N*% U N7 . As remarked above in the proof of Theorem 2.3(d), because of H3,
the bifurcation at A, is one sided and, hence, by taking e(\,), 5(\,) possibly
smaller we know that one of the degrees in (2.2) must be zero. For definiteness
we assume bifurcation occurs to the right and consequently

d(®:(\, 1), [Bi(eM)) — Bi(e(W)] M N, = 2.
By Lemma 2.1 and the additivity of degree, this yields
(2.6) 2 d@, 1), [Bie(\)) — B N N = 2.
j=k
We now set §(u, ) = g(|u|, *) and notice that for ¢ = 0, u is a solution if and

only if —u is also a solution; z.e., ®;(\, 0) is an odd operator in w. Hence, from
the definition of degree and N? we conclude

@7 d(@:(\, 0), [Bi(e(\)) — Bi(e(N)I N N7)
= d(®:(, 0), [Bi(e(\)) — Bi(asM\)] M N7).
Using ¢ as a homotopy parameter we also have
d(‘p’()\, t)r [Bf(e()‘l)) - Bz(el()‘))] m N’,) = Ci ) ] = :i:)
for t & [0, 1], C; = const., and finally we find (since C, = C_ by (2.7))
d(®;(\, 1), [Bi(e(\)) — Bi((\)] NN
= d(®:(, 1), [Bi(e(\)) — Bilee(M)] M N7Y)
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which together with (2.6) at ¢ = 1and &,(, 1) = ®,(\) yields (2.3) foru =X > A, .
But ) in this argument was arbitrary, A, < N < A\, + 6(7,), since the case of
bifurcation to the right was considered. The case of bifurcation to the left
(i.e., u < A\, in (2.2)) is proved similarly. This completes the proof of the theorem.

The direction of local bifurcation (an important consideration in applications,
particularly at A, [5-7]) is determined by the sign of g,(x): if g,(z) is positive,
then the bifurcation is to the right while the bifurcation is to the left if g,(z) is
negative [10].

3. Global theorems. In this section we wish to show that the local branches de-
scribed in Corollary 2.5 exist as continua out of the local neighborhood of (0, A,).
Welet E; X R have the product topology and define Si= {(u, \):ue S;(\) N\ Ni},
j = =, 0. By definition (0, \,) ¢ S? ; but by Theorem 2.5, (0, \,) € 3S?,n = 1,
and (0, \,) £ 3(S% U 87). Also by Theorem 2.3, we see that (0,\) ¢Si,j = =+, 0,
forall A ¢ o.

Lemma 3.1. Let Q} be an arbitrary bounded open subset of E; X R such that
O,N\) e, 0, \) 0D,k #=n. Thenforj = x,0andalln = 1,

(a) ST N QF is a compact subset of E; X R;
® SNar=g=8NaCo.

Proof. Part (a) follows from the boundedness of Q; and the complete con-
tinuity of L,f.

The proof of part (b) is by contradiction. We first notice that ST N @} C Q7.
Now let (u, M) £ S: M QF N Q7 ; then we may find (wi, , ux) € ST M QF such that
(w , u) — (u, \). By the continuity of &, it follows that &,(u, \) = 0. But also
(u, N) € 09} , so since (0, \i) ¢ 99} for all k£ we conclude u % 0 by the remarks
preceding the lemma. Thus, (u, \) ¢ S} . But since also (u, \) € Q" we have a
contradiction to the hypothesis in (b).

We now give our main result.

Theorem 3.2. Let H1, H2, H3 hold and let Q; be any bounded open set of
E; X R for which (0, ;) e Q% , (0, \,) £ Q% , k 5= n, where \, has odd multiplicity.
Then 8 M 0Q; # & forn 5% 1 and Si M 0Q} #= & forj = =*.

Proof. The proof follows closely those found in [18, 19], both of these being
motivated and modelled after the work of Rabinowitz in [16]. The proof is by
contradiction and uses Leray—Schauder degree.

We first consider the case n # 1 and assume S N 9Q; = &F. The degrees that
follow are well defined as this assumption together with Lemma 2.1 and Theorem
2.3 insure that no solutions appear on the boundaries of the open sets involved.
Set Q1(\) = {u e E;:(u, \) e Q¢}, an open subset of E; . Let ¢(\), §(A) be as in
Theorem 2.3 and ¢,(A) be as in Theorem 2.4. Choose A > \, , \ ¢ o, such that
Q'(\) % & and \* > X\ such that Q:(\*) = &, Q2(\*) N\ 'S% = . This is possible
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since by the preceding Lemma 3.1 8 N 7 is a compact subset of Q7 . If {\,}
is the set of those points in ¢ lying in [\, \*] we know that (0, \,,) ¢ Q7 and hence
(B:(p) X Max — oy M + p]) N @ = F for some p > 0 sufficiently small and
all k. Clearly m; = inf, dist {(0, u); 82" ()}, pe\U: D\ — 0, A + ], is positive.
Denote by A the closed set of reals lying in [\, \*] — \U: (\ — p, A + p); by
Theorem 2.3 m, = inf, ; €,(x) > 0. Now choose ¢* > 0 so small that ¢* <
min (m; , m, , (). By construction no solution of ®,(u, u) = 0 lies on the
boundary of [} — (B(e*) X [\, AN*])] N 87 for ue [\, A*], because if (u, u) were
such a solution on the boundary of this set then either (u, u) € 9Q; or ||u|| = *
and p ¢ A (by the definition of m, and the choice of ¢* < m,), both cases being
impossible by 87 N 0Q; = & and Theorem 2.3 respectively. The homotopic
invariance of degree thus gives

(3.1 d(®;(u), *2(w)) = C = constant,  ue[\ N,

where we have set *Q;(u) = [2(u) — Bi(e)] NN ¢ . Since by choice Q;(A\*) N
S? = F, no solution lies in *Q7(\*) and, hence setting u = A*in (3.1) yields C = 0.
Since no solution lies in [B;(e,(\)) — B.i(¢¥)] N N7, the additivity of degree
together with (3.1) for x = A yields

(3.2 d(@.(\), [2i(\) — Bi(e.(N] N N?) = 0.
A similar argument holds for A < A\, , \ ¢ o, and hence (3.2) is valid for all A ¢ o.
Suppose now that Ae (\, , A\, + §(\,)) and X e (\, — 3(\,), \.). By homotopic
invariance
(3.3) d(®:(w), [Qi(uw) — Bi(e(\))] N N3) = constant
for X < p £ ), and by additivity of degree together with (3.2)
(B.4)  d(@:(w), [Qim) — Bie(\)] N NI
+ d(®:(w), [Bi(c(\)) — Bilex()] NN =0

for p = A, X. Subtracting the two equations (3.4) for u = \, X and using (3.3)
we get the contradiction that the difference in (2.2) is zero and not 42 as asserted
by Theorem 2.4. This contradiction proves that S; N 4Q; = & is false, n # 1.
Finally, for n = 1 exactly the same argument can be used with 8}, j = +
or —, replacing S} throughout and a contradiction to (2.3) being reached.
The following corollary is proved exactly as Corollary 1.34 in [16].

Corollary 3.3. Under the hypotheses of Theorem 3.2 there exists a continuum
of solutions (u, \) to (1.1), ue N?, joining (0, \,), n # 1, to 9Q; and a continuum
of solutions (u, \), u in each of N*% , N7 joining (0, \;) fo 99} .

Since Q7 was an arbitrary bounded open set such that (0, A,) e @7, (0, \,) ¢ O}
for & # n it is clear that a continuum joins (0, A,) to (0, \.), k& # n, or to “=”
(or both). However, by Theorem 3.2 it is clear that a continuum from (0, A,),
n # 1, in N? can not join (0, \,) nor can a continuum from (0, A,) in either Ni,
j = ==, join (0, A\,), » # 1. Thus, we have
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Corollary 3.4. Under the hypotheses of Theorem 3.2 there exist conlinua of
solutions to (1.1) in each of N , N7 joining (0, \,) to “ o’ and a continuum in N
joining (0, \,), n #= 1, to etther (0, \o), k % 1, n or to “=,

4. Asymptotic behavior of the branches from )\, . In this section we want
to consider some aspects of the nature of the sets Gi = {(||ullo, N): (u, \) e Ki},
j = =, where ||u||, = max |u(z)| and K! is a continuum of solutions (u, \) to
(1.1), u € N, connecting (0, \,) to “o; the graph of this set is the so called
bifurcation diagram for (1.1) at A\, . We first remark that, because of the inequal-
ity |[u|]| £ K ||[f(u(z), )||o , K > 0, which follows from u = \ [ G(z, y)f(u, y) dy
as applied to solutions of (1.1) and the continuity of f(u, x) in u, convergence
with respect to the product topology on E; X R using || ||, implies convergence
with respect to the product topology using ||-|| insofar as solutions (u, \) are
concerned. Since the converse is obviously true, G} is a continuum and its asymp-
totic behavior reflects that of the set {(||ul||, N): (u, ) ¢ Ki} as well; thus, G}
connects (0, \;) to “’”. We define the sets =i = {\:(||ullo, \) ¢ G} , u e Ni},
j = =. Since ¢! is a continuum connecting (0, \;) to ““ = ”’, we know that =i and
Mi = {||ul]lo:(|lullo, \) e Gi, N e R} are intervals on the positive real axis at least
one of which must be infinite. As far as we know in general =} may be open,
closed, half open or closed and either finite or infinite, but it contains only
positive reals as an easy application of Green’s first identity to any solution of
(1.1) will show (provided H2 holds). (Actually, as mentioned above, this proves
that the entire spectrum of (1.1), under H2, is positive.) We now offer a theorem
concerning M . We need

H4: f(¢, ) = 0for 0 < || < + o, zeD, if and only if £ = 0.

Theorem 4.1. If H1, H2, H3, H4 hold, then M: = (0, + ) for j = =,
1 =1, 2.

Proof. We begin by remarking that it is easy to show using H4 that for
any e > 0

(4.1) ue B,(e) = |Ju/flu, 2)|ls £ C < + o,

for some constant C = C(e) > 0. Applying Green’s second identity to (u; , \),
(u, ) ¢ Ki , we find

0= f uyflu, ) — Nuwur(z)] dx
or

f uur(z) de
4.2) N=\ 2

)

Lulf(u, z) dx
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the denominator being non-zero since the integrand is of one sign for
ue S;(\) \Ni. Using a Mean Value Theorem for integrals ([21], p. 269) we have

f wfu, x) do = 1, 7) wuyr(x) dr

b ur(x)
= f-——ﬁftnghg? ; wur(@) dz,  te D,
and, hence, from (4.2) we find
w@ErE) u
*.3 0 <=M, p) =M ! 7, )0

where K = max |r(z)] < + . Clearly M = (0, a) or (0, a] for some a > 0
(possibly @ = + »). Suppose a < -+ «; then (u, \) e Ki implies ||ul|l, £ a < + =
and (4.1), (4.3) imply 0 < A £ MKC(a) < + ». Thus, the finiteness of M}
implies the finiteness of =} which contradicts the definition of K? . It follows
that @ = + = and the proof is complete.

Theorem 4.1 gives rather mild conditions under which (1.1) possess solutions
of one sign of arbitrarily large norm. An interesting and important question is
that of the structure of the corresponding spectrum =/ . We do not attempt here
an extensive study of this question, but only offer two theorems which are easy
consequences of the preceding work. The following lemma is an obvious result
of Corollary 3.4.

Lemma 4.2. If any solution (u, N) of (1.1) satisfies an a priors estimate of the
form ||ullo < C(\) where C()\) is a non-negative real valued function defined on

[0, + ) which is bounded on finite intervals then i is an infinite interval.
Theorem 4.3. If, in addition to H1, H2, H3, f(u, x) satisfies
(4.4) lf€, 2)| < a@El’, xeD,

for some 0 < q < 1 and function a(x) bounded on D, then Zi is an infinite sub-
interval of the positive reals, j = +,¢ = 1, 2.

Proof. If (u, \) ¢ K} , then u(x) = [, NG(z, y)f(u(y), y)dy from which,
together with (4.4), we have |[[u|l, = K\||u|[¢ , K = constant > 0. We can thus
set C(\) = (KN)Y""? in Lemma 4.2.

Finally we state a theorem which follows immediately from the Weak Pos-
itivity Lemma in [6].

Theorem 4.4. Suppose, in addition to H1, H2, H3, that g(u, x) satisfies the
condition g, z) < 0 for all £ and x ¢ D. Then Zi < (0, \), M} = (0, + =),
j=o4,1=12.

More information on the structure of the graph of G} can be obtained by
using the results of this paper together with the many uniqueness and non-
existence theorems and a priori bounds found in the literature.
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