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Introduction

1. Preliminaries

Mathematical applications typically involve one or more equations to be solved
for unknown quantities. Often applications involve rates of change, and therefore
lead to equations containing derivatives. Such equations are called differential
equations.

A student’s first encounter with differential equations is usually in a calculus
course where anti-derivatives (or indefinite integrals) are studied. For example,
consider the problem of finding the anti-derivative of t2. This problem can be for-
mulated as follows: find a function x = x(t) whose derivative is t2, or in other words
find a function x = x(t) that satisfies the equation

(1.1) x0 = t2.

(Here we have used the notation x0 for the derivative of x with respect to t. We will
also occasionally use the notation dx/dt.) Equation (1.1) is a differential equation
for the unknown function x = x(t). Notice what it means to “solve” this equation:
find a function x = x(t) that, when substituted into both sides of the equation,
makes the left hand side identically equal to the right hand side. That is to say,
a solution is a function which upon substitution into the equation reduces the
equation to a mathematical identity in t.Also notice it is not accurate to speak of the
solution of this differential equation. This is because it has many solutions, namely
x(t) = t3/3 + c where c is any constant (the so-called “constant of integration”).

It is not always as easy to find formulas for solutions of a differential equation
as it is for the equation (1.1). For example, consider the differential equation

(1.2) x0 = x.

This equation is fundamentally different from (1.1) because the unknown function
x appears on the right hand side. This equation cannot be solved by an anti-
differentiation of the right hand side, because the right hand side is not a known
function of t. Later we will learn how to solve this equation, but for now notice that
x(t) = et is a solution, i.e., a substitution of et for x into the left and the right hand
sides of the equation yields the same result (namely et). Similarly, x(t) = cet is a
solution of this equation for any constant c (including c = 0). Notice, however, that
x(t) = et + c is not a solution (unless c = 0). To see this, we calculate x0(t) = et

and note that it is not equal to x(t) = et + c (unless c = 0). This shows that
constants of integration do not always appear additively in formulas for solutions
of differential equations.

As another example consider the differential equation

(1.3) x0 = x2.

The function x(t) = 1/ (1− t) is a solution of this equation, so long as t 6= 1, because
the derivative x0 = 1/ (1− t)

2 is identical to x2 for t 6= 1. We say this function
is a solution on the interval −∞ < t < 1 or on the interval 1 < t < +∞ (or on
any interval not containing t = 1). Similarly, for a constant c, the function x(t) =
1/ (c− t) is a solution on any interval that does not contain t = c. Notice each
solution obtained by assigning a numerical value to c has a different singular point
t = c and hence is associated with a different interval of existence. (Incidentally,
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the constant function x ≡ 0 is also a solution which is not included in the formula
x(t) = 1/ (c− t).)

A solution of a differential equation is associated with an interval of existence.
The solutions x(t) = 1/ (c− t) of equation (1.3) show there is not necessarily a
common interval of existence for all solutions of a differential equation. This exam-
ple also illustrates that the differential equation itself might give little or no clue
about the intervals of existence of its solutions.

For differential equations (1.1), (1.2), and (1.3) it is possible, as we have seen,
to write down formulas for solutions. For other equations, it is not possible to
calculate solution formulas. In the latter case, we must use other methods to study
equations and their solutions. In this book we will study some types of equations
for which we can derive solution formulas, but we will also study many methods
of analysis that do not require solution formulas. These methods are of particular
importance since it is not possible to calculate solution formulas for the differential
equations that arise in many, if not most, scientific and engineering applications.

The equations (1.1), (1.2), and (1.3) are examples of a general class of ordinary
differential equations of the form

x0 = f(t, x).

Here all terms in the equation not involving the derivative have been placed on
the right hand side. In general both the independent variable t and the dependent
variable x can appear on the right hand side. Letters or symbols representing
unspecified numerical constants called “coefficients” or “parameters” might also
appear. Here are some further examples:

x0 = x2 + t2

x0 = −2x
x0 = px, where p is a constant

x0 = r
³
1− x

K

´
x, where r > 0, K > 0 are constants.

It is important to recognize those letters and symbols that represent independent
variables, those that represent dependent variables, and those that represent co-
efficients or parameters. The independent variable is, of course, the variable with
respect to which the derivative is being taken. In the above equations we use the
letter t for the independent variable; this will be done throughout the book. This
choice is motivated by the many applications in which the independent variable rep-
resents time. (Other letters can, of course, be used.) On the other hand, throughout
the book we use a variety of letters for the dependent variable (sometimes referred
to as the “state variable”). In applications, a letter suggestive of the meaning of
the variable in that application is usually chosen. For example, we will encounter
differential equations involving symbols such as x0, y0 , N 0 , and P 0 for the deriva-
tives of the dependent variables x, y, N , and P with respect to t. If it is necessary
to emphasize the role of the independent variable t we sometimes write derivatives
as

dx

dt
,
dy

dt
,
dN

dt
,
dP

dt
.
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Applications often involve several differential equations for several unknown
functions, i.e. a system of differential equations. Some examples are

x0 = y

y0 = − sinx

x0 = −r1x− r2y

y0 = r1x− (r1 + r2) y

x0 = y

y0 = − k

m
x− c

m
y

x0 = r
³
1− x

K

´
x− cxy

y0 = −dy + xy

x0 = y

y0 = −x− α
¡
x2 − 1

¢
y .

In each of these examples there are two differential equations for two unknown
functions x and y. All other letters represent coefficients (or parameters).

A solution of a system of two equations is a pair of functions x = x(t), y = y(t).
For example, the pair x(t) = 2e2t, y(t) = −e2t is a solution of the system

x0 = 5x+ 6y

y0 = x+ 4y.

To see this, we note that x0 = 4e2t is identical to

5x+ 6y = 5
¡
2e2t

¢
+ 6

¡
−e2t

¢
= 4e2t

(i.e., the first equation is satisfied for all t) and also that y0 = −2e2t is identical to
x+ 4y =

¡
2e2t

¢
+ 4

¡
−e2t

¢
= −2e2t

(i.e., the second equation is also satisfied for all t). The reader can check that
x(t) = 3e7t, y(t) = e7t is another solution pair of this same system.

Applications also arise in which higher order derivatives appear in the equation.
Here are some examples of higher order differential equations:

x00 + x = 0

mx00 + cx0 + kx = a sinβt

x000 + 3x00 + 3x0 + 2x = 0

m1x
00 + (k1 + k2)x− k2y = 0

m2y
00 − k2x+ k2y = 0.

The order of a differential equation is that of the highest order derivative appearing
in the equation. Thus, the equation x0 = x is a first order equation. The first two
equations above are second order and the third equation is third order. The last
pair of equations constitute a second order system of equations.
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Solutions of higher order equations must reduce the equation(s) to identities
upon substitution. For example, x(t) = sin t is a solution of the second order
equation x00 + x = 0 for all t (as is x(t) = cos t). The exponential function x(t) =
e−2t is a solution of the third order equation x000 + 3x00 + 3x0 + 2x = 0 for all t.

Any higher order equation (or system of higher order equations) can be asso-
ciated with an equivalent system of first order equations. The following example
illustrates the most common way to convert a higher order equation to an equiv-
alent first order system. The function x(t) = sin t is a solution (for all t) of the
second order equation

(1.4) x00 + x = 0.

Define y to be the derivative of x, i.e., y = x0. Then y(t) = cos t and the pair
x(t) = sin t, y(t) = cos t solves the first order system

x0 = y(1.5)

y0 = −x

This shows how a particular solution of the second order equation (1.4) can be used
to construct a solution of the first order system (1.5).

More generally, suppose x = x(t) is any solution of the second order equation
(1.4), i.e., x00(t) + x(t) = 0. Define y = x0(t). The calculations

x0(t) = y(t)

y0(t) = x00(t) = −x(t)
show the pair x(t), x0(t) solves the system (1.5). This shows that any solution of
the second order equation (1.4) gives rise to a solution pair for the first order system
(1.5). Is the converse true? Can a solution of the first order system (1.5) be used
to obtain a solution of the second order equation (1.4)? If so, then we could say
that the second order equation (1.4) is “equivalent” to the first order system (1.5)
in the sense that solving one is the same as solving the other.

Suppose x = x(t), y = y(t) is a solution pair of the first order system (1.5).
Then

(1.6)
x0 = y
y0 = −x.

We need to show how we can obtain a solution of the second order equation (1.4)
from the solution pair of the system. The way to do this is simply to choose the first
component x of the solution pair. We can show that the first component x = x(t)
satisfies the second order equation by differentiating both sides of the first equation
in the system (1.6), to obtain x00(t) = y0(t), and then use the second equation in
the system to obtain x00(t) = − x(t), or in other words x00 + x = 0.

The procedure we used to derive the system (1.5) equivalent to the equation
(1.4) is not peculiar to that second order equation. For example, by the same
method, we can show that the second order equation

x00 + sinx = 0

is equivalent to the first order system

x0 = y
y0 = − sinx.
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In general, we can show (by a similar procedure) that any second order differential
equation of the general form

x00 = f(t, x, x0)

is equivalent to the first order system

x0 = y
y0 = f(t, x, y).

An extension of the method also applies to equations of order higher than two.
For example, we can obtain an equivalent first order system for the third order
equation

x000 + 3x00 + 3x0 + 2x = 0

by defining two new dependent variables

y = x0, z = x00.

As above, we can show solutions of this equation give rise to solutions of the system

x0 = y
y0 = z
z0 = −2x− 3y − 3z

and vice versa.
A further extension of the method can be used for higher order systems as well.

For example, consider the second order system

x00 + 2x− z = 0
2z00 − x0 + z = 0

for two unknowns x and z. We apply the procedure twice, once on each equation,
by defining two new dependent variables

y = x0, w = z0

and obtaining the equivalent first order system of four equations

x0 = y
y0 = −2x+ z
z0 = w
w0 = 1

2y −
1
2z.

The ability to convert higher order equations to a first order system is required
by many (if not most) computer programs available for the study of differential
equations.

One way to classify differential equations is by their order. Another way to
classify equations is based on the notion of “linearity”. A differential equation is
linear if the dependent variable and all of its derivatives appear linearly. Thus, in
a linear first order equation, both x and x0 appear linearly. This means

x0 = 3x+ 1

2x0 − x = 2 + sin t

x0 = tx+ a

etx0 =
x

t
+ ln t

are all linear (first order) differential equations. Note that the independent variable
plays no role in the definition of linearity. For example, the second equation is
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linear even though the independent variable t appears in a nonlinear way (in the
sin t term). We can write each of these equations in the form

x0 = p(t)x+ q(t)

for appropriate coefficients p(t) and q(t). By definition, an equation is linear if it
has this form (or can be rewritten in this form).

The equations

x0 = x2 − 1
xx0 = x+ t

(x0)
2
= tx− 4

x0 = r
³
1− x

K

´
x

are nonlinear. The first and fourth equations are nonlinear because of the term x2.
The second equation is nonlinear because of the term xx0 and the third equation is
nonlinear because of the term (x0)2 (not because of the term tx).

A second or higher order equation is linear if the dependent variable and all of
its derivatives appear linearly in the equation. The second order equations

x00 + x = 0

x00 + x0 + x = sin t

x00 + (sin t)x = 0

are linear because x, x0 and x00 appear linearly. The equations

x00 + α(1− x)x0 + x = 0

x00 + sinx = 0

are nonlinear (the first because of the term xx0 and the second because of the term
sinx).

Systems of equations are linear if (and only if) all of the equations are linear
in all of the dependent variables and their derivatives. Thus,

x0 = y
y0 = −x

x0 = −rx+ ry
y0 = rx− 2ry

are linear systems and
x0 =

¡
1− x− 1

2y
¢
x

y0 =
¡
1− 1

2y − x
¢
y

x0 = (xin − x) d− 1
γ
mx
a+xy

y0 =
³
mx
a+x − d

´
y

are nonlinear systems (because of the terms x2, xy, and y2 in the first system and
the term mxy (a+ x) in the second).
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EXERCISES
What are the orders of the following equations? Explain your answers.

Exercise 1.1. t2x0 + x3 = 0

Exercise 1.2. 3x0 − 2x2 = 0
Exercise 1.3. et (x0)2 + x3 = 0

Exercise 1.4. 3 (x00)3 − 2x5 (x0)2 = 0

Exercise 1.5. x0x3x00 − t7x1/2 = 0

Exercise 1.6. x0 + t2x2 + x000 = 2

Exercise 1.7. x0 + t1/2x = ln t

Exercise 1.8. x0(x00)2 − 5t1/2x3 = 2
Exercise 1.9. tx = ex + (x0)2

Exercise 1.10. x00 + a sinx = 0

Exercise 1.11. t2x0 + x3 = t cos t

Exercise 1.12. x0 = p(t)x+ q(t)

Exercise 1.13. 2xx0 + x000 + (x00)3 − x4 = 0

Exercise 1.14. (x000)2 + (x00)5 + 3(x0)7 − sinx = 0
____________________________________

Which of the following are solutions and which are not solutions of the equation
x0 + 3x = 0? Explain your answers.

Exercise 1.15. e−3t

Exercise 1.16. e3t

Exercise 1.17. −e−3t

Exercise 1.18. 3e−t

____________________________________

Which of the following are solutions and which are not solutions of the equation
x0 − 2tx = 0? Explain your answers.

Exercise 1.19. e2t

Exercise 1.20. 2e−2t

Exercise 1.21. −7et2

Exercise 1.22. 1 + et
2
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____________________________________

Which of the following are solutions and which are not solutions of the equation
2x0 + 3x5/3 = 0 ? Explain your answers.

Exercise 1.23. t−3/2

Exercise 1.24. −t
Exercise 1.25. (t− 1)−3/2

Exercise 1.26. (1− t)−3/2

Exercise 1.27. t3/2

Exercise 1.28. −(t+ 3)−3/2

Exercise 1.29. (t− 2)−2/3

Exercise 1.30. (t− c)
−3/2 (where c is any constant)

____________________________________

Which of the following are solutions and which are not solutions of the equation
x00 − 5x0 + 6x = 0 ? Explain your answers.

Exercise 1.31. e−2t

Exercise 1.32. e2t

Exercise 1.33. e3t

Exercise 1.34. e−3t

Exercise 1.35. 5e2t

Exercise 1.36. −7e3t

Exercise 1.37. e2t + e3t

Exercise 1.38. c1e2t + c2e
3t for constants c1 and c2

____________________________________

In the Exercises 1.39-1.43 determine which of the functions are solutions of the
given differential equation and which are not.

Exercise 1.39. For the equation x0 + 5x = 0 :
(a) x = e−5t (b) x = 3e−5t (c) x = 5e−3t

Exercise 1.40. For the equation x0 = 2x :
(a) x = e3t (b) x = −3e2t (c) x = e2t

Exercise 1.41. For the equation x0 + x2 = 0 :
(a) x = 1

t (b) x = 2
t (c) x = 1

t−2

Exercise 1.42. For the equation x0 = x+ et :
(a) x = et (b) x = tet (c) x = et + tet

Exercise 1.43. For the equation tx00 + x0 = 0.
(a) x = ln t (b) x = 1 (c) x = t
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____________________________________

Which of the following are solutions and which are not solutions of the equation
x000 − 4x00 − 4x0 + 16x = 0 ? Explain your answers.

Exercise 1.44. x = e4t

Exercise 1.45. x = −2e4t

Exercise 1.46. x = ce4t where c is any constant

Exercise 1.47. x = e2t

Exercise 1.48. x = 1
2e
−2t

Exercise 1.49. x = c1e
4t + c2e

2t + c3e
−2t for any constants c1, c2, c3

Exercise 1.50. x = e4te2t

____________________________________

Which of the following are solutions and which are not solutions of the equation
x00 + x0 − 2x = 0 ? Explain your answers.

Exercise 1.51. x = et

Exercise 1.52. x = e−2t

Exercise 1.53. x = ete−2t

Exercise 1.54. x = et + 2e−2t

____________________________________

Exercise 1.55. Do x = e4t and y = −2e4t form a solution pair for the two
equations x0 = 2x− y, y0 = −6x+ y?

Exercise 1.56. Do x = e3t sin 5t and y = e3t cos 5t form a solution pair for
the equations x0 = 3x+ 5y, y0 = −5x+ 3y?

____________________________________

Which of the following are solution pairs of the system below? Which are not
solution pairs? Explain your answers.

x0 = 4x+ 3y
y0 = −2x− y.

Exercise 1.57. x = et, y = −et

Exercise 1.58. x = −et, y = et

Exercise 1.59. x = et, y = et

Exercise 1.60. x = −et, y = −et

Exercise 1.61. x = 3e2t, y = −2e2t

Exercise 1.62. x = e2t, y = −e2t

Exercise 1.63. x = et + 3e2t, y = −et − 2e2t
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Exercise 1.64. x = −2et + 6e2t, y = 2et − 4e2t

Exercise 1.65. x = c1e
t + 3c2e

2t, y = −c1et − 2c2e2t for constants c1 and c2
____________________________________

Exercise 1.66. For each function that is a solution in Exercise 1.15-1.18 iden-
tify the interval on which it is a solution.

Exercise 1.67. For each function that is a solution in Exercise 1.23-1.30 iden-
tify the interval on which it is a solution.

____________________________________

Convert the equations below to equivalent first order systems.

Exercise 1.68. x00 + x0 − 3x = 0
Exercise 1.69. x00 − 6x0 + 4x = 0
Exercise 1.70. 3x00 − 6xx0 + 12x2 = 1
Exercise 1.71. 5x00 + 10x0x = 5et

Exercise 1.72. 2x000 − 6x00 + 4x0 + x = −3
Exercise 1.73. x000 + 2x00 − x0 + x = 1

Exercise 1.74. x00 + 2x0 + 4x = cos t

Exercise 1.75. 2x00 + 3x0 + 9x = 0

Exercise 1.76. t2x00 + (x0)2 + cosx = 0

Exercise 1.77. xx00 + (x0)2 + x1/2 = et

Exercise 1.78. x00 = −2x0 − x+ z, z00 = −z0 + 2x− z

Exercise 1.79. x000 + x00 − 2x0 + 7x = t

____________________________________

Exercise 1.80. Convert the second order system

2x00 − x0 + 2z0 + 4x− 8z = 0
z00 + 2x0 − z0 − x+ 3z = sin t

to an equivalent first order system.

Exercise 1.81. Convert the second order system

x00 − 5x0 − 6z0 + x− z = 0

3z00 − 6x0 − z0 + 12x+ 3z = 21e−3t

to an equivalent first order system.
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____________________________________
Which of the following first order equations are linear? If an equation is non-

linear, explain why.

Exercise 1.82. x0 = 2x+ 1

Exercise 1.83. 3x0 + 4x = 1
2

Exercise 1.84. x0 = tx2 − 1
Exercise 1.85. x0 = t2x− 1
Exercise 1.86. t2x0 = x

Exercise 1.87. x0 = x sin t

Exercise 1.88. x0 = t sinx

Exercise 1.89. x0 = ex

____________________________________

Which of the following second order equations are linear? If an equation is
nonlinear, explain why. (a is a constant.)

Exercise 1.90. x00 + xx0 + x = 0

Exercise 1.91. x00 + tx0 + x = 0

Exercise 1.92. t2x00 + tx0 + x = 1

Exercise 1.93. x2x00 + tx0 + x = 1

Exercise 1.94. x00 + a(1− x)x = 0

Exercise 1.95. x00 + a(1− t)x = t

Exercise 1.96. x00 + e−xt = sin t

Exercise 1.97. x00 + e−tx = sin t

____________________________________

Which of the following systems are linear? If a system is nonlinear, explain
why.

Exercise 1.98.
½

x0 = x+ y
y0 = x− y

Exercise 1.99.
½

x0 = (1− x)x− xy
y0 = −y + xy

Exercise 1.100.
½

x0 = x− y
y0 = xy

Exercise 1.101.

⎧⎨⎩ x0 = ax+ by
y0 = cx+ dy
where a, b, c are constants.

____________________________________
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Which of the following equations (or systems of equations) are linear?

Exercise 1.102. x0 = a(r − x) where a and r are constants

Exercise 1.103. x0 = a(r − x) where a = a(x) is a decreasing function of x

Exercise 1.104. x00 + f(x)x = 0 where f = f(x) is a function of x satisfying
df(x)
dx > 0 (for all x).

Exercise 1.105. mx00 + cx0 + kx = a sinβt where m, c, k, a and β are positive
constants

Exercise 1.106. mx00 + c sinx = 0 where m and c are positive constants

Exercise 1.107.
½

x0 + y0 = x+ y
x0 − y0 = 2x+ y

Exercise 1.108.
½

x0 = ln(ty)
y0 = x

Exercise 1.109.
½

x0 = y sin t
y0x0 = x+ y

Exercise 1.110.
½

x0 − 2x = y + cos t
y − e2tx = y0 − 1

____________________________________

Determine whether the following equations can be rewritten as linear equations
or not.

Exercise 1.111. x0 = ln (2x)

Exercise 1.112. x0 =
½

x2−1
x−1 if x 6= 1
2 if x = 1
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2. Mathematical Models

Mathematical models are descriptions of phenomena that involve mathematical
equations, symbols, and concepts. These descriptions express laws, assumptions
and/or hypotheses relevant to questions arising within some scientific discipline.
One wishes to obtain answers to these questions by using the model. This involves
“solving” the equations appearing in the model, where “solving" might mean the
usual process of calculating a formula for the solution, or it might instead mean
obtaining an approximation to the solution or even applying some other means
of analysis that derives information about the solution. Even after the solution
step is completed, further work might be needed to answer the scientific questions.
Information about the mathematical solution needs to be interpreted and applied
in the original scientific context. Thus, a modeling exercise involves three major
steps that we can term the derivation (“setup”) step, the solution step, and the
interpretation step. Often the interpretation step reveals deficiencies in the model
(e.g., implications and predictions of the model solution might not compare well
with data). Such shortcomings can provide feedback to the derivation step by
means of which a modified (presumably improved) model is constructed. Fig. 2.1
shows a schematic representation of these stages of a modeling effort. While these
are idealized procedural steps, they can often help to orient and guide one’s self
while embedded in the details of an elaborate model.

MATHEMATICAL
    PROBLEM

MATHEMATICAL
    SOLUTION

PROBLEM
SOLUTION

 PROBLEM
STATEMENT

Model Derivation Step

(assumptions, laws, hypotheses, etc.)

Solution
   Step

(approximations,
  formulas, etc.)

Interpretation Step

Model M
odification

Figure 2.1. The Modeling Cycle.

The Model Derivation Step in the Modeling Cycle involves translating the state-
ment of a problem from the language and jargon of a particular discipline (e.g.,
physics, chemistry, biology, engineering, economics, etc.) into mathematical ter-
minology, symbols, and equations. The statement of the problem involves laws,
principles, and/or assumptions that are to be used in the application. The first
task is to identify the relevant unknown quantity or quantities and assign symbols
to them. It may be necessary to choose symbols for other quantities as well (time,
length, mass, growth and decay rates, coefficients of friction, etc.). These symbols
must then be related to each other according to the statement of the problem, uti-
lizing the stated laws and assumptions. The result will be a mathematical problem,
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usually one or more mathematical equations, to be solved for the unknown quantity
(or quantities).

A “law" (or assumption) often used in mathematical modeling states that one
quantity “is proportional to” another. This means one quantity is a constant mul-
tiple of the other. The mathematical expression of the assumption requires the
designation of a symbol for the constant multiple, called the “constant of propor-
tionality”. For example, if the force F exerted by a spring is proportional to its
elongation s, then we write F = ks where k is a constant of proportionality.

If rates of change are involved in an application, then the mathematical model
usually involves a differential equation. For example, suppose the problem is to
determine the velocity of an object with mass m subject to “Newton’s Law of
Motion” F = ma. This law states that the force F exerted on the object equals its
mass m times its acceleration a. Denoting time by t and velocity by v = v(t) and
recalling that a = v0, we obtain the differential equation mv0 = F for the velocity
v. For this differential equation to be fully specified we need more information
(assumptions, laws, etc.) about the forces acting on the object so that we can
write a mathematical expression for F .

In many applications the time rate of change of a quantity x is proportional
to the quantity itself, in which case x0 = rx for a constant of proportionality r.
This case is often described in another way, namely that the “per unit rate of
change” x0/x is constant. In some applications, the rate of change of a quantity
x is proportional to other functions of the quantity. For example, if the rate of
change of x is proportional to the square of x, then x0 = px2 for a constant of
proportionality p.

Another modeling assumption is that a quantity “is jointly proportional to”
other quantities. This means the quantity is a constant multiple of the product of
the other quantities. Thus, if a is jointly proportional to b and c then we write
a = kbc, where k is the constant of proportionality. For example, suppose the
reaction rate of a chemical substrate is jointly proportional to its own concentration
and to the concentration of an enzyme that catalyzes the reaction. If c and e denote
the concentrations of the substrate and the enzyme respectively, then c0 = kce for
a constant of proportionality k. In this case, the constant k is negative in this case,
since the reaction decreases the concentration of the substrate c. To emphasize this,
a more convenient notation is to write the constant of proportionality as k = −m
where m > 0. Thus c0 = −mce. As a general rule, when defining symbols in an
application it is useful to let letters stand for positive quantities.

In many applications involving rates of change a useful model derivation pro-
cedure is called compartmental modeling . In compartmental models the unknown
quantities move into and out of designated “compartments” at certain rates. A
“compartment” may be a physically well defined entity, such as a reaction tank
in which chemical reactions occur. In other applications a “compartment” may
be more loosely defined, such as the soil bank in a forest or the body tissues in a
physiological problem involving the absorption of a medicinal drug. The balance
law (or balance equation)

(2.1) x0 = inflow rate − outflow rate

applies to the amount of the quantity x = x(t) contained in a compartment at
time t. The inflow and outflow rates are those of the quantity into and out of
the designated compartment. Coupled with information about these rates that
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allows us to write mathematical expressions for each of them, the balance law (2.1)
becomes a differential equation for x. For example, if the quantity flows into the
compartment at a constant rate r and flows out of the compartment at a rate
proportional to the amount present, then the inflow rate is r and the outflow rate
is px (where p is a constant of proportionality p). Then the balance law (2.1) yields
the differential equation x0 = r − px for x.

The Solution Step of the Modeling Cycle in Fig. 2.1 focuses on the mathe-
matical problem of “solving” the equation(s) in the model. A basic mathematical
question is whether the equations even have a solution or not. If not, the problem
is “ill-posed”, and one must reassess the original statement of the problem and/or
the derivation step. Another fundamental question concerns the number of solu-
tions and, if there is more than one, which solution is relevant to the application.
A problem is usually called “well-posed” if it has a solution and only one solution.
Assuming the mathematical problem in the model is well-posed, one would then
like to “solve” the equation(s). One way to do this is to find a formula for the
solution. However, it is not possible to find solution formulas for most differential
equations. In such cases, one can seek a formula that approximates the solution,
or use a computer to calculate numerical approximations to the solution x(t) at
selected values of t. From these approximations we can draw approximate graphs
of the solution. Another approach is to approximate the differential equation by
a “simpler” equation, where by “simpler” we mean one for which we are able to
calculate a solution formula. Yet another approach is to obtain the desired infor-
mation about the solution directly from the differential equation itself, without the
aid of solution formulas or approximations.

Finally, in the Interpretation Step of the Modeling Cycle the mathematical
results from the Solution Step are utilized and interpreted so as to provide an
answer to the original question. The mathematical solution may not immediately
provide the answer and further use and manipulations of the solution, as well as
additional information, might be necessary.

The following examples illustrate the Modeling Cycle.

____________________________________

Example 2.1. Assume the number of bacteria in a culture grows at a constant
per capita rate. If an initial population of one thousand bacteria doubles in thirty
minutes in how many minutes will there be one million bacteria present?

____________________________________

To derive the model equations (Model Derivation Step) we let t be time mea-
sured in minutes, t = 0 be the initial time, and x = x(t) be the number of bacteria
at time t. With these symbols the given initial condition becomes x(0) = 103

and the growth rate assumption yields the differential equation x0 = px, where p
is a constant of proportionality. A formula for the solution of these equations is
x = 103ept (Model Solution Step). To answer the question (Model Interpretation
Step) we determine the time t at which x(t) = 106, i.e., we solve the equation
103ept = 106 for

t =
1

p
ln 103 =

3

p
ln 10.
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To obtain a numerical answer in minutes we need a numerical value for p. This
value is found from the stated fact that the population doubles in thirty minutes,
i.e., in symbols, from x(30) = 2× 103. Solving the resulting equation

103e30p = 2× 103

for

p =
1

30
ln 2

we obtain our final answer of

t =
90

ln 2
ln 10

or approximately 298.97 minutes.

____________________________________

Example 2.2. A chemical pesticide is applied to a stand of trees. This pesticide
is absorbed into the tissues of the trees and, because of the natural exchange of
material between the trees and the soil, the pesticide is transferred from the soil to
the trees and vice versa. Assume these transitions take place at a per unit (pesticide)
rate of 2 per year. In addition, the pesticide decomposes in the soil at a per unit rate
of 3 per year. No amount of pesticide is initially present in the soil at which time
a pesticide dosage of d > 0 units is applied to the trees. Determine the maximum
amount of pesticide that will occur in the soil and the time at which this maximum
occurs. In the long run what fraction of the pesticide is in the soil?

____________________________________

Trees Soil

x = amount of pesticide y = amount of pesticide

2x

2y

3y

Figure 2.2

As part of the Model Derivation Step we consider two compartments: trees
and soil. Let x = x(t) denote the amount of pesticide in the trees at time t and
let y = y(t) denote the amount in the soil. The “compartmental diagram” in Fig.
2.2 shows how the pesticide moves between the two compartments. According to
the stated assumptions, the outflow rate from the trees to the soil is 2x (units of
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pesticide per year) and the inflow rate is 2y. The balance equation (2.1) yields the
differential equation

(2.2) x0 = 2y − 2x.

The flow-rate into the soil is 2x. There are two outflow rates from the soil, the
absorption rate 2y into the trees and the decomposition rate 3y, yielding a total
outflow rate from the tree compartment of 5y. The balance equation (2.1) yields
the differential equation

(2.3) y0 = 2x− 5y.

Together these equations form a system of two first order linear differential equa-
tions for the two unknowns x and y. These unknowns are subject to the given
initial conditions

(2.4) x(0) = d, y(0) = 0.

As part of the Model Solution Step, we begin with some approximate solutions
of these equations, which we use to form some tentative answers to the questions.
Fig. 2.3 shows some computer drawn plots of the y = y(t) component of the solution
for a selection of initial doses d. In Fig. 2.4 the fraction of pesticide in the soil,
y/(x+ y), is plotted for each of these cases.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

 t  

y

Figure 2.3 The amount of pesticide in the soil, y(t), is plotted
as a function of time t for initial doses d = 1, 2, 3, 4, 5. The maxi-
mum of y occurs at approximately t = 1/3 year and appears to be
independent of the initial dose.

A visual inspection of these graphs suggests the following conclusions. The
maximum amount of pesticide occurring in the soil is proportion to the initial
dosage (i.e. if d is doubled, tripled, etc. the maximum amount is doubled, tripled,
etc.). On the other hand, the time at which the maximum occurs is independent of
the initial dosage d and is approximately equal to 1/3 year. The graph in Fig. 2.3
suggests the fraction of pesticide in the soil approaches approximately 1/3 as time
goes on, i.e.,

lim
t→+∞

y(t)

x(t) + y(t)
=
1

3
.
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These conjectures are formulated from the plots shown in Fig. 2.3 and 2.4 (which
were obtained from computer generated approximations to the solution of the dif-
ferential equations).

0.5 1.0 1.5

0.1

0.2

0.3

0.4

 t  

y/(x+y)

Figure 2.4 The fraction of pesticide in the soil y/(x+ y) is plot-
ted as a function of time for initial doses d = 1, 2, 3, 4, 5. The
result, which is the same for all doses, shows an increase from 0 to
approximately 1/3.

It turns out there are formulas for the solution of the system of differential
equations (2.2)-(2.3) and the initial conditions (2.4), namely

x (t) = d

µ
1

5
e−6t +

4

5
e−t
¶

y (t) = d

µ
2

5
e−t − 2

5
e−6t

¶
.

(See Exercise 2.19 in Chapter 5.) From these formulas we can obtain more accurate
and general answers to our questions than we can get from computer experiments.

For example, using calculus methods we find the maximum of y(t) to occur at
t = (ln 6) /5, the root of the derivative

y0(t) = −2
5
e−t +

12

5
e−6t.

Our conjecture was accurate, since (ln 6) /5 = 0.35835 ≈ 1/3. Our conjecture that
the maximum is proportional to d was also correct, as we see from the calculation

y

µ
1

5
ln 6

¶
=
1

3
6−1/5d ≈ 0.2329d.

Finally, we calculate the long term fraction of pesticide in the soil by taking the
limit

lim
t→+∞

y(t)

x(t) + y(t)
= lim

t→+∞
2
1− e−5t

6− e−5t
=
1

3
.

This also agrees with our conjecture.
It is important to remember that mathematical models are built from assump-

tions. Thus, models take the form of “what if” questions: what are the logical
conclusions if the assumptions are valid? The assumptions state not only which
laws and principles are used in the model, but also (by exclusion) what phenomena
and mechanisms are ignored. Some effects are small (relative to those included in
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the model) and can presumably be safely excluded while still obtaining useful and
accurate answers. For example, in some circumstances friction may be negligible
compared to other forces acting on an object in motion. However, if the predictions
of the model turn out to be unacceptably inaccurate and if this is due to frictional
forces, then one must return to the derivation step, include frictional forces in the
model and derive new mathematical equations. Usually this cycle results in more
complicated equations to solve, and thus there is a relentless trade-off between the
accuracy or “realism” of models and their mathematical tractability.

Here is an illustration. In a laboratory experiment an object was dropped and
left to fall vertically to the ground under the influence of gravity. We would like a
model that predicts the distance fallen x = x(t) at each instant of time t > 0. In
the Model Derivation Step we assume Newton’s Law of Motion F = ma. We also
assume that near the surface of the earth objects fall with constant acceleration g
(this is an approximation to another gravitational law of Newton). This constant is
known to be approximately g = 9.8 m/sec2 (32 ft/sec2). Under these assumptions
we have F = mg = mv0, where v = x0 is the object’s velocity, and the mathematical
model becomes, after the cancellation of a factor m,

v0 = 9.8, v(0) = 0.

The initial condition v(0) = 0 results from the object being dropped (i.e., it is
not given any initial velocity). We can carry out the Model Solution Step in this
example by performing a straightforward integration of v0 = 9.8. The result, when
v(0) = 0 is taken into account, is the solution formula v(t) = 9.8t. Since x0 = v
this formula for v implies x(t) = 4.9t2. (The constant of integration is 0 because at
the initial instant the distance fallen equals 0, i.e., x(0) = 0). This formula predicts
the distance fallen at each time t > 0. For example, it predicts the object falls 4.9
meters in t = 1 second and 4(2)2 = 19.6 meters in t = 2 seconds.

To test the accuracy of the model, its predictions can be compared to obser-
vational data obtained from the experiment. In the experiment it turned out that
the object fell 0.61 meter in t = 0.347 second and 7.0 meters in t = 1.501 seconds.
The model prediction x(0.347) = 4.9(0.347)2 = 0.59 for t = 0.347 is fairly accurate,
making an error of approximately 3%. However, at t = 1.501 seconds the model
predicts x(1.501) = 4.9(1.501)2 = 11.04 meters whereas the object actually fell only
7 meters, an error of over 50%. The Model Interpretation Step reveals a deficiency.
To obtain more accurate predictions we reconsider the model and its derivation
(Model Modification Step).

The falling object in the experiment, it turns out, was a shuttlecock used in
the game of badminton. A shuttlecock is a designed to experience considerable air
resistance (it is essentially a small ball with a comet-like tail of feathers). Therefore,
in addition to gravity, the force of friction should be included in the total force F
acting on the shuttlecock. To do this requires a modeling assumption about how
friction acts on the shuttlecock.

Since friction is related to the motion of the shuttlecock, the force due to friction
is a function of the velocity v. This function equals 0 when v = 0 (there is no friction
when the shuttlecock is at rest) and increases as v increases (friction increases as
velocity increases). A simple relationship of this kind is direct proportionality, i.e.,
the force due to friction equals −kv for a constant k of proportionality. (We assume
k > 0 and the minus sign occurs because friction works against the motion of the
object). The constant k is called the “coefficient of friction”. Under this assumption
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we have F = mg− kv. and Newton’s Law F = ma lead to the modified model and
differential equation mg − kv = mv0 for the object’s velocity. After dividing by m
and letting g = 9.8, we obtain the differential equation

v0 = 9.8− k0v.

Here k0 stands for k/m (the per unit mass coefficient of friction).
In order to make numerical predictions, k0 needs to be assigned a numerical

value. Data yields an estimated value of k0 = 1.128 (see Sec. 6.2, Chapter 3). This
yields the equations

(2.5) v0 = 9.8− 1.128v, v(0) = 0

for the velocity v of the falling shuttlecock. After these equations are solved (either
by formula or approximation), the distance fallen is found by integrating v, i.e.,
x =

R t
0
vdt.

It turns out that this modified model, with friction included, makes more accu-
rate predictions at later times than the original model without the frictional force
does. For example, x(1.501) = 6.75 meters, an error of only 3.5%.

For more details about this application see Sec. 6.2, Chapter 3.
Mathematical books naturally focus on the Solution Step of the Modeling Cy-

cle. In this book we will study methods for approximating solutions of differential
equations (graphically, numerically and analytically), methods for obtaining solu-
tion formulas, and methods for analyzing properties of solution. Throughout the
book we will, however, use model equations arising from applications to illustrate
these methods.

EXERCISES

In the exercises below you are asked to derive differential equations for unknown
functions and, in some cases, initial conditions for the equations. Except when
explicitly asked to do so, do not solve the equations.

Exercise 2.1. Suppose the balance in a savings account grows, at each instant
of time, at a rate proportional to the balance present at that time. (This is called
“continuous compounding”.) Suppose an initial deposit of d dollars is made.

(a) Write a differential equation and initial condition for the balance x = x(t)
as a function of time t.

(b) Suppose withdrawals are made at a constant rate w. Write a differential
equation and initial condition for the balance x = x(t) as a function of time t.

Exercise 2.2. Samples of radioactive isotopes decay at a rate proportional to
the amount present. Suppose an initial amount x0 is present.

(a) Write a differential equation and initial condition for the amount of ra-
dioactive isotope x = x(t) present at time t.

(b) Suppose an amount of radioactive material is added at a constant rate a.
Write a differential equation and initial condition for the amount of radioactive
isotope x = x(t) present at time t.

Exercise 2.3. A container holds a volume v of fluid. Suppose a fluid is pumped
into the container at a rate d > 0 (volume per unit time) and is rapidly mixed. To
keep the volume constant at v, the well mixed fluid is pumped out at a rate d.
Suppose the incoming fluid contains a concentration cin of a chemical substrate,
which is initially absent.
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(a) Write a differential equation and initial condition for the concentration
c = c(t) of the substrate in the container at time t.

(b) An enzyme is added to the container in such a way that its concentration e
is held constant. Suppose this enzyme reacts with the substrate at a rate (per unit
volume) jointly proportional to both concentrations. Write a differential equation
and initial condition for the concentration c = c(t).

Exercise 2.4. (a) Write a differential equation and initial condition for the
velocity of a dropped shuttlecock under the assumption that the force of friction is
proportional to the square of its velocity.

(b) Show

v(t) =

r
9.8

k0

1− exp
¡
−2t
√
9.8k0

¢
1 + exp

¡
−2t
√
9.8k0

¢
solves the equations in (a) where k0 is the per unit mass coefficient of friction.

(c) Show v(t) has a limit as t → +∞. What does this mean about the motion
of the falling shuttlecock?

Exercise 2.5. Suppose a population has a constant per unit death rate d > 0
and a constant per unit birth rate b > 0.

(a) Using the inflow-outflow rule (2.1), write a differential equation for the
population concentration x(t).

(b) Suppose the per unit death rate d is not constant, but is instead propor-
tional to population concentration. Write a differential equation for the population
concentration x(t).

Exercise 2.6. Suppose a population has a constant per unit death rate d > 0
and a per unit birth rate that is proportional to population concentration x (with
constant of proportionality denoted by a > 0). Using the inflow-outflow rule (2.1),
write a differential equation for the population concentration x(t).

Exercise 2.7. A basic model of the growth of a tumor is based upon the assump-
tion that the per unit volume growth rate of the tumor decreases exponentially with
time (i.e. proportionally to an exponential of the form e−bt for a constant b > 0).
Assume the tumor initially has volume v0 > 0. Write a differential equation and
initial condition for the tumor volume v = v(t) as a function of time.

Exercise 2.8. Assume a population with constant per unit birth and death
rates b and d is subjected to an influx of immigrants at a constant rate I (not a
per unit rate, but a constant rate!). Write a differential equation for the size of the
population.

Exercise 2.9. Newton’s Law of Cooling states that the rate at which a body
cools is proportional to the difference in temperature between the body and its sur-
rounding environment. Write a differential equation for the temperature of the
body.

Exercise 2.10. Modify the system of equations for the tree and soil compart-
mental Example 2.2 to account for the application of pesticide to the trees continu-
ously at a constant rate p. Assume initially there is no pesticide in either the trees
or the soil.

Exercise 2.11. Suppose two distinct cultural groups live in the same city. Each
grows at a rate proportional to its numbers. However, each group loses population
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numbers at a rate proportional to the size of the other (since the two groups do
not get along). Write a compartmental model (two differential equations) for the
rate of change of each group’s size. Is the system of differential equations linear or
nonlinear?

Exercise 2.12. Consider two populations that grow exponentially in the ab-
sence of the other (i.e. their per unit birth and death rates are constants). When
placed together in a common habitat the two populations compete for a vital resource.
Because of this competition each population’s per unit death rate is increased, but
the per unit birth rates remain constant. Specifically, assume each population’s per
capita death rate is proportional to the other population’s density. Write down a
system of differential equations for the population densities x and y of each pop-
ulation. Is the system linear or nonlinear? (This model is a famous system in
theoretical ecology called the Lotka-Volterra Competition Model.)

Exercise 2.13. A salt water concentration of 2 lbs per gallon is added to a 150
gallon tank full of initially pure water at a rate of 5 gallons per minute. Suppose
the mixture is well-stirred so that the tank always has a uniform concentration of
salt throughout. The well-stirred mixture is drained out the bottom of the tank at a
rate of 5 gallons per minute (so that the tank remains full at 150 gallons). Write a
differential equation for the number of lbs of salt in the tank. Is the equation linear
or nonlinear?

Exercise 2.14. Suppose a container initially contains an amount x0 > 0 of a
chemical substance. Suppose the chemical flows into the container at a constant rate
r > 0 and flows out at a rate proportional to the elapsed time (with proportionality
constant k > 0).

(a) Using the inflow-outflow rule (2.1) write a differential equation for the
amount of the chemical x = x(t) as a function of time t. Is the equation linear or
nonlinear?

(b) Obtain a formula for the solution x.
(c) Show the amount of the chemical in the container initially increases to a

maximum level xm at a time tm > 0 before decreasing to 0 in a finite amount of
time tf . Find formulas for xm, tm, and tf .

Exercise 2.15. Write a differential equation and initial condition for the con-
centration x = x(t) of a population under the following assumptions: the initial
population concentration is x0; the birth rate is proportional to population concen-
tration; the death rate is proportional to the square of population concentration; and
the population is harvested at a constant rate h > 0. Is the differential equation
linear or nonlinear?

Exercise 2.16. Suppose a drug is to be injected into the blood of a patient.
Consider the circulatory system as one compartment and all of the tissues that serve
to eliminate the drug from the circulatory system (such as the kidney) as another
compartment. Let x and y be the mass of the drug in these two compartments
respectively. Suppose the rate at which the drug flows out of a compartment (and
into the other) is proportional to the mass present in the compartment. Also assume
the drug is removed from a compartment, through elimination or degradation, at
a rate that is proportional to the amount of mass in the compartment. Finally,
assume no drug is present in the patient until an initial injection of amount x0 > 0
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is given into the blood stream (after which no further drug is added to the system).
Using the inflow-outflow rule (2.1) write differential equations and initial conditions
for x = x(t) and y = y(t).

Exercise 2.17. A manufactured item is given an initial set price of p0. How-
ever, as supply and demand for the item changes with time t, so does the price
p = p(t). To complicate matters, the supply and demand in turn depend on the
price. Write a differential equation for the price p under the following assump-
tions: the rate of change of the price p is proportional to the difference between
the supply s and demand d (price increases if demand exceeds supply); the supply s
is proportional to the price (if the price goes up the supply goes up proportionally);
and the demand d is inversely proportional to the price. Is the equation linear or
nonlinear?

Exercise 2.18. Consider two armies engaged in a battle. Let x and y rep-
resent the strengths of the two armies (measured, for example, as the number of
troops and/or armaments). Assume the strength of each army decreases at a rate
proportional to the strength of the other army. In addition, each army receives re-
inforcements at a constant rate. Write differential equations for x and y. Are these
equations linear or nonlinear?

Exercise 2.19. Pure water is pumped into a tank of volume V (liters) initially
filled with salt water. Suppose the pure water is pumped in at a rate of r liters per
hour and the well-stirred salt water mixture is pumped out at the same rate (so that
the volume in the tank remains constant at V ).

(a) Write a differential equation for the salt concentration x = x(t) in the tank
as a function of time t.

(b) If the water pumped into the tank is not pure, but instead has a salt con-
centration of s grams/liter, modify your equation in (a) accordingly.

Exercise 2.20. In biology, allometry is the study of the relative size and growth
of different parts of an organism. Suppose x = x(t) and y = y(t) are measures of
the sizes of two different parts of a particular organism as functions of time. A
simple model of allometry is based on the assumption that the per unit growth rates
of the different parts are proportional to each other. Treating y as a function of x,
derive a differential equation for y. Is this equation linear or nonlinear?

Exercise 2.21. The birth rate of a population is proportional to its size x =
x(t) with constant of proportionality b > 0. The death rate of the population is
proportional the population size of a deadly virus y = y(t) with constant of propor-
tionality c > 0. The virus population has a negative per unit growth rate −r.

(a) Write a differential equation and initial condition for the population sizes
x = x(t) and y = y(t), assuming initial sizes of x0 and y0.

(b) Show

x =

µ
x0 −

c

r + b
y0

¶
ebt +

c

r + b
y0e
−rt, y = y0e

−rt

solve the differential equations you obtained in (a).
(c) Only positive values of x and y are of relevance. Keeping this in mind

describe what happens to x as t→ +∞ and explain the implications with regard to
the survival of the population x.





CHAPTER 1

First Order Equations

In this Chapter we consider first order differential equations of the form

x0 = f(t, x).

A fundamental question concerns the existence of solutions to such an equation.
Under what conditions (i.e., for what kind of expressions f(t, x)) can we be assured
that solutions exist? Another question concerns the number of solutions. We
know from calculus that integration problems have infinitely many solutions and,
therefore, we anticipate that this is also true for a first order differential equation.
On the other hand, in applications there are often requirements (in addition to the
differential equation) that serve to select exactly one solution. For a first order
differential equation the most common requirement is that the solution x(t) equal
a specified value x0 for a specified value of t, that is to say, that x(t0) = x0 for
a given t0 and x0. A fundamental mathematical question is whether the resulting
initial value problem

x0 = f(t, x), x(t0) = x0

has a solution. In this chapter we learn conditions which, when placed on f(t, x),
guarantee that this initial value problem has one and only one solution (i.e., has a
“unique” solution).

For specialized equations (i.e., for f(t, x) with special properties) one can calcu-
late formulas for solutions. We study some examples in Chapters 2 and 3. However,
for most differential equations it is not possible to find solution formulas. Nonethe-
less, it is possible to obtain useful approximations to solutions of any first order
equation, especially with the aid of a computer. In this chapter we study some
basic methods for approximating solutions, both graphically and quantitatively. In
applications these methods are often sufficient to obtain the desired answers. Other
approximation methods appear in Chapter 3.

1. The Fundamental Existence Theorem

We begin with a definition.

Definition 1.1. A solution of a differential equation x0 = f(t, x) on an in-
terval a < t < b is a differentiable function x = x(t) that reduces the equation to an
identity on the interval, i.e., x0(t) = f(t, x(t)) for all values of t from the interval.1

The interval a < t < b may be the whole real line, in which case we say the function
is a solution for all t.

1As a mathematical function f(t, x) has a domain of t and x values. It is assumed, in this
definition, that all values of t taken from the interval a < t < b and the corresponding values of
x(t) (i.e., the range of the function x(t)) lie in the domain of f . Otherwise f(t, x(t)) makes no
sense.

25
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For the differential equation

(1.1) x0 = t2

we have f(t, x) = t2. The function x(t) = t3/3+ 1 is a solution of this equation for
all t because x0(t) = t2 equals f(t, x(t)) = t2 for all t.

More generally, the unknown x might appear in f(t, x). For example, for the
equation x0 = tx we have f(t, x) = tx. The function x(t) = et

2/2 is a solution of this
equation for all t because x0(t) = tet

2/2 and f(t, x(t)) = tx(t) = tet
2/2 are identical

for all t.
From calculus we know the differential equation (1.1) has infinitely many solu-

tions and the set of all solutions is given by the formula

(1.2) x =
1

3
t3 + c

where c is an arbitrary constant. This is an example of a “general solution” of a
differential equation.

Definition 1.2. The collection of all solutions of the differential equation x0 =
f(t, x) is called the general solution (or the solution set).

An initial condition x(t0) = x0 selects a particular solution from the general
solution. For example, suppose we require that a solution of the equation (1.1)
satisfy the initial condition x(0) = 1. From the general solution (1.2) we obtain
x(0) = c and therefore this initial condition is satisfied by choosing (and only by
choosing) c = 1. That is to say, there is a unique solution of the initial value
problem

x0 = t2, x(0) = 1

namely, x = t3/3 + 1.
In an initial value problem the “initial” time need not be t0 = 0. For example,

we can use the general solution (1.2) to find the unique solution

x(t) =
1

3
t3 − 11

3
of the initial value problem

x0 = t2, x(2) = −1.
In fact, we can solve the general initial value problem

x0 = t2, x(t0) = x0.

using the general solution (1.2) by setting

x(t0) =
1

3
t30 + c

equal to the desired initial value x0 and solving for

c = x0 −
1

3
t30.

This results in the unique solution

x(t) =
1

3
t3 + x0 −

1

3
t30.
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____________________________________

Example 1.1. A differential equation for the velocity v = v(t) of a falling
object subject to the force of gravity and air resistance is v0 = f(t, v) where f(t, v) =
g − k0v. Here g and k0 are constants (the acceleration due to gravity and the per
unit mass coefficient of friction respectively). The function

x(t) = e−kot +
g

k0

is a solution for all t. To see this note

x0(t) = −k0e−k0t

is equal to
f(t, x(t)) = g − k0

¡
e−kot + g/k0

¢
for all t.

For any constant c the function

x(t) = ce−kot +
g

k0

is also solution for all t since

x0(t) = −k0ce−k0t

is equal to

f(t, x(t)) = g − k0

µ
ce−kot +

g

k0

¶
for all t. In Chapter 2 it is shown that this formula is in fact the general solution.

The solution satisfying the initial condition v(0) = 0 (which describes an object
that is initially dropped) is found from the general solution by solving

x(0) = c+
g

k0
= 0

for

c = − g

k0
.

This yields the solution

x(t) = − g

k0
e−kot +

g

k0
.

____________________________________

In applications solutions are not always defined for all t. Here is an example.

____________________________________

Example 1.2. An equation describing the growth of the world’s human popu-
lation x(t) in billions as a function of time t (in years) is

x0 = kxp+1

where k > 0 and p > 0 are positive constants estimated from data (see Chapter 3,
Sec. 6.) The function

x(t) =
1

(1− pkt)
1
p
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is defined on the interval t < 1/pk. (The denominator vanishes at t = 1/pk.) This
function is a solution for t < 1/pk since

x0(t) = k
1

(1− pkt)
p+1
p

and

f(t, x(t)) = k

Ã
1

(1− pkt)
1
p

!p+1

= k
1

(1− pkt)
p+1
p

are identically equal for all t < 1/pk.
Similar calculations show the function

x(t) =
x0

(1− pkxp0t)
1
p

is a solution on the interval t < 1/pkxp0 for any constant x0 > 0. This solution
satisfies the initial condition x(0) = x0.

____________________________________

A formula for the general solution of an equation x0 = f(t, x) cannot always be
found. The right hand side of the equation f(t, x) involves the unknown solution x
and therefore is not a known function of t that we can integrate. Nonetheless, the
initial value problem

(1.3) x0 = f(t, x), x(t0) = x0

has one and only one solution under appropriate conditions placed on f(t, x) as
a function of t and x. The derivative of f(t, x) with respect to x is denoted by
∂f(t, x)/∂x (and called the “partial derivative” of f with respect to x).

Theorem 1.1. (Fundamental Existence and Uniqueness Theorem) Sup-
pose f(t, x) and its derivative ∂f(t, x)/∂x with respect to x are continuous for x
near x0 and t near t0

2. Then the initial value problem (1.3) has a solution on
an interval containing t0. Moreover, there is no other solution of the initial value
problem on this interval.

For example, consider the initial value problem

x0 = tx, x(0) =
1

2
.

The function
f(t, x) = tx

and its derivative
∂f(t, x)

∂x
= t,

are continuous for all x and t (and therefore, certainly for x near x0 = 1/2 and t
near t0 = 0). Therefore, by Theorem 1.1 this initial value problem has a unique
solution on an interval containing t0 = 0. (From the formula x(t) = et

2/2/2 for the

2By “continuous for x near x0” we mean continuous on an interval a < x0 < b containing x0.
Similarly, by “continuous for t near t0” we mean continuous on an interval c < t0 < d containing
t0.
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solution it is seen that the solution is defined for all t, a fact not obtainable from
Theorem 1.1.)

____________________________________

Example 1.3. An initial value problem describing the growth of a population
in a periodically fluctuating environment is

x0 = rx

µ
1− x

K + a sin t

¶
, x(0) = x0

where x0 is the initial population size and r, K and a < K are positive constants.
Since the denominator never vanishes the function

f(t, x) = r

µ
x− x2

K + a sin t

¶
and its derivative with respect to x

∂f(t, x)

∂x
= r

µ
1− 2 x

K + a sin t

¶
are continuous for all x and t. Therefore, the initial value problem has a unique
solution on an interval containing t0 = 0. No algebraic formula is available for the
general solution of this equation, nor for the solution of initial value problems.

____________________________________

If one or both of the conditions on f(t, x) in the existence and uniqueness
Theorem 1.1 fail to hold, then one can draw no conclusions from this theorem.
In particular, one cannot conclude in this case that there is not a solution. For
example, for the initial value problem

(1.4) x0 = x1/3, x(0) = 0

the function
f(t, x) = x1/3

fails to satisfy the conditions in Theorem 1.1 because the derivative

∂f(t, x)

∂x
=
1

3
x−2/3,

is not continuous at x0 = 0 (it is not even defined there). Yet this initial value
problem does have a solution: x(t) = 0. For an example of an initial value problem
that has no solution see Exercise 1.25.

The initial value problem (1.4) also provides an example of non-uniqueness
since x(t) = 0 and

x(t) =

µ
2

3
t

¶3/2
are two different solutions. This does not contradict Theorem 1.1 because the
theorem does not apply to this initial value problem.

The Fundamental Existence and Uniqueness Theorem 1.1 provides criteria un-
der which an initial value problem has a solution on an interval containing the initial
point t = t0. The maximal interval of the solution is the largest interval containing
t0 on which it solves the differential equation. Theorem 1.1 gives no information
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about the maximal interval of a solution. In fact, without a solution formula it
is usually difficult to determine the maximal interval. The function f(t, x) may
satisfy the criteria of Theorem 1.1 for all values of t and x and yet solutions may
not be defined for all t.

____________________________________

Example 1.4. Consider the initial value problem

x0 = 2tx2, x(0) = 1.

The function
f(t, x) = 2tx2

and its derivative
∂f(t, x)

∂x
= 4tx

are continuous for all x and t. Theorem 1.1 implies there exists a unique solution
on an interval containing t0 = 0. The solution formula

x(t) =
1

1− t2

shows the maximal interval is −1 < t < 1. See Fig. 1.1.
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Figure 1.1 The solution of the initial value problem x0 = 2tx2,
x(0) = 1 has vertical asymptotes at t = ±1.

____________________________________

The importance of the interval of existence of a solution can sometimes be
overlooked. Here is an example.

____________________________________

Example 1.5. A popular computer program gives the formula x(t) = sin t for
the solution of the initial value problem

x0 =
p
1− x2, x(0) = 0

without indicating the solution interval. Since sin t is defined for all t, the implica-
tion is that sin t is a solution for all t. This is false, however, since

x0(t) = cos t
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and
f(t, x(t)) =

p
1− sin2 t

are equal only on intervals where cos t is positive. Thus, the formula x(t) = sin t
defines a solution on the interval −π/2 < t < π/2, but on no larger interval con-
taining t0 = 0. (However, this interval is not the maximal interval of the solution
of the initial value problem! See Exercise 1.26.)

EXERCISES
Find the general solution of the following differential equations.

Exercise 1.1. x0 = 1 + t2

Exercise 1.2. x0 = cosπt

Exercise 1.3. x0 = e2t

Exercise 1.4. x0 = te−t

____________________________________

Find the unique solution of the following initial value problems.

Exercise 1.5. x0 = t2, x(1) = 2

Exercise 1.6. x0 = e−3t, x(0) = 1

Exercise 1.7. x0 = te−t, x(0) = 1

Exercise 1.8. x0 = sin 3t, x
¡
π
6

¢
= 0

____________________________________

For which initial value problems can the Fundamental Existence and Unique-
ness Theorem 1.1 be applied? Explain your answer. In each case, what do you
conclude from this theorem?

Exercise 1.9. x0 = t2 + x2, x(0) = 0

Exercise 1.10. x0 = t2

x2 , x(0) = 0

Exercise 1.11. x0 = tanx, x
¡
π
2

¢
= 0

Exercise 1.12. x0 = tanx, x(0) = 0

Exercise 1.13. x0 = tanx, x(0) = π
2

Exercise 1.14. x0 = ln(tx), x(1) = 2

Exercise 1.15. x0 = 1
sinx , x(0) =

π
2

Exercise 1.16. x0 = 1
t−x , x(−1) = 2

____________________________________
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For what values of the constant a can the Fundamental Existence and Unique-
ness Theorem 1.1 be applied to the initial value problems below? Explain your
answer. What do you conclude from this theorem for such values of a? What do
you conclude from this theorem for other values of a?

Exercise 1.17. x0 = ln (a− x), x(0) = 0

Exercise 1.18. x0 = tan ax, x(0) = π
2

Exercise 1.19. x0 =
√
a2 − x2, x(1) = 2

Exercise 1.20. x0 = 1
a−x , x(1) = 2

____________________________________

For which t0 and x0 does the Fundamental Existence and Uniqueness Theorem
1.1 apply to the initial value problem x0 = f(t, x), x(t0) = x0, with the functions
f(t, x) below? Explain your answer. What do you conclude from this theorem
for such initial points? What do you conclude from this theorem for other initial
points?

Exercise 1.21. f = ln
¡
t2 + x2

¢
Exercise 1.22. f = t2

x

Exercise 1.23. f = tan bx, b = constant

Exercise 1.24. f =
√
t2 + x2 − b2, 0 < b = constant

____________________________________

Exercise 1.25. Consider the initial value problem x0 = f(t, x), x(0) = 0 where

f(t, x) =

½
1, for t ≥ 0 and all x
−1, for t < 0 and all x.

(a) Show the existence and uniqueness Theorem 1.1 does not apply. What do
you conclude?

(b) Show this initial value problem does not have a solution on any interval
containing t0 = 0.

Exercise 1.26. Consider the equation x0 =
√
1− x2.

(a) Show the constant functions x(t) = 1 and x(t) = −1 are solutions for all t.
(b) Show the function

x(t) =

⎧⎨⎩ 1 for t ≥ π
2

sin t −π
2 < t < π

2
−1 for t ≤ −π

2

is a solution for all t. Thus, the maximal interval for the solution of the initial
value problem x(0) = 0 is the whole real line.

(c) The solution x(t) = 1 and the solution in (b) both satisfy the same initial
value problem x(π/2) = 1 for all t. Why does this not contradict Theorem 1.1?
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2. Approximation of Solutions

Formulas for solutions of differential equations are not in general available. For
this reason we need other methods for studying equations and their solutions. For
some applications it is sufficient to obtain approximations to solutions. For example,
roughly sketched graphs of solutions are sometimes adequate. In other applications,
more accurate graphs or even numerical approximations are necessary. One can also
obtain algebraic formulas for approximations to solutions. In this section we study
some graphical and numerical approximation methods. Analytic approximation
methods are studied in Chapter 3. We begin with a procedure for making sketches
of solution graphs.

2.1. Slope Fields. From algebra and calculus we learn that graphs are a
useful way to study functions. The derivative of a function is the slope of its graph.
A differential equation therefore tells us something about the slopes of the graphs
of its solutions.

Specifically, if the graph of a solution x = x(t) of

(2.1) x0 = f(t, x)

passes through a point (t, x), then the slope x0(t) of its graph at this point equals
f(t, x(t)). In other words, each point (t, x) in the domain of f is associated with a
slope equal to the number f(t, x).

For example, the graph of a solution of x0 = t2+x2 that passes through the point
(t, x) = (1, 1) necessarily has slope 12+12 = 2 at this point. Similarly, the solution
whose graph passes through the point (−2, 1/3) must have slope (−2)2 + (1/3)2 =
37/9 at this point.

The association of a slope f(t, x) with each point (t, x) defines the slope field of
the differential equation (2.1). Solutions of differential equation must “fit” its slope
field. This means at each point on a solution’s graph the slope (of the tangent)
must equal the slope associated with that point.

One way to obtain a picture of a slope field is to draw, through each of several
points in the (t, x)-plane, a short straight line segment that has the slope associated
with that point. By drawing such line segments through a sufficient number of
points in the plane, we can get a good approximation to the overall slope field and
hence the graphs of solutions.

Rather than randomly choosing points in the plane, it is better to proceed in a
systematic manner. We discuss two ways to do this: the “grid” and the “isocline”
methods. The grid method is particularly well suited for computer use. The isocline
method is sometimes a convenient way to obtain a sketch of the slope field by hand.

THE GRID METHOD

One way to approximate a slope field is to draw a short line segment with the
appropriate slope at points lying on a rectangular grid in the (t, x)-plane. This
grid method can be done by hand; however, most computer programs that “solve”
differential equations will also draw slope fields using this “grid” method and display
the results graphically.

When sketching a slope field by the grid method, one must chose a grid fine
enough so that the essential features of the slope field are apparent, but coarse
enough so as not to be visually cluttered. It usually takes a several attempts to
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find a suitable gird size. Sample slope fields for several differential equations, drawn
using the grid method, appear in Fig. 2.1.
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Figure 2.1. Slope fields are shown for four different differential
equations.

-2 -1 1 2

-2

-1

1

2

t 

x

Figure 2.2 The slope field for x0 = x and the solution satisfying
the initial condition x(0) = 1.
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One can sketch the solution graph of an initial value problem x(t0) = x0 by
drawing a curve that both fits the slope field and passes through the point (t0, x0).
Such a sketch can often suggest important properties of solutions. For example, the
slope field and solution sketched in Fig. 2.2 suggest that the solution is monoton-
ically increasing without bound as t → +∞ and that the x-axis is a horizontal
asymptote as t→ −∞.

The next example shows how a slope field can yield important general properties
of solutions.

____________________________________

Example 2.1. Fig. 2.3 shows the slope fields of the logistic equation

x0 = rx
³
1− x

K

´
for several choices of the parameters r and K. These slope fields, together with
the sample solution graphs, suggest that solutions with positive initial conditions
x(0) = x0 < K tend monotonically to a horizontal asymptote at x = K as t→ +∞.
This important fact about the logistic equation will be proved in Chapter 3. Note
that x(t) = K is a solution.
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(a) r = 1, K = 1 (b) r = 0.5, K = 20
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(c) r = 0.1, K = 0.5

Figure 2.3. Selected slope fields and solutions for the logistic
equation x0 = r (1− x/K)x.
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THE ISOCLINE METHOD

In Fig. 2.3 it is interesting to note that the points lying on a horizontal straight
line appear to be associated with the same slope. The reason for this is that f(t, x)
= rx(1 − x/K), and hence the slope at a point (t, x), does not depend on t.This
observation in fact applies to any equation whose right hand side f does not depend
on the independent variable t, i.e. to any so-called “autonomous” equation (Chapter
3).

A curve all of whose points are associated with the same slopes in the slope
field of a differential equation is called an isocline. (“iso” means “same” and “cline”
means “slope” .) The isoclines of an autonomous equation x0 = f(x) are horizontal
straight lines. Points on a horizontal line x = a are associated with slope f(a). This
fact can be a useful aid in sketching the slope field of an autonomous equation. Fig.
2.4 shows a sketch of the slope field for the equation x0 = x(1− x) obtained using
this isocline method.
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Figure 2.4. Some isoclines for x0 = x (1− x) are shown.

The concept of an isocline is not restricted to autonomous equations. For
any equation x0 = f(t, x) we can find isoclines by determining those points in the
plane that are associated with a common slope m. These points satisfy the isocline
equation

f(t, x) = m.

The graph of this equation is, in general, a curve in the plane called the isocline
associated with slope m.

For nonautonomous equations isoclines are not necessarily horizontal lines. If
they can be conveniently graphed, isoclines can be used to sketch slope fields for
nonautonomous equations in the same way they were used for autonomous equa-
tions. On an isocline we draw several short line segments each having the slope
associated with that isocline. Doing this for a collection of isoclines we obtain a
sketch of the slope field. The following example illustrates the method.

____________________________________

Example 2.2. What are the isoclines associated with the equation

x0 = t2 + x2 ?
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Suppose we find the isocline associated with slope m = 1. The equation for this
isocline is t2 + x2 = 1 which we recognize as the equation the circle with radius 1
and center at the origin (0, 0). Drawing this circle and placing on it several short
line segments with slope 1, we obtain part of the slope field. This procedure can be
repeated using other slopes m. Points associated with slope m = 2 lie on the circle
of radius

√
2 while points associated with slope m = 0.25 lie on the circle of radius√

0.25 and so on. The typical isocline equation t2 + x2 = m yields the circle of
radius

√
m, provided m > 0. A “degenerate” isocline is obtained for slope m = 0,

namely the single point (0, 0). There are no isoclines associated with negative slopes
m < 0. See Fig. 2.5(a).

____________________________________

Isoclines are not necessarily easy to identify or graph. Their usefulness for slope
field sketching depends on the right hand side f(t, x) of the differential equation.
If we can easily identify and graph isoclines, then this method for drawing slope
fields is convenient. Otherwise it is not.

Caution: A common mistake is to confuse isoclines with the solution graphs.
Isoclines are not graphs of solutions. For example, compare the solution graph in
Fig. 2.5(b) to the circular isoclines in Fig. 2.5(a).
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Figure 2.6. (a) Selected circular isoclines of x0 = t2 + x2. (b)
The solution satisfying the initial condition x(0) = 0.

EXERCISES
Use a computer to obtain sketches of the slope fields for the differential equa-

tions in the exercises below. Using the slope field, sketch (by hand) the graph of
the solutions satisfying each of the given initial conditions.

Exercise 2.1. x0 = 1− x
x(0) = 3, x(0) = 0, x(−1) = 2

Exercise 2.2. x0 = 2− 3x
x(0) = 1, x(0) = 2

3 , x(0) = −1

Exercise 2.3. x0 = 1− x2

x(0) = −1, x(−2) = 1, x(0) = 0, x(1) = 1.2
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Exercise 2.4. x0 = x
³
1− x

2+cos t

´
x(0) = 0, x(0) = 1, x(0) = −0.1, x(−2) = 2

Exercise 2.5. x0 = x cos t
x(0) = 0, x(1) = 4, x(0) = 1, x(0) = −1

Exercise 2.6. x0 = −12x+ sin t
x(0) = 0, x(0) = 1, x(−2) = −1, x(0) = −1

Exercise 2.7. x0 = x sinx
x(0) = 0, x(0) = π

2 , x(0) = −3, x(0) = 4

Exercise 2.8. x0 =
¡
1 + t2 + x2

¢−1/2
x(0) = 0, x(−1) = −1.5

Exercise 2.9. x0 = (1− x)x sin2 t
x(0) = −0.25, x(0) = 2, x(−2) = 0.5

Exercise 2.10. x0 = (1− x2) (sin t− x)
x(0) = 0, x(0) = −0.5, x(1) = 1.5, x(0) = 1

Exercise 2.11. x0 = x(1− x)(x+ 1)
x(0) = 0.5, x(0) = −0.5, x(0) = 1.5, x(0) = −1.5

____________________________________

Exercise 2.12. Consider the differential equation in Example 1.3 :

x0 = rx

µ
1− x

K + a sin t

¶
.

(a) Use a computer to sketch the slope fields of the equation in the window 0 ≤ t ≤
20, 0 ≤ x ≤ 10 for the cases below.

(i) r = 1, K = 2, a = 1

(ii) r = 1, K = 5, a = 1

(iii) r = 0.5, K = 5, a = 2

(iv) r = 0.5, K = 5, a = 4

(b) For each case in (a), use the slope field to sketch (by hand) the graphs of
the solutions satisfying the initial condition x(0) = 1.

(c) What do all the solutions graphed in (b) seem to have in common?

____________________________________

Use a computer to obtain a sketch of the slope field for the equations below.
Do this for a selection of values for the constant a. How are the slope fields for
a > 1 different from those for a < 1?

Exercise 2.13. x0 = −a+ 2x− x2

Exercise 2.14. x0 = x(x− a)(1− x)

____________________________________
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Describe (geometrically) and sketch the isoclines for the differential equations
below and use them to obtain a sketch of the slope fields.

Exercise 2.15. x0 = 1− x

Exercise 2.16. x0 = 4− 2x

Exercise 2.17. x0 =
¡
1 + t2 + x2

¢−1/2
Exercise 2.18. x0 = −x+ sin t

____________________________________

Find first order differential equations whose isoclines are as described below, if
possible. Here m denotes the slope in the field slope. If there is no such equation,
explain why.

Exercise 2.19. The family of lines x = t + m where m allowed to be any
constant.

Exercise 2.20. The family of parabolas x = t2 +m where m is allowed to be
any constant.

Exercise 2.21. The family of lines x = t + 1
m where m is allowed to be any

nonzero constant.

Exercise 2.22. The family of parabolas x = t2 + 1
m where m is allowed to be

any nonzero constant.

Exercise 2.23. The family of ellipses 2x2+3t2 = m1/3 where m is allowed to
be any positive constant.

Exercise 2.24. The family of circles x2 + t2 = 1− 2m2 where m is allowed to
be any positive constant satisfying 0 < c < 1/

√
2.
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2.2. Numerical and Graphical Approximations. Slope fields provide ap-
proximate graphs of solutions of differential equations. However, it is often desirable
to have a more accurate approximation to a solution and its graph than can be ob-
tained from a slope field. Another way to obtain an approximate graph of a solution
on an interval t0 ≤ t ≤ T is to calculate numerical approximations xi to the solution
x(ti) at t = ti where

t0 < t1 < t2 < · · · < tn−1 < tn = T.

and, in the (t, x)-plane, connect the points (t0, x0), (t1, x1),. . . , (tn, xn) by straight
line segments. See Fig. 2.6.

We want to obtain the approximations xi ≈ x (ti) in such a way that if the
number of points ti increases (and the distances between them tend to zero) then
the approximations xi become more accurate and the approximate (“broken line”)
graphs approach the (smooth) graph of the solution x = x(t).

(t0,x0)

(t2,x2)

(t3,x3)

(t4,x4)

(t1,x1)

(t5,x5)

t

x

Figure 2.6. A “broken line” approximate graph obtained from
approximations xi to the solution at ti.

In this section we study a basic method for approximating the solution of the
initial value problem

(2.2) x0 = f(t, x), x(t0) = x0

at specified values of t > t0. The method, called the Euler Algorithm, is a funda-
mental method that serves as an introduction to the numerical approximation of
solutions of differential equations. It is, however, rarely used for other than peda-
gogical reasons because it “converges” too slowly. Sec. 2.3 gives some methods that
converge more quickly (and hence are more commonly used). Nonetheless Euler’s
Algorithm, by providing a basis for understanding how solutions are numerically
approximated, is a good starting point for the study of more efficient (and hence
complicated) algorithms.

Consider the problem of approximating the solution x = x(t) of (2.2) at t =
t1 > t0. Since x(t) is a solution, we can integrate both sides of the equation
x0(t) = f(t, x(t)) from t = t0 to t = t1 to obtain

x(t1)− x(t0) =

Z t1

t0

f(t, x(t))dt
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or, using the initial condition,

(2.3) x(t1) = x0 +

Z t1

t0

f(t, x(t))dt.

The right hand side of this equation does not give a formula for x(t1) because it
involves the unknown solution x(t). However, we can use (2.3) to approximate x(t1)
by making an approximation to the integral on the right hand side. For example,
we can use integration approximation methods studied in calculus, such as the
rectangle rule, the trapezoid rule, or Simpson’s rule.

The Euler Algorithm is obtained by using the (left hand) rectangle rule to
approximate the integral :Z t1

t0

f(t, x(t))dt ≈ (t1 − t0)f(t0, x(t0)).

Defining the first step size by s0 = t1− t0 and recalling the initial condition x(t0) =
x0 we have Z t1

t0

f(t, x(t))dt ≈ s0f(t0, x0)

and consequently from (2.3) we have the approximation

x(t1) ≈ x0 + s0f(t0, x0).

Denote this approximation by x1; that is, we define x1 by

x1 = x0 + s0f(t0, x0).

To obtain an approximation x2 to the solution value x(t2) at the next point
t2 we proceed in a similar manner. Integrate both sides of the equation x0(t) =
f(t, x(t)) from t = t1 to t = t2. Using the Fundamental Theorem of Calculus,
the (left hand) rectangle rule to approximate the integral and the approximation
x1 ≈ x(t1), we obtain

x(t2) = x(t1) +

Z t2

t1

f(t, x(t))dt ≈ x1 + (t2 − t1)f(t1, x1)

We denote this approximation to the solution at t = t2 by

x2 = x1 + s1f(t1, x1), s1 = t2 − t1.

In calculating the approximation x2 we introduced two sources of error. First,
there is the error made in using the rectangle rule to approximate the integral (called
the “truncation error”) and, secondly, there is the error in using the approximation
x1 to x(t1). Together these errors account for the “accumulation error” at the
point t = t2.

If this procedure is repeated we obtain the following formulas

x0 = x0

xi+1 = xi + sif(ti, xi), si = ti+1 − ti, i = 0, 1, 2, · · ·

of the Euler Algorithm. The number xi is an approximation to the solution x = x(t)
of the initial value problem (2.2) at the point t = ti. Usually equally spaced points
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are chosen, in which case si = s for all i and the algorithm reduces to

x0 = x0(2.4)

xi+1 = xi + sf(ti, xi) for i = 0, 1, 2, · · · , n.
The common distance s is called the step size of the algorithm.

The formulas (2.4) are recursive. That is to say, one utilizes the same formula
sequentially to calculate the approximations at each of the points t1, t2, . . . tn, using
at each step the approximation made at the previous step. This makes the method
ideally suited for programming on a computer or calculator.

The accuracy of the integral approximation obtained by the rectangle rule
increases if the step size s decreases. For this reason we expect the accuracy of
the approximations obtained from the Euler Algorithm (2.4) to increase if the step
size s decreases. There is a cost for this increased accuracy, however, because
decreasing the step size s will increase the number n of steps necessary to get from
the initial condition t0 to the end point T . This means more repetitions of the
algorithm (2.4) are required, and consequently more arithmetic work is necessary
to reach the end point tn = T. (This also means more round off errors!)

____________________________________

Example 2.3. In this example we use the Euler Algorithm (2.4) to approximate
the solution x = x(t) of the initial value problem

x0 = x, x(0) = 1

at T = 1 using step size s = 0.2. The Euler algorithm (2.4) for this problem is

xi+1 = xi + sxi for i = 0, 1, 2, · · ·
with x0 = 1. Using step size s = 0.2 we need to calculate approximations at the five
points t = 0.2, 0.4, 0.6, 0.8, 1.0. The calculations are

x1 = x0 + sx0 = 1 + 0.2× 1 = 1.2
x2 = x1 + sx1 = 1.2 + 0.2× 1.2 = 1.44
x3 = x2 + sx2 = 1.44 + 0.2× 1.44 = 1.728
x4 = x3 + sx3 = 1.728 + 0.2× 1.728 = 2.0736
x5 = x4 + sx4 = 2.0736 + 0.2× 2.0736 = 2.48832.

The Euler Algorithm with step size s = 0.2 yields the approximation x(1) ≈ x5 =
2.48832.

____________________________________

How good is the approximation x5 in the previous example? More generally,
how accurate are the approximations (2.4) of the Euler Algorithm? Can we estimate
the size of the error and if not how can we have any confidence in the numerical
approximations obtained from the formulas (2.4)?

An accurate estimate of the error resulting from approximation methods such
as the Euler Algorithm is usually not possible. However, we expect the numerical
approximations will get more accurate as the step size s decreases and that they
will tend to the exact solution in the limit as s→ 0. This turns out to be true for
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the Euler Algorithm, on the solution’s interval of existence, under the assumptions
of the Fundamental Existence and Uniqueness Theorem 1.1.

One useful way to study the accuracy of the Euler Algorithm (and of other
algorithms as well) is to consider the rate at which the approximations converge
to the exact solution. The Euler Algorithm is said to be “first order” or of “order
1”. What this means is that the magnitude of the error at t = T is no larger than
constant multiple of the first power of s. That is to say, there exists a constant c > 0
such that | x(T ) − xn |≤ cs. This inequality guarantees the Euler approximations
converge to the value of the solution at least as fast as s decreases to 0. Thus,
roughly speaking, if the step size s is halved, then in general we expect the error to
be (at least) halved. If the step size is decreased by a factor of 1/10, then in general
we expect the error to decrease by a factor of 1/10 and so on. (For an example, see
Table 2.2 below.) We summarize this by saying that the Euler Algorithm is “O(s)”
(pronounced “Oh of s”).

We can gain confidence in the accuracy of numerical approximations by observ-
ing their changes as the step size s decreases. This is commonly done by decreasing
s by a fixed fraction. For example, if s is decreased by one half several times, we
expect the error to be cut in half each time. Since the approximations at a fixed
t approach the solution value x(t), the leading digits in the resulting sequence of
approximations should eventually “stabilize” (i.e., remain unchanged as s decreases
further). As a practical matter we accept these digits as correct. However, none
of these digits may be accurate, since we cannot be sure that they will remain
unchanged if the step size s decreases further.

Example 2.4. In this example we repeat Example 2.3 by halving the step size
s six consecutive times and observe the resulting change in the approximation to
x(1). The number of calculations necessary to perform the approximation increases
as s decreases. For example, the algorithm (2.4) must be used 320 times for the
step size s = 0.003125.

We use a computer to perform the calculations and the results appear in Table
2.1. We expect the approximation x(1) ≈ 2.714047 obtained from the smallest step
size s = 0.003125 to be the most accurate, but how many of these digits are correct?
We know the sequence of approximations converges to the exact value of the solution
at T = 1. Since only two digits appear to have stabilized in Table 2.1, we accept
only the two digit approximation 2.7 as accurate.

Step size s Approximation to x(1)
0.200000 2.488320
0.100000 2.593742
0.050000 2.653298
0.025000 2.685064
0.012500 2.701485
0.006250 2.709836
0.003125 2.714047

Table 2.1. The Euler Algorithm approximations to the solution
at t = 1 of the initial value problem x0 = x, x(0) = 1 obtained by
repeatedly halving the step size.

There is a formula for the solution of the initial value problem in Examples 2.3
and 2.4, namely x(t) = et. Therefore, the exact value of the solution at t = 1 is
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x(1) = e (recall e ≈ 2.718282). Using this formula we can investigate how accurate
the approximations in Table 2.1 really are.

Step size s Approximation to x(1) % Error
0.200000 2.488320 8.4598
0.100000 2.593742 4.5816
0.050000 2.653298 2.3906
0.025000 2.685064 1.2220
0.012500 2.701485 0.6179
0.006250 2.709836 0.3107
0.003125 2.714047 0.1558

Table 2.2. The percent errors of the approximations in Table 2.1.

The percent error of each approximation is given in Table 2.2. Notice the
percent error decreases by a factor of (approximately) 1/2 at each consecutive step.
This is what we expect, since the step size s decreases by a factor of 1/2 at each
step and the Euler Algorithm is O(s).

We approximate the graph of solution of the initial value problem x0 = x,
x(0) = 1 by connecting the points (ti, xi) with straight line segments. This is done
in Fig. 2.7 for decreasing step sizes on the interval 0 ≤ t ≤ 5. The convergence,
as s decreases, of these approximate graphs to the graph of the solution x = et is
apparent.

0 1 2 3 4
t
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x

x = et

s = 0.025
s = 0.05

s = 0.1
s = 0.2

Figure 2.7. The broken line graphs calculated from approxima-
tions using Euler’s Algorithm converge to the solution of the initial
value problem x0 = x, x(0) = 1 as the step size s decreases.

One should not accept a graphical approximation to a solution obtained from a
single step size s alone (e.g., the default step size in a computer program). Instead,
before accepting a graphical approximation, one should decrease the step size until
little change occurs in two consecutive graphical approximations.

____________________________________

Example 2.5. The equation x0 = ae−btx describes the growth of a tumor where
x = x(t) is a measure of its size (e.g., weight or number of cells) and t is time.
Fig. 2.8 shows approximate graphs of the solution of the initial value problem with
x0 = 5 and parameter values a = 20 and b = 15. These graphs result from the
Euler Algorithm using a decreasing sequence of step sizes starting with s = 0.1.
Little change occurs in the graphs for the last two steps sizes s = 0.003125 and
0.0015625 and therefore we accept the final graph as an accurate approximation. All
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of the graphs indicate that the tumor size x approaches a maximal size as t→ +∞.
However, the inaccurate graphs obtained from the larger steps sizes considerably
over estimate the maximal size of the tumor.

0.0 0.1 0.2 0.3 0.4 0.5 t
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11

13

15

17

19

21

23

25

x
s = 0.1

s = 0.0015625

s = 0.025
s = 0.05

Figure 2.8 The Euler Algorithm with a decreasing sequence of
steps sizes yields converging approximate graphs for the solution
of the initial value problem x0 = 20e−15tx, x(0) = 5.

____________________________________

The convergence rate O(s) of the Euler Algorithm is sometimes too slow for
practical purposes. In Table 2.2 only two digits of accuracy for x(1) are obtained
with a step size s = 0.003125. To obtain more accuracy a smaller step size is
needed. However, there are more intermediate steps with each decrease in step size
and it takes longer to perform all of the necessary calculations. Furthermore, other
sources of error, such as round-off errors at each step, might eventually prevent
increased accuracy if the number of steps (and hence calculations) becomes too
large.

Table 2.3 shows an example that dramatically illustrates the slow convergence
of the Euler Algorithm. In this example no accurate digits are found with a step
size as small as s = 0.000391.

Step size s Approximation to x(1)

0.100000 5.862897
0.050000 8.905711
0.025000 13.766320
0.012500 21.242856
0.006250 31.967263
0.003125 45.709606
0.001563 60.736659
0.000781 74.330963
0.000391 84.517375

Table 2.3. Euler Algorithm estimates to the solution of the initial
value problem x0 = x2, x(0) = 0.99, at t = 1 for a decreasing
sequence of step sizes. The solution formula x(t) = 99/ (100− 99t)
for this initial value problem gives the exact value x(1) = 99.3

Fortunately, practical algorithms with faster rates of convergent are available.
In the following section we discuss algorithms of orders two and four. An algorithm

3The interval of existence for the solution is −∞ < t < 100/99 ≈ 1.0101. It is interesting to
note that the Euler Algorithm will calculate “approximations” at t values outside of this interval.
For example, with step size s = 0.1, eleven repetitions of the algorithm produce the number
x11 = 9.30025. However, this number cannot be taken as an approximation to the solution at
t = 1.1 because the solution is not defined at this value of t > 100/99.
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has order of convergence p (or more succinctly is of order p), written O(sp), if the
accumulative error is bounded in magnitude by a constant multiple of sp, i.e., if
| x(T )− xn |≤ csp.

To see the advantage of a convergence rate of order greater than p = 1 consider
an algorithm of order p = 2, for which the error satisfies | x(T )−xn |≤ cs2. We can
expect the error to decrease by a factor of (1/2)2 = 1/4 if the step size s is decreased
by a factor of 1/2, or by a factor of (1/10)2 = 1/100 if the step size s is decreased
by a factor of 1/10, and so on. For an algorithm of order 4 the error decreases even
faster, e.g., by a factor of (1/10)4 = 1/10000 if the step size is decreased by a factor
of 1/10.

2.3. Another Numerical Algorithm. In deriving the Euler Algorithm we
used the Rectangle Rule to approximate the integralZ ti+1

ti

f(t, x(t))dt.

More accurate approximations to this integral lead to algorithms that converge
faster than the Euler Algorithm. For example, we could use the Trapezoid Rule.
(Another choice is Simpson’s Rule; see Exercise 2.34.) Integrating both sides of the
equation x0(t) = f(t, x(t)) from t = ti to t = ti+1 we obtain

x(ti+1) = x(ti) +

Z ti+1

ti

f(t, x(t))dt.

From the Trapezoid Rule approximationZ ti+1

ti

f(t, x(t))dt ≈ si
2
[f(ti+1, x(ti+1)) + f(ti, x(ti))]

we get

x(ti+1) ≈ x(ti) +
si
2
[f(ti+1, x(ti+1)) + f(ti, x(ti))] .

Assuming that we already have an approximation x(ti) ≈ xi to the solution at the
point t = ti, we can write

x(ti+1) ≈ xi +
si
2
[f(ti+1, x(ti+1)) + f(ti, xi)] .

Unfortunately we cannot use the right hand side to calculate an approximation
xi+1 to x(ti+1) because it involves x(ti+1). This is an example of what is called an
implicit algorithm because the equation

xi+1 = xi +
si
2
[f(ti+1, xi+1) + f(ti, xi)]

is not explicitly solved for the approximation xi+1. (The Euler Algorithm is an
example of an explicit algorithm.) To find the approximation xi+1, we have to solve
this equation. To do this at each step results in a highly complicated algorithm.
One way to deal with this difficulty is to perform another approximation. For
example, we can use the Euler approximation for the xi+1 on the right hand side.
Thus, at each step we use the formulas

x∗i+1 = xi + sif(ti, xi)

xi+1 = xi +
si
2

£
f(ti+1, x

∗
i+1) + f(ti, xi)

¤
, i = 0, 1, 2, · · ·
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to calculate the approximation xi+1. This algorithm is called Heun’s Algorithm
(sometimes the Improved Euler Algorithm or theModified Euler Algorithm). It is an
example of a “predictor-corrector” algorithm. At each step the Euler approximation
x∗i+1 is the prediction and xi+1 is the correction.

If equal step sizes si = s are used Heun’s Algorithm is

x∗i+1 = xi + sf(ti, xi)(2.5)

xi+1 = xi +
s

2

£
f(ti+1, x

∗
i+1) + f(ti, xi)

¤
, i = 0, 1, 2, · · · .

The initial condition x0 starts the algorithm. It turns out that Heun’s Algorithm
of order O(s2).

Compare the results in Table 2.4 with those in Table 2.2. Note that the error in
Table 2.4 decreases approximately by a factor of 1/4 as the steps size is decreased
by a factor of 1/2. Heun’s Algorithm is a popular procedure; for example, it is
often used with programmable hand calculators.

Step size s Approximation to x(1) % Error

0.200000 2.702708 0.5729
0.100000 2.714081 0.1545
0.050000 2.717191 0.0401
0.025000 2.718004 0.0102
0.012500 2.718212 0.0026
0.006250 2.718264 0.0007

Table 2.4. The Heun Algorithm approximations to the solution
of the initial value problem x0 = x, x(0) = 1, at t = 1 obtained by
repeatedly halving the step size.

We saw in Table 2.3 an example of an initial value problem for which the Euler
Algorithm converges too slowly to be practical. Table 2.5 shows the results of
applying Heun’s Method to the same initial value problem. The estimates obtained
from the two numerical algorithms differ considerably. At each step size Heun’s
Algorithm provides a more accurate approximation to x(1) = 99 than does the
Euler Algorithm.

Step size s Approximation to x(1)

0.100000 19.346653
0.050000 33.073325
0.025000 52.217973
0.012500 72.662362
0.006250 87.787581
0.003125 95.273334
0.001563 97.719807
0.000781 98.719804
0.000391 98.928245

Table 2.5. Heun’s Algorithm estimates to the solution of the initial
value problem x0 = x2, x(0) = 0.99, at t = 1 for a decreasing sequence
of step sizes. The solution formula x(t) = 99/ (100− 99t) for this
initial value problem gives the exact value x(1) = 99.
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Even higher order algorithms are available, although they involve more com-
plicated formulas at each step. A widely used class of algorithms are called Runge-
Kutta algorithms. These algorithms are available for any order of convergence. A
popular algorithm is the fourth order Runge-Kutta algorithm. You can see the
complicated formulas for this algorithm in Exercise 2.25. Table 2.6 shows the re-
sults applying this algorithm to the same initial value problem in Table 2.3 and 2.5.
This faster converging algorithm provides an accurate approximation to x(1) = 99.

Step size s Approximation to x(1)

0.100000 53.355933
0.050000 75.881773
0.025000 91.639594
0.012500 97.671604
0.006250 98.856123
0.003125 98.988718
0.001563 98.999238
0.000781 98.999951
0.000391 98.999997

Table 2.6. Fourth order Runge-Kutta Algorithm estimates to the
solution of the initial value problem x0 = x2, x(0) = 0.99, at t = 1
for a decreasing sequence of step sizes. The solution formula x(t) =
99/ (100− 99t) for this initial value problem gives the exact value
x(1) = 99.

EXERCISES

Exercise 2.25. The following formulas constitute the fourth order Runge-
Kutta Algorithm :

x0 = x0, xi+1 = xi + sL1+2L2+2L3+L46 for i = 0, 1, 2, · · ·
where

L1 = f (ti, xi)

L2 = f
³
ti +

s

2
, xi +

s

2
L1

´
L3 = f

³
ti +

s

2
, xi +

s

2
L2

´
L4 = f (ti + s, xi + sL3)

At each step one must calculate, in order, the four numbers L1, L2, L3, and
L4 before calculating xi+1.

(a) Use the fourth order Runge-Kutta method to approximate the solution of
x0 = x, x(0) = 1 at t = 1. Start with step size s = 0.2 and calculate a sequence of
approximations by repeated step size halving.

(b) Use the solution formula x = et to calculate percent errors. Do the errors
decrease at the expected rate?

(c) Compare the results in (a) and (b) with those of the Euler and Heun’s
Algorithms in Tables 1.2 and 1.4.

Exercise 2.26. Let x = x(t) denote the solution of the initial value problem
x0 = x3, x(0) = 0.6. It turns out that x(1) ≈ 1.1338934190.

(a) Use the Euler Algorithm to obtain an approximation to x(1) with step size
s = 0.1. How many correct significant digits does this approximation have?
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(b) Obtain Euler approximations by repeatedly halving the step size (starting at
s = 0.1). At which step size s is the Euler approximation first correct to 2 decimal
places? To 3 decimal places?

(c) Compute the absolute error at each step size, starting from s = 0.1 and
halving four times. Is the fractional decrease in the error correct for the Euler
Algorithm?

Exercise 2.27. Repeat Exercise 2.26 using Heun’s Algorithm.

Exercise 2.28. Repeat Exercise 2.26 using the Runge-Kutta Algorithm.

Exercise 2.29. Repeat Exercise 2.26 using any other algorithm available on
your computer.

Exercise 2.30. Let x = x(t) denote the solution of the initial value problem
x0 = ex, x(0) = 0. It turns out that x(0.8) ≈ 1.6094379124.

(a) Use the Euler Algorithm to obtain an approximation to x(0.8) with step size
s = 0.1. How many correct significant digits does this approximation have?

(b) Obtain Euler approximations by repeatedly halving the step size. At which
step size s is the Euler approximation first correct to 2 decimal places? To 3 decimal
places?

(c) Compute the absolute error at each step size, starting from s = 0.1 and
halving four times. Is the fractional decrease in the error correct for the Euler
Algorithm?

Exercise 2.31. Repeat Exercise 2.30 using Heun’s Algorithm.

Exercise 2.32. Repeat Exercise 2.30 using the Runge-Kutta Algorithm.

Exercise 2.33. Repeat Exercise 2.30 using any other algorithm available on
your computer.

Exercise 2.34. Euler’s Algorithm was derived by using the Rectangle Rule
to approximate the integral

R ti+1
ti

f(t, x(t))dt and Heun’s Algorithm was derived by
using the Trapezoid Rule. In this exercise you derive an algorithm by using Simp-
son’s rule to approximate this integral. Simpson’s rule for approximating an integralR b
a
g(t)dt is Z b

a

g(t)dt ≈ 1
3

∙
g(b) + 4g

µ
a+ b

2

¶
+ g(a)

¸
.

(a) Use Simpson’s rule to obtain a predictor-corrector algorithm for an approx-
imation xi+1 of the solution x = x(t) of the initial value problem x0 = f(t, x),
x(t0) = x0 at t = ti+1. Use equal step sizes of length s.

(b) Why is the algorithm derived in (a) called a “two step” algorithm? What
problem does this cause at the start (i.e., at t1) and how might this be solved?

(c) Use you answers from (a) and (b) to obtain an approximation to the solution
of x0 = x, x(0) = 1 at T = 0.2 using a step size of s = 0.1. (The exact solution is
e0.2 = 1.2214027582).

(d) Compare your answer in (c) to the approximations obtained by the Euler
and Heun’s. If your computer has the fourth order Runge-Kutta Algorithm, compare
its approximations also. Which algorithm gives the best approximation at T = 0.2?

Exercise 2.35. Approximate the solution of the initial value problem x0 =
t2 + x2, x(0) = 0 at T = 0.5 using the Euler Algorithm, Heun’s Algorithm, and the
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Runge-Kutta Algorithm. Start with step size s = 0.1 and repeat by halving the step
size four times. What are the accurate digits obtained from each algorithm? What
is the best approximation obtained from all methods?

Exercise 2.36. Use a computer obtain an accurate graphical solution of the
initial value problem x0 = t2 + x2, x(0) = 0 on the interval from t = 0 to T = 1
using the Euler Algorithm. Repeatedly halve the step size s starting with s = 0.1.
What step size did you stop with and why?

Exercise 2.37. Repeat Exercise 2.36 using Heun’s Algorithm.

Exercise 2.38. Repeat Exercise 2.36 using the Runge-Kutta Algorithm.

Exercise 2.39. Repeat Exercise 2.36 using any other algorithm available on
your computer.

Exercise 2.40. Use a computer obtain an accurate graphical solution of the
initial value problem x0 = x3

x−t , x(0) = 1 on the interval from t = 0 to T = 1 using
the Euler Algorithm. Use a window size of −20 < x < 20. Repeatedly decrease the
step size s by a factor of one tenth, starting with s = 0.1. What step size did you
stop with and why?

Exercise 2.41. Repeat Exercise 2.40 using Heun’s Algorithm.

Exercise 2.42. Repeat Exercise 2.40 using the Runge-Kutta Algorithm.

Exercise 2.43. Repeat Exercise 2.40 using any other algorithm available on
your computer.

Exercise 2.44. (a) Use any algorithm you wish to obtain a graphical solution
of the initial value problem x0 = 500 cos(200t), x(0) = 0. Start with step size
s = 0.1 and decrease until the graph has stabilized. What do you conclude about the
solution?

(b) Obtain a formula for the solution and use it to explain the graphical solution.
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3. Chapter Summary & Exercises

A solution x = x(t) of the differential equation x0 = f(t, x) is a differentiable
function for which x0(t) = f(t, x(t)) holds for all t on an interval. In general a differ-
ential equation has infinitely many solutions. The general solution is the set of all
solutions. We need an additional requirement in order to specify a unique solution.
For a given point (t0, x0), the initial condition x(t0) = x0 is such a requirement.
Theorem 1.1 gives conditions under which an initial value problem x0 = f(t, x),
x(t0) = x0 has one and only one solution. Specifically, if f(t, x) and its derivative
∂f(t, x)/∂x with respect to x are both continuous for t near t0 and x near x0,
then there is one and only one solution. Although formulas for the solution cannot
always be calculated, many kinds of approximation methods are available. The
slope field associated with the differential equation helps in to sketching a graph
of the solutions. A computers is useful for plotting the slope fields by the grid
method; this method associates the slope f(t, x) with each point (t, x) on from a
chosen grid of points in the (t, x)-plane. Also useful for sketching slope fields are
isoclines, which are curves in the (t, x)-plane made up of those points associated
with a common slope. Numerical approximations to solution values x(t) yield more
accurate graphs of the solution. If x1, x2, ..., xn approximate the solution values
x(t1), x(t2), ..., x(tn) for t1 < t2 < · · · < tn, then by connecting the points (ti, xi)
with straight line segments we construct an approximate (broken line segment) so-
lution graph. Usually equally spaced points ti are chosen and the common distance
between them is the step size s of the method. If the approximations converge to
the solution values as s tends to 0, then the broken line graph tends to the solution
graph as s tends to 0. The Euler Algorithm is one method for calculating such
approximations. It is based on the left hand rectangle rule for approximating an
integral. Under the conditions on f(t, x) in Theorem 1.1 the Euler approximations
converge to the solution values as the step size s decreases to 0. The Euler Algo-
rithm is of order 1, which means the errors tend to 0 at the same rate that s tends
to 0. Faster converging algorithms are available. Heun’s Algorithm is of order 2,
which means the error tends to 0 at the same rate that s2 tends to 0. A fourth
order method called the Runge-Kutta Algorithm is commonly used.

EXERCISES
Find formulas for the general solutions of the differential equations below.

Exercise 3.1. x0 = 1
(1−t)t

Exercise 3.2. x0 = 2t
1+t2

____________________________________

Find solution formulas for the following initial value problems.

Exercise 3.3. x0 = 1
1+t2 , x(1) =

π
2

Exercise 3.4. x0 = 1+t+t2

(1+t2)t , x(1) = 1

____________________________________

Exercise 3.5. Does existence and uniqueness Theorem 1.1 apply to the initial
value problem x0 =

√
1− x, x(1) = 0? Explain your answer. What do you conclude?
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Exercise 3.6. Does the existence and uniqueness Theorem 1.1 apply to the
initial value problem x0 =

¡
4− x2

¢−1
, x(2) = 0. Explain your answer. What do

you conclude?

For which initial values t0 and x0 does the existence and uniqueness Theorem
1.1 apply to the problems below? Explain your answer. What do you conclude?
What can you conclude about initial value problems for other t0 and x0?

Exercise 3.7. x0 = ln |x− t|, x(t0) = x0

Exercise 3.8. x0 =
√
9− x2 − t2, x(t0) = x0

Exercise 3.9. x0 = |x|, x(t0) = x0

Exercise 3.10. x0 = t
1
3x, x(t0) = x0

____________________________________

Explain why Theorem 1.1 does not apply to the initial value problems below.
What do you conclude?

Exercise 3.11. x0 =
√
x2 + t2, x(0) = 0

Exercise 3.12. x0 =
p
sin(x2 + t2), x(0) = 0

____________________________________

Exercise 3.13. Apply the existence and uniqueness Theorem 1.1 to the initial
value problem x0 =

√
1− x2, x(0) = 0 in Example 1.5. What do you conclude?

Exercise 3.14. Let f(t, x) be a polynomial in t and x. Prove that any ini-
tial value problem x0 = f(t, x), x(t0) = x0 has a unique solution on an interval
containing t0.

Exercise 3.15. Let p(z, w) be a polynomial in z and w and let f(t, x) =
p(sin t, sinx). Prove that any initial value problem x0 = f(t, x), x(t0) = x0, has
a unique solution on an interval containing t0.

____________________________________

Use a computer to obtain sketches of the slope fields associated with the follow-
ing differential equations. By hand, sketch graphs of the solutions satisfying each
of the given initial conditions.

Exercise 3.16. x0 = t2 + 4x2

x(0) = 0, x(0.5) = 0.5

Exercise 3.17. x0 = − t
x

x(0) = 1, x(1) = −1

Exercise 3.18. x0 = t2−x2
t2+x2

x(0) = 1, x(−1) = −1

Exercise 3.19. x0 = ln
¡
t2 + x2

¢
x(1) = 0, x(0) = 0.1
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____________________________________

Exercise 3.20. Find the isocline equation for the differential equations in Ex-
ercises 3.16-3.19 and graph several typical isoclines. Use your results to sketch the
slope field of the equation.

____________________________________

Use a computer to obtain sketches the slope fields associated with the equations
in the initial value problems below. Hand sketch a graph of the solution satisfying
each of the given initial conditions.

Exercise 3.21. x0 = 1− x
x(0) = 0, x(0) = 1.5

Exercise 3.22. x0 = x− 1
x(0) = 0, x(0) = 1.5

Exercise 3.23. x0 = 1− x2

x(0) = 0, x(0) = 1.5

Exercise 3.24. x0 = sin(x2 + t2)
x(0) = 0, x(0) = −0.5

____________________________________

Exercise 3.25. Consider the initial value problem x0 = x3e−t, x(0) = 1. Apply
the Euler Algorithm to approximate the solution at T = 0.6.

(a) Start with step size s = 0.1 and halve it four times. Which digits in the
resulting approximations do you think are accurate? Explain your answer.

(b) Halve the step size four more times. Now which digits in the resulting
approximations do you think are accurate? Explain your answer.

Exercise 3.26. Consider the initial value problem x0 = x3e−t, x(0) = 1. Apply
Heun’s Algorithm to approximate the solution at T = 0.6.

(a) Start with step size s = 0.1 and halve it four times. Which digits in the
resulting four approximations do you think are accurate? Explain your answer.

(b) Halve the step size four more times. Now which digits in the resulting four
approximations do you think are accurate? Explain your answer.

Exercise 3.27. Consider the initial value problem x0 = x3e−t, x(0) = 1. Apply
the Runge-Kutta algorithm to approximate the solution at T = 0.6. (See Exercise
2.25.)

(a) Start with step size s = 0.1 and halve it four times. Which digits in the
resulting four approximations do you think are accurate? Explain your answer.

(b) Halve the step size four more times. Now which digits in the resulting four
approximations do you think are accurate? Explain your answer.

Exercise 3.28. Use the formula x(t) = (2e−t − 1)−1/2 for the solution of the
initial value problem in Exercises 3.25, 3.26, and 3.27 to calculate the error and the
per cent error of the approximations in these exercises for step size s = 0.00625.
Round all numbers to 6 significant digits.
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Exercise 3.29. Use the Euler Algorithm and a computer program to obtain
an accurate graph of the solution of the initial value problem x0 = 1.5x3 sin 10t,
x(0) = 1 on the interval from t = 0 to T = 1. Use a window size of −2 < x < 2.
Repeatedly halve the step size s starting with s = 0.2. At what step size did you stop
and why?

Exercise 3.30. Repeat Exercise 3.29 using Heun’s Algorithm.

Exercise 3.31. Repeat Exercise 3.29 using the Runge-Kutta Algorithm.

Exercise 3.32. Suppose the decay rate of a radioactive isotope is r = −0.35
per year. The differential equation for the amount x(t) at time t is x0 = −0.35x.

(a) Use a computer to study the graphs of solutions with many different initial
conditions x0 > 0 and formulate a conjecture about the length of time it takes a
sample amount of the isotope to decay to one half of its initial amount.

(b) Use the solution formula x(t) = x0e
−0.35t to verify or disprove your conjec-

ture.

Exercise 3.33. Let x = x(t) be the dollars in an investment account which is
compounded continuously at a rate of 4.5%.

(a) Perform numerical experiments on the model equations x0 = 0.045x, x(0) =
s to formulate a conjecture about how long will it take for the initial investment of
s dollars to triple.

(b) Use the solution formula x(t) = te0.045t to prove or disprove your conjecture.

Exercise 3.34. Suppose a population has a per capita death rate d > 0 and
a per capita birth rate that is proportional to population size x (with constant of
proportionality denoted by a > 0).

(a) Use the inflow-outflow rule (2.1) to write down a model differential equation
for the population size x = x(t).

(b) Perform numerical experiments and formulate a conjecture about the fate of
the population. (Hint: choose a pair of model parameter values, such as a = 1 and
d = 1, and compute solution graphs for many initial population sizes x(0) = x0.
Then repeat for other values for a and d.)

(c) Use the solution formula

x(t) =
dx0

x0a+ edt (d− x0a)

to verify or disprove your conjectures in (b).
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4. Applications

4.1. Bacterial Cell Growth. When placed in an environment of abundant
resources (nutrients, space, etc.) cell cultures typically grow in such a way that
their per capita rate of change is constant. Mathematically, this means the number
of cells x = x(t) at time t satisfies the differential equation

x0 = rx

where the constant r > 0 is the “per capita growth rate”. Often a particular
microorganism’s growth rate is described by the time it takes the number of cells
in the culture to double. This time δ is called the “doubling time” (or “generation
time”) and it is related to the growth rate according to the formula

r =
ln 2

δ
.

For more detailed discussion of these topics and of population growth models see
Sec.6, Chapter 3.

As an example, the doubling time of the bacterium Staphylococcus aureus is
approximately δ = 30 minutes, which corresponds to a per capita growth rate of

r =
ln 2

30
= 0.02310 (per minute).

The growth of a culture of S. aureus initially consisting of 106 cells is described by
the initial value problem

x0 = 0.02310x(4.1)

x(0) = 1.

Here x is measured in units of 106 cells.
According to Theorem 1.1, this initial value problem has a unique solution

x = x(t). A slope field and a solution graph (drawn using Heun’s Algorithm with
step size s = 0.05) appear in Fig. 2.9. Notice the number of cells grows rapidly,
following a seemingly exponential-like curve. Indeed, the solution formula for the
initial value problem

x = e0.02310t

shows the growth is indeed exponential.
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Figure 2.9. The slope field of the differential equation x0 =
0.02310x and the solution of the initial value problem (4.1) drawn
using Heun’s Algorithm with step size s = 0.05.

S. aureus is a common cause of bacterial skin infection (particularly in patients
with HIV). The rapid exponential growth of a staph infection can be a serious
problem if left untreated. Our modeling application involves determining the effect
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of a medical treatment that removes staph cells from the patient at a certain rate
h > 0 (cells/minute). We set up our mathematical model (i.e., perform the Model
Derivation Step in Fig. 2.1 of the Introduction ) by applying the inflow-outflow rule
(2.1) to the staph cell population numbers. This leads to the differential equation

(4.2) x0 = 0.02310x− h

More specifically, suppose a milligram (mg) of antibiotic in a particular patients
kills staph cells at a rate of 104 per minute. Then a dosage of d mg kills a total of
104d staph cells per minute. In units of 106 cells, we have

(4.3) h =
104

106
d = 0.01d.(per minute)

Suppose, for the moment, that this removal rate h remains constant in time, as
might be the case for example if the antibiotic were continuously administered
intravenously. We want to know what dosages d, if any, will eliminate the staph
infection from the patient, and if so in what amount of time.

The antibiotic kill rate h in (4.3) leads to the initial value problem

x0 = 0.02310x− 0.01d(4.4)

x(0) = 1.

for the number of staph cell x = x(t). Our next goal is to perform the Model
Solution Step in the Modeling Cycle. What we want to learn from the solution
x = x(t) is whether or not it continues to increase or whether it decreases and
eventually equals 0. The answer will presumably depend on the dosage d.

One way to obtain answers to our questions would be from a formula for the
solution x(t). We will learn how to find such a formula in Chapter 2. Here, however,
we will investigate the solution by means of the methods developed in Sec. 2 and
2.2.

Fig. 2.10 shows slope fields and solution graphs, for a selection of dosages d,
obtained by a computer. These graphs indicate the existence of a critical dosage
level dcr above which the staph infection is eliminated and below which it is not.
From Fig. 2.10 this critical dose lies between 1.5 gm and 3.0 gm. Further computer
explorations, using other values of d, suggest this critical value is approximately
dcr = 2.31 gm.

Another way to determine the critical value is to reason as follows. For d <
dcr, the staph infection increases (x0 > 0) and for d > dcr it decreases (x0 < 0).
Therefore, at the critical dose d = dcr the infection should do neither, but instead
remain constant. From the initial value problem (4.4), we see that x remains at
x(0) = 1, and hence x0 = 0, means

0.02310− 0.01dcr = 0
or

dcr = 2.31.

At the critical dose dcr the staph infection remains constant, but at a higher dose
d > dcr our computer studies indicate that x(t) = 0 at some finite time tc. This
(“cured”) time tc = tc(d) when the infection is eliminated depends on d, as Fig.
2.10 shows. The higher the dose, the quicker the staph is eliminated; that is, tc(d)
is a decreasing function.
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Figure 2.10. The slope field of the differential equation x0 =
0.02310x−0.01d and the solution of the initial value problem (4.1)
for selected values of the antibiotic dose d.

We emphasize that computer explorations do not “prove” our conclusions about
the existence of a critical dosage and the dependence of tc on d. This is because,
when doing computer studies, we can calculate only a finite number of solutions for
only a finite selection of dosages d. An advantage of a solution formula, if available
(or, if not, other methods of analysis) is that these conclusions can be rigorously
established. (See Exercise 6.36 in Chapter 2).

Often antibiotics are not continuously administered to a patient, but a dose is
applied by pill or injection. In this case, the effect of the antibiotic is not constant,
but decreases over time. To account for this change we return to the model equa-
tion (4.2) to see what adjustments must be made (this is the Model Modification
Step of the Modeling Cycle). To proceed we need information concerning how the
effectiveness of the antibiotic changes over time, so that we can derive a formula
for the staph removal rate h.

Suppose, for example, the effectiveness of the antibiotic decreases exponentially
so that

h = 0.01de−at

Under this model assumption, the initial effectiveness of the antibiotic is 0.01d
(cells/minute), but the effectiveness decreases over time with an exponential decay
rate of a > 0. Suppose it is observed that the effectiveness decreases by 50% every
hour. This allows us to calculate a. In 60 minutes, h is decreased by a fraction of
1/2 and therefore

e−a60 = 0.5.

or
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a = 0.01155.

These assumptions lead us to a new initial problem for a staph infection starting
with 106 cells:

x0 = 0.02310x− 0.01de−0.01155t(4.5)

x(0) = 1.

(Recall x is measured in units of 106.)
Again we ask: what dosages d, if any, will eliminate the staph infection?
Fig. 2.11 shows the slope field and the solution of the initial value problem

(4.5) for some selected values of the dose d. These samples suggest that this initial
value problem also has a critical dosage dcr below which the treatment does not
eliminate the staph infection. The particular examples in Fig. 2.11 indicate that
dcr lies between 2.5 gm and 4.0 gm. (See Exercise 6.37 in Chapter 2.)
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Figure 2.11. The slope field of the differential equation x0 =
0.02310x−0.01de−0.01155t and the solution of the initial value prob-
lem (4.5) for selected values of the antibiotic dose d.

An interesting difference between the intravenous treatment modeled by (4.4)
and the pill or injection treatment modeled by (4.5) occurs for doses below the
critical level dcr. Unlike the intravenous treatment, the pill or injection treatment
can show an initial improvement (x initially decreases in Fig. 2.11 for d = 2.5
and 3.3) even though the infection ultimately “bounces back” and grows unabated.
Thus, one must guard against a mistaken conclusion, based on its early effectiveness,
that the treatment will result in a cure.
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4.2. Running a Curve. One of the most famous laws of physics is Newton’s
law of motion given by the equation F = ma. Here m is the mass of a moving
object and a is its acceleration. The letter F represents the force (or a collection
of many forces F = F1 + F2 + · · · ) acting on the object. Since

a =
dv

dt
=

d2x

dt
,

where v is the object’s velocity and x is its position (measured from some reference
point), the application of Newton’s law usually results in a differential equation
that describes the motion of the object when subject to the force F . The Modeling
Derivation step of the Modeling Cycle involves describing the relevant forces acting
on the object so as to obtain a mathematical expression for F . We will utilize this
law in a variety of applications throughout the book. In this section, we will use
Newton’s law to study a sprinter running a race of fixed distance.

One model of a sprinter running in a straight line assumes two forces are in-
volved: the propulsive force exerted by the runner and a resistive force (due mainly
to air resistance).4 Thus, F = Fp + Fr in Newton’s law. In this model it is as-
sumed that the runner exerts a constant propulsive force throughout the race, an
assumption that seems reasonable for sprint of short distance. Thus,

Fp = mf

were f > 0 is the per unit mass force characteristic of a particular individual
runner. The resistive force, on the other hand, depends on the runner’s velocity. It
is absence when the runner is not moving and it increases with the runner’s speed.
The simplest law assumes the resistive force is proportional to velocity v, i.e.,

Fr = −cv
where the “coefficient of friction” c > 0 is another characteristic of each particular
runner. The reason for the negative sign is that the resistive force works against
the runner.

In the absence of other forces, Newton’s law yields the differential equation

m
dv

dt
= mf − cv

for the runner’s velocity v. If we divide both sides by m and denote the per unit
mass coefficient of friction c/m by σ, this equation becomes

(4.6)
dv

dt
= f − σv.

The model parameters f and σ can be approximated from performance records.
For example, the parameters for 1968 Mexico City Olympics gold medalist Tommie
Smith have been estimated to be f = 13.46 (Newtons,/kg) and σ = 1.252 (per
second).5

In races one is usually interested in the time it takes to run a fixed distance xd
from a starting line at x = 0 from which the runner’s begin from a standing start
(v(0) = 0). To determine this time from the initial value problem

dv

dt
= f − σv, v(0) = 0

4J. B. Keller, 1973. Physics Today, 26(9), p.42
5A. Armenti, Jr., 1993. The Physics of Sports, American Institute of Physics, New York, pp.

105-108
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we calculate the runner’s position from v = dx/dt, i.e.,

x(t) =

Z t

0

v(s)ds,

and then solve the equation x(t) = xd for t.
For example, consider gold medalist Tommie Smith running a 100m race. We

can use a computer to approximate the solution of the initial value problem

dv

dt
= 13.46− 1.252v(4.7)

v(0) = 0.

The algorithms studied in Sec. 2.2 produce approximations to the velocity v(t) at
points ti (depending on the chosen step size s) lying in, say, the interval 0 ≤ t ≤
12. The resulting table of approximations for v(ti) permits us to approximate the
distance

x(ti) =

Z ti

0

v(s)dx

run at each point in time ti by using an numerical integration procedure (for ex-
ample, the trapezoid rule). Table 2.7 shows some of the results.

We make two observations from the numerical solution of the initial value
problem (4.7). First, the model predicts that Tommie Smith could run 100m in
approximately 10.1 seconds (Table 2.7). Secondly, the model predicts that after
about 6 seconds (55 m), Smith’s velocity v(t) is very nearly constant at 10.75
(m/sec) for the rest of the race.

t x(t) v(t)

10.00 98.92 10.75
10.01 99.03 10.75
10.02 99.14 10.75
10.03 99.24 10.75
10.04 99.35 10.75
10.05 99.46 10.75
10.06 99.57 10.75
10.07 99.67 10.75
10.08 99.78 10.75
10.09 99.89 10.75
10.10 99.99 10.75
10.11 100.10 10.75
10.12 100.21 10.75

Table 2.7. Some results of applying Heun’s Algorithm (Sec. 2.3)
with step size s = 0.01 to the initial value problem (4.7).

Some sprints are not run in a straight line, but involve running a curve at the
beginning of the race, with staggered starting positions for the racers. For example,
this is the case for most 200m races in which the course lies on a (circular) curve
for 100m before straightening out for the last 100m.

When running along the curve, the sprinter’s propulsive force must supply an
additional centripetal acceleration which depends on the radius of curvature of the
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curve. Furthermore, the radius of curvature is different for each lane. Lanes are
typically 1.22 meters wide and the inner radius of the nth lane is given by the
formula

R(n) =
100

π
+ 1.22 (n− 1) .

We will not delve into the physics of the derivation here, but leave it to say
that the new equation motion that results when the additional force due to the
centripetal acceleration is taken into account leads to the initial value problem6

dv

dt
=

Ã
f2 −

µ
v2

R(n)

¶2!1/2
− σv(4.8)

v(0) = 0.

These are the equations of motion during the first 100m of the 200m race.
During the second 100m of the race equation (4.6) is applicable. The initial

condition associated with (4.6) would be the runner’s velocity vc at the end of the
first 100m (along the curve portion) of the race.

Thus, the Model Solution Step of the Modeling Cycle involves, in this appli-
cation, the numerical solution of the initial value problem (4.6) until the time tc
is reached at which x(tc) = 100. At this time the runner’s velocity is vc = v(tc),
which constitutes the initial condition for equation (4.8). This initial value problem
is solved until the finishing time for the runner is reached, i.e., the time tf at which
x (tf ) = 100 (the second 100m of the race).

We can, however, simply the second step of the solution procedure as follows.
It will turn out (as in the 100m sprint example above) that the runner’s velocity
will reach a constant by the time the final 100m portion of the race is reached.
Therefore, rather than solve a second initial value problem using equation (4.8)
we can obtain a good approximation to the time for the last 100m by assuming a
constant velocity vf is maintained, in which case the final 100m time is given by
the formula 100/vc. The model predicted sprint time for the 200m race is then

(4.9) tf = tc +
100

vc
.

Notice all that is needed by the model to make a prediction for a sprinter’s time
in a 200m race are the parameter values f and σ (obtained from the sprinter’s
performance data on straight courses) and the lane assignment n.

As an example we consider gold medalist Tommie Smith’s performance in the
1968 Mexico City Olympics. In the 200m finals Smith was assigned lane n = 3.
Using f = 13.46, σ = 1.252 and R(3) = 34.27 we approximate the solution of (4.8)
using Heun’s Algorithm.

From Table 2.8 we see that the model predicts Smith will run the first 100
meters along the curve in approximately tc = 10.33 seconds and at the end of the
curve his velocity will be approximately vc = 10.45. From (4.9) we calculate the
predicted time for Smith’s 200m sprint in lane n = 3 to be approximately

tf = 10.33 +
100

10.45
= 19.90.

In fact Smith ran the race in 19.83 seconds (at that time a world record).

6A. Armenti, Jr., 1993. The Physics of Sports, American Institute of Physics, New York, pp.
105-108
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t x(t) v(t)

10.25 99.20 10.45
10.26 99.31 10.45
10.27 99.41 10.45
10.28 99.51 10.45
10.29 99.62 10.45
10.30 99.72 10.45
10.31 99.83 10.45
10.32 99.93 10.45
10.33 100.0 10.45
10.34 100.1 10.45
10.35 100.2 10.45
10.36 100.4 10.45
10.37 100.6 10.45

Table 2.8. Some results of applying Heun’s Algorithm with step
size s = 0.01 (Sec. 2.3) with step size s = 0.01 to the initial value
problem (4.8) with f = 13.46, σ = 1.252 and R(3) = 34.27.

We can use the model (4.8) to predict what might have been the result if Smith
been given a different lane assignment. For example, the results in Table 2.9 for
lane n = 1 show a slower predicted time of

tf = 10.36 +
100

10.40
= 19.98.

Runners dislike lane 1 as being “too tight”. The slower time predicted by the model
for n = 1 bears out this opinion. Had Smith run in lane n = 8, however, his world
record, according to the model, would have been even lower than 19.83 seconds.
See Exercise 4.10.

t x(t) v(t)

10.25 98.85 10.40
10.26 98.96 10.40
10.27 99.06 10.40
10.28 99.17 10.40
10.29 99.27 10.40
10.30 99.37 10.40
10.31 99.48 10.40
10.32 99.58 10.40
10.33 99.69 10.40
10.34 99.79 10.40
10.35 99.89 10.40
10.36 100.0 10.40
10.37 100.1 10.40

Table 2.9. Some results of applying Heun’s Algorithm with step
size s = 0.01 (Sec. 2.3) with step size s = 0.01 to the initial value
problem (4.8) with f = 13.46, σ = 1.252 and R(1) = 31.83.
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EXERCISES

When we talk of a population’s doubling time in the exercises below we imply
that the population grows, in the absence of any limiting facts, with a constant per
unit growth rate: x0 = rx.

Exercise 4.1. E. coli has a doubling time of approximately 20 minutes. As-
sume h cells per minute are removed from a culture initially at 108 cells. Use a
computer to solve the initial value problem for the number of cells x = x(t) at time
t. Determine the critical value hcr of h above which the culture will die out.

Exercise 4.2. E. coli has a doubling time of approximately 20 minutes. As-
sume he−at cells per minute are removed from a culture initially at 108 cells. Use a
computer to solve the initial value problem for the number of cells x = x(t) at time
t. Explore those values of a and h for which the culture goes extinct. Specifically,
for selected values of a, calculate the critical value hcr for h above which the culture
goes extinct. Determine a relationship between a and hcr.

Exercise 4.3. The bacterium M. Tuberculosis has a doubling time of approx-
imately 13 hours. Assume h cells per hour are removed from a culture initially at
107 cells. Use a computer to solve the initial value problem for the number of cells
x = x(t) at time t. Determine the critical value hcr of h above which the culture
will die out.

Exercise 4.4. The bacterium M. Tuberculosis has a doubling time of approxi-
mately 13 hours. Assume he−at cells per hour are removed from a culture initially
at 107 cells. Use a computer to solve the initial value problem for the number of
cells x = x(t) at time t. Explore those values of a and h for which the culture goes
extinct. Specifically, for selected values of a, calculate the critical value hcr for h
above which the culture goes extinct. Determine a relationship between a and hcr.

____________________________________

Exercise 4.5. In the model (4.5) suppose the effectiveness of the antibiotic
decays more slowly than exponentially. Specifically, assume h = 200d (1 + at)−1

where a > 0 is a constant. Assume there is a 50% drop in effectiveness after 60
minutes.

(a) Modify the initial value problem (4.5) to account for this new assumption.
(b) Using slope fields and computer calculated solution graphs, determine whether

or not this new model has a critical dosage value dcr below which the infection is
not controlled and above which the infection is eliminated.

____________________________________

No population can grow exponentially indefinitely. Many populations eventu-
ally decrease their rate of growth and level off at a number K appropriate to its
environment and available resources. A differential equation often used to model
this kind of growth is x0 = rx (1− x/K) where r is the exponential growth rate at
low population numbers. Suppose such a population is harvested at a constant rate
h. Then the equation governing the populations growth is x0 = rx (1− x/K)−h. As
an example, suppose the number of fish in a large lake grows according to this law.
It is estimated that the lake can support K = 104 fish, and it is known that during
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the exponential grow phase (i.e., low population numbers) the fish population will
double in two years. Use a computer to investigate the following question: at what
maximal annual rate hcr can the fish be harvested without causing extinction if
initially there are the following numbers in the lake?

Exercise 4.6. x(0) = 102

Exercise 4.7. x(0) = 103

Exercise 4.8. x(0) = 104

Exercise 4.9. Investigate many initial conditions x(0) > K/2 = 0.5 × 104.
What do you notice about hcr?

____________________________________

Exercise 4.10. Calculate the model (4.8) predicted time for gold medalist Tom-
mie Smith had he run in lane n = 8 of the 200m finals in the 1968 Mexico City
Olympics.

Exercise 4.11. The current world record for 200m of 19.32 seconds, set at the
1996 Atlanta Olympics, is held by Michael Johnson. In order for Tommie Smith to
equal this time on a straight course what higher value of the per unit mass propulsive
form f would he have to attain?

Exercise 4.12. The current world record for 200m of 19.32 seconds, set at the
1996 Atlanta Olympics, is held by Michael Johnson. In order for Tommie Smith to
better this time on a curved course in lane n = 3 what higher value of the per unit
mass propulsive form f would he have to attain?

Exercise 4.13. Estimated parameter values for sprinter Jim Hines are f =
7.10 (N/kg) and σ = 0.581 (per second). In a 100m (straight line) race who would
win, Jim Hines or Tommie Smith?

Exercise 4.14. Estimated parameter values for sprinter Jim Hines are f =
7.10 (N/kg) and σ = 0.581 (per second). In a 200m (curve course) race who would
win, Jim Hines in lane n = 5 or Tommie Smith in lane n = 4?

Exercise 4.15. Who would win if Hines and Smith switched lanes in Exercise
4.14?




