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1 Introduction

Since the seminal papers of Lewis and Leslie in the 1940’s [28, 29, 30], differ-
ence equations have played an important role in population dynamics and ecology.
The utilization of models based on difference equations ranges from investigations
of a very theoretical nature (a notable example being their seminal role in the de-
velopment of chaos theory [31, 32, 33]) to studies of a very applied nature (see [2]
for many examples). A difference equation model that has been particularly suc-
cessful in applications to population dynamics and ecology is the so-called “LPA
model”. The success of this model is due to the fact that it has been rigorously
connected to real data by statistical parameterization and validation methods and
shown capable of quantitatively accurate descriptions and predictions by means of
controlled experiments. The model has played a key role in many projects designed
to document and study the predictions of nonlinear theory (including chaos) [2, 11].
While this kind of success is common, even expected, in many other scientific dis-
ciplines (the so-called “hard” sciences), it is rather unprecedented in ecology where
mathematical models are all too commonly used only for theoretical speculations
and expected to provide no more than qualitative accuracy, “guesstimates”, or ver-
bal metaphors. Because of the role it has played — and is continuing to play — in
population dynamics and ecology, the LPA model is a worthy object of study for
mathematicians interested in difference equations. In this paper I summarize the
mathematical results known about the LPA model. I will also discuss many open
questions. In addition to the LPA model itself, there are also a number of variants
of the model that have also played important roles in applications. One example is
a periodically forced LPA model which T discuss in Section 4. In Section 5 I men-
tion several other variations of the LPA model that have received less mathematical
attention.
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2 Basic properties of the LPA model

The LPA model is the nonlinear (Leslie) matrix model

L{t+1)
P(t+1)
A(t+1)
0 0 bexp (=S L(t) — S A(t)) L(t)
= | 1-mw 0 0 P(t)
0  exp(—2A(t) 1— g A(t)
This matrix equation is equivalent to the system
L(t + 1) = bA(t) exp (—%L(t) - %“A(t)) (2.1)
P(t+1)=(1-pm)L{?) (2.2)
A(t+1) = P(t) exp (—%“A(t)) + (1= pa) A(). (2.3)

of three difference equations.

It is useful as a guide to mathematical investigations of the system (2.1)-(2.3)
to understand some of the biological interpretations for the equations. The name of
the model derives from the biological interpretation of three state variables used in
the applications from which the model arose. The laboratory experiments utilized
species of insects from the genus Tribolium (flour beetles) which have three life
cycle stages. The state variables L(t), P(t), A(t) denote the number of individuals,
at time ¢, present in the larval, pupal, and adult stages respectively. The exponen-
tial terms appearing in the equations arise from contacts among individuals that
decrease survival probabilities. The exponential form of the nonlinearities derive
from a Poisson process involving random encounters among individual organisms
[6]. These encounters are assumed inversely proportional to habitat size V', which
accounts for the parameter ratios appearing in the exponential terms. (This law
has been validated for Tribolium by laboratory experiments.) The parameter b > 0
is the inherent per adult recruitment of larvae (“inherent” means when the negative
effects of encounters among individuals are negligible). The two parameters y; and
e satisfy 0 <y < 1, 0 < e < 1 and represent death rates (the fractions of the
larvae and adult stages that die each unit of time). For notational simplicity one
can assume, without loss of generality, that V' = 1. There are, however, applica-
tions in which it is advantageous to keep V in the model equations. In applications
involving Tribolium the intra-stage contacts are cannibalistic encounters, and in
that context the parameters ce;, ceq, and cp, are called “cannibalism coefficients”.

Although developed with a particular organism in mind, system (2.1)-(2.3) can
be an appropriate model for other organisms possessing three life cycle stages. In
this regard, it should be noted that the model assumes that the unit of time is
equal to that spent by individuals in the larvae stage. This assumption accounts
for the lack of an additive term (such as, for example, (1 — u)L(t)) on the right
hand side of (2.1) that would account for larvae at time ¢ which are still larvae
at time ¢ + 1. Another assumption of the model is that the time spent in the
pupal stage is identical to that spent in the larvae stage. Hence, there appears no
additive term (such as (1 — p)P(¢)) on the right hand side of (2.2) that accounts
for pupae at time ¢ which are still pupae at time ¢ + 1. Finally, in equation (2.3)
the model assumes that all pupae successfully emerge as adults (in the absence of
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encounters with adults). This accounts for the absence of a multiplicative factor
1 — pp in the first term on the right hand side of (2.3). A more general three life
cycle stage model would contain some or all of these additional terms. However,
these biological assumptions present in the LPA model (2.1)-(2.3) are appropriate
for Tribolium populations. In this paper we restrict our attention to this model.

In applications to population dynamics, one is interested only in nonnegative
values of the three state variables. It is clear from the difference equations (2.1)-
(2.3) that

L(0) 0 L(t) 0
PO) | > 0 = Pt) | > 0
A(0) 0 A(t) 0
and
L(0) 0 L(t) 0
PO) | #| 0O = Pt | #| 0 (2.4)
A(0) 0 A(t) 0
for all t =1,2,3,.... That is to say, the nonnegative cone is forward invariant.

Moreover, all orbits in the nonnegative cone are (forward) bounded. To see
this note from (2.1) and (2.2) that

v

Cpal

0< L(t + 1) < bA(¢) exp (—%“A(t)) <b
for t =0, 1, 2,... and consequently

0<Pt+1)< (1- )b~

Cpat
fort=1, 2, 3,... . In other words
Vv
0<L(#)<b , t=1, 2, 3,...
Cpat
v

Cpa€

For t > 2 we find from (2.3) that

0<At+1)<(Q—pm)bd v

pa

+ (1 - ,ua) A(t)

from which the inequality

1 _
0<AM) < = (1—m)b—— + (1- ) 2A@)  t=3,4,5,...

Ha Cpa
follows by an induction. After a finite number of iterations
1-— \%4
0< A(t) <2—Hp >
Ha  Cpa€

Thus, there is a compact set in the nonnegative cone inside of which all nonnegative
orbits lie after a finite number of steps.
From (2.1)-(2.3) we have, for orbits in the nonnegative cone, the inequalities

0< L(t+1) <bA(t)
0< P(t+1) < (1— ) L(1) (2.5)
0< At +1) < P(t) + (1 — o) A(t)
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for all t =0,1,2,.... An induction shows
0<L(t) <=z(t)
0 < P(t) <y(t) (2.6)
0<A(t) <2(t)

<
<

where z(t), y(t), z(¢t) are defined by the linear system
z(t+ 1) = bz(t)
y(t+1) = (1 — ) y(t) (2.7)
2(t+1) = y(t) + (1 — pa) 2(t)

with initial conditions z(0) = L(0) > 0, y(0) = P(0) > 0, and 2(0) = A(0) > 0. If
ta < 1 the coefficient matrix

0 0 b
1—w O 0 (2.8)
0 1 1—p,

associated with the linear system (2.7) is irreducible and primitive. (Its fourth
power is positive.) Therefore, (2.8) has a real, positive, simple, and strictly domi-
nant r eigenvalue [1]. The dominant eigenvalue is less than 1 if

n= ﬂb <1
Ha
and greater than 1if n > 1 [6, 9].

Consequently, if n < 1 it follows that all solutions of (2.7) tend to the origin
as t = +oo. From (2.6) we see n < 1 also implies that all orbits of the LPA model
(lying in the nonnegative cone) tend to the origin as ¢ — +oo. Furthermore, the
matrix (2.8) is the Jacobian of the LPA model at the origin and, as a result, n < 1
also implies the origin is locally asymptotically stable (LAS) [6, 16].

The origin is a “trivial” equilibrium of the LPA model (2.1)-(2.3). Its global as-
ymptotic stability when n < 1 means, in the biological context, that the population
goes extinct for all initial conditions. The quantity n has an important biological
interpretation, namely, it is the expected number of offspring per individual per
life time [2, 6]. The inequality n < 1 means, then, that on average individuals
do not replace themselves by reproduction. Given this biological interpretation of
n, we expect n > 1 to imply that the population will not go extinct. Since the
dominant eigenvalue of the Jacobian matrix (2.8) is greater than 1, the origin is in
fact unstable [6, 16]. However, the origin might have a stable manifold and some
nonnegative orbits might approach it. If p, < 1 we will show that the origin cannot
have a stable manifold that intersects the nonnegative cone (except at the origin).

In addition to the (positive) dominant eigenvalue, the Jacobian matrix (2.8)
has the complex conjugate pair of eigenvalues

/\:|:=Oz:i:6’i
ol 1 1s
3% 727 T 18y
\/51 2 ]'2
p=5 (- g) >0

where
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o (1 I 3 L, 3 1221/21/3
v = <§bsl+2—78a+ (2—7bsasl+zb sl) ) >0
s;=1—w; >0, s,=1-—p,>0.
These complex conjugate eigenvalues (calculated with the aid of an algebraic com-
puter program) satisfy
|)\i| <1 when pu,<1
(2.9)
|/\i| = (bsl)2/3 =n?? when p,=1.
The stable manifold at the origin is tangent to the plane spanned by the real

and imaginary parts of a complex eigenvector associated with A~ (or its conjugate
AT) [6, 16]. An eigenvector associated with eigenvalue A\~ is the vector

A (A —s,)
(A™ —84) 81
S

whose real and imaginary parts are

)\ A @)
35 (B2 =) s |, —PBsi
81 S]

Since both of these real vectors have components of opposite signs, the plane they
span intersects the nonnegative cone only at the origin. It follows that in a neigh-
borhood of the origin the stable manifold intersects the nonnegative cone only at
the origin. From this fact, and from (2.4), we see that an orbit in the nonnegative
cone cannot approach the origin. In the terminology of [25], the origin is an isolated
invariant set in the nonnegative cone that is its own stable set. By Theorem 4.1
of [25], the origin is uniformly persistent. This means that there exists a positive
constant p > 0 such that
lim inf (L(t)+ P(t) + A(#)) >pu>0

t—+oo

for all orbits in the nonnegative cone (except the origin).

We have seen that when n > 1 and p, < 1 all nonnegative orbits are (forward)
bounded and cannot approach the origin. A fundamental problem is to describe
the omega limit set of such orbits. First we point out that when n > 1 there exists
a positive equilibrium (i.e., an equilibrium all of whose components are positive)
and this equilibrium is the only nontrivial, nonnegative equilibrium. To see this
consider the equilibrium equations

- _Cely _ Cea
L =bAexp ( L- A) (2.10)
P=(1-w)L (2.11)
— _pa _
A= pexp( > A) F(1—pa) A (2.12)
of (2.1)-(2.3). Equations (2.12) and (2.11) respectively imply
_ ¢ _ M Cpa
P_,uaAexp(VA), L= 1_mAexp(VA). (2.13)
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If A=0then L =P =0. Suppose A > 0. A substitution of (2.13) into equation
(2.10) yields (after some simpliﬁcation) the equation

ce (Zea)+ (S2+22)a= 2.14

i vty Ty nn (2.14)

for A. The left hand 51de of this equation, as a function of A, vanishes for A = 0

and is strictly increasing and unbounded for A > 0. We conclude that for Inn > 0

there is a unique, positive solution A = A,, > 0 of equation (2.14) which, when

used in equations (2.13), yields a positive equilibrium of the LPA model. Note that

dA,
A1 =0, — >0 forn>1 and lim A, =+oc. (2.15)

dn n——+o00

(For Inn < 0 there is a unique, negative solution of (2.14) which yields a negative
equilibrium of the LPA model. Thus, a transcritical bifurcation of two equilibrium
branches occurs at the origin when n = 1.)

When n > 1 the positive equilibrium becomes a candidate for an attractor in
the nonnegative cone. However, little is known about the stability properties of
this equilibrium. When p, < 1 it is known that when n > 1 is sufficiently close
to 1 the positive equilibrium is LAS. This is the familiar “exchange of stability”
phenomenon that generically occurs at a transcritical bifurcation. A proof using
Liapunov-Schmidt methods appears in [6]. Another way to prove this fact is by
considering the characteristic polynomial p of the Jacobian

76‘51 bAexp (70“}“ A— CVL’L) 0 (1- T A) bexp (70‘2/“ c&’ L)
J = 11— 0 0
0 exp (—C%’A) C"“Pexp( L2A) +1— pig

of the LPA model. An evaluation of J at the positive equilibrium (using the equi-
librium equations (2.10)-(2.12)) yields

— e Aexp (32 4) 0 e (11— 50A) exp (37 4)
J(n): ].—/j,l 0 0
0 exp (— % A) — B A+1— pg
and
_ 13 Cel Ha Cp Cpa _ 2
(L, A) = A +<V—1_ulAexp(VA)+ L 1+ua>,\
Cel _Ha  (Cpa 4 _ Cpa
+V1—m(V““A 1+,ua)Aexp(VA)/\ (2.16)
Cea
+ (A1) e

The positive equilibrium is a function of n and therefore so are the eigenvalues
A= Ap.

When n = 1, the positive equilibrium collapses to the origin and the Jacobian
reduces to the Leslie matrix (2.8). Therefore, the eigenvalues of J at n = 1 are
A =1and \*. Let A = )\, denote the eigenvalue of J that satisfies \; = 1. An
implicit differentiation of p(A,, 4,) = 0 with respect to n yields

9 d\, 0 dA,
PO An) " =+ POy An) =g = =0
and

dn — Bp(An, Ay) dn

% _ %p(/\m An) dA,
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A calculation shows of the partial derivatives of p are

6p(/\a A) Ma Cpa Cel Ceq

o) - e (1 ) + L+ 2 (1 ) >0
0A (nA)=(1,0) 1—H ( v v 1% )
A

Op(A, A) 149, >0
dA xa)=(,0

It follows (from (2.15)) that
dn |,

and hence Ay (n) < 1 for n > 1 sufficiently close to 1.

If puo < 1 then, for n close to 1, the remaining two eigenvalues are close to the
complex eigenvalues A\* which have magnitude less than 1 (see (2.9)). It follows
in this case that all three eigenvalues of J are inside the unit circle when n > 1 is
close to 1, and the positive equilibrium is LAS.

However, if u, = 1 then the stability of the positive equilibrium is determined
by the complex eigenvalues A*(n) for n > 1. These eigenvalues have magnitude 1
when n =1 (see (2.9)) and the problem is to determine their magnitude for n > 1.
It is shown in [8] that [A*(n)| > 1 for n > 1 close to 1 and therefore that the
positive equilibrium is unstable in this case.

In the following theorem we summarize the facts we have obtained so far about
the LPA model.

Theorem 2.1 The following hold for the LPA model (2.1)-(2.3).

(a) Orbits associated with nonnegative initial conditions remain (forward)
bounded and in the nonnegative cone for allt =0,1,2,....

(b) If n < 1 then the origin is locally asymptotically stable and globally attracting
in the nonnegative cone.

(¢) If n > 1 there exists a unique nonnegative, nontrivial equilibrium and this
equilibrium is positive.

(d) If uo < 1 and n > 1 then the LPA model is uniformly persistent on the
nonnegative cone with respect to the origin.

(e) If o < 1 then the positive equilibrium is locally asymptotically stable for
n > 1 sufficiently close to 1.

(f) If po = 1 then the positive equilibrium is unstable for n > 1 sufficiently
close to 1.

For n < 1 the the origin is globally asymptotically stable. Little is known
about the global asymptotic stability of the positive equilibrium when n > 1. 1
conjecture that the positive equilibrium is globally asymptotically stability for n > 1
sufficiently close to 1, but I have no proof of this assertion. One known global
stability result concerns the special case when

Cel = 0. (2.17)

In this case, it is shown in [42] that the positive equilibrium is globally asymptoti-
cally stable if

1—p,c
1<n<min{e, uaﬂe}.
Ha Cpa
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This condition requires u, < 1 and the inequality

“pa . 1= Ha e
Cea /‘La
for the ratio r of cannibalism coefficients. The case (2.17), about which more is
said in the next section, is an interesting mathematical case, but it is not relevant
to the applications that have been made to Tribolium populations. (Larval on egg
cannibalism is very significant in Tribolium populations.) Global stability results
when ¢,; > 0 would be of interest.

The local stability results in Theorem 2.1 are valid for n > 1 close to 1. In the
next section we show that the positive equilibrium is not LAS for all n > 1.

o
r=

3 Nomn-equilibrium dynamics

We begin by examining the positive equilibrium of the LPA model (2.1)-(2.3)
when p, < 1. In the proof of Theorem 2.1 we saw that all three eigenvalues A of
the Jacobian J evaluated at the positive equilibrium lie inside the unit circle for
n sufficiently close to 1. In order for the positive equilibrium to lose stability as n
increases, at least one eigenvalue must migrate outside the unit circle. Eigenvalues
A are the roots of the characteristic polynomial (2.16) where A = A, is the third
component of the positive equilibrium. From the constant term of this polynomial
we see that the product of the three eigenvalues of J is larger than 1 if 4, >
(1 + pa) V/ceatta. From (2.15) we have the following result.

Theorem 3.1 There exists a number n* > 1 such that positive equilibrium of
the LPA model (2.1)-(2.83) is unstable for n > n*.

Let n1 < n* be the smallest value of n > 1 for which a root of the characteristic
polynomial p(\, A,,) lies on the unit circle. Then 1 < n < n; implies the positive
equilibrium is LAS. The number n; is the smallest candidate for a local bifurcation
point at which the positive equilibrium destabilizes and a bifurcation to another
attractor occurs. Local bifurcations are classified according to the location where
a root leaves the unit circle [17]. Note that A = 1 cannot be a root of p(), A(n))
for any n > 1, as the calculation

P An) = Fptadn+ 3 1 (T madn + o) Anexp (T An) + 57 padn > 0

shows. This implies that certain types of local bifurcations of positive equilibria,
such as transcritical, saddle-node, and pitchfork bifurcations, never occur in the
LPA model for n > 1 [17]. (This is, of course, consistent with the fact that there
is a unique positive equilibrium for n > 1.) There are only two ways the positive
equilibrium can lose stability at ny (or any other value of n > 1): a root of p(A, Ay,)
at n = n; equals either —1 or e for some @ satisfying 0 < § < 7. In the first
case a period doubling bifurcation “generically” occurs in which a 2-cycle comes
into existence. In the second case an invariant loop bifurcation “generically” oc-
curs (sometimes called a Neimark-Sacker or discrete Hopf bifurcation) in which an
aperiodic attractor comes into existence. (Certain technical sufficiency conditions
are needed to guarantee that these bifurcations actually occur [17].) It turns out
that both of these types of local bifurcations are possible, depending on the values
of the model parameters. See Figure 1.

There are few rigorous bifurcation results for the model (2.1)-(2.3). One special
case for which period doubling and invariant loop bifurcation points n; have been
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calculated is when ¢, = 0. In [13] it is shown in this case that p(A, A,) has root

A = —1 when
2
n =n; = exp (—)
Ha

and a pair of complex conjugate roots of magnitude equal to 1 when

K:t
n:m:e,q,(M)
Ha
where

11+r7r
+ o _ - _
K (,Ua;T)— 21_7‘[(7" 3)Na+1]

].].+T 2 1/2

o (10 =3 s + 1P +4 (1= 1) (1= pra) (200 + 1)

While these formulae allow us to draw “parameter maps” that show the boundaries
in parameter space where equilibrium destabilization occurs, rigorous proofs that
local bifurcations occur at these points are currently lacking, as is the determination
of the bifurcation characteristics (e.g., whether the bifurcation is supercritical or
subcritical and whether the non-equilibrium attractors that result are stable or
unstable).

Bifurcations have played a central role in the applications of the LPA model
(2.1)-(2.3). Although the quantity n is a mathematically and biologically use-
ful bifurcation parameter, other model parameters can be used as a bifurcation
parameter. For example, the parameters p, and ¢p, were used in the bifurca-
tion experiments involving Tribolium described in [11]. An interesting special case
arises from the “route-to-chaos” experiment in those studies. In that experiment
e Was experimentally manipulated to equal 0.96 and a complicated sequence of
bifurcations, that included chaotic dynamics, was observed as ¢p, increases. These
bifurcations have only been studied numerically. No rigorous mathematical analysis
has been made of the bifurcation sequence and the chaotic attractors it contains.
The fact that p, = 0.96 in that well-known experiment motivates at study of the
LPA model for p, = 1. Although this case is not covered by some of the basic
results presented in Sec. 2, it turns out to be a mathematically tractable case. A
first study of this case appears in [8].

With p, =1 in (2.1)-(2.3) the coordinate axes are invariant. In fact, orbits on
the axes move sequentially from one to the next, re-visiting each axis every third
step. We call these orbits fully synchronized (a name that derives from the biological
application in which the three life cycle stages are never mutually present). An orbit
is fully synchronized if and only if its initial condition is fully synchronized (i.e.,
contains two zeroes). If we denote every third L component by x

z(t) = L(3t), t=0,1,2,...
we find that z(t) satisfies the so-called Ricker map
z(t +1) = nx(t) exp (—cz(t))
with
n=b(1—-py), ¢c=cea(l—pm)>0.
In so far as fully synchronous orbits are concerned, it follows that the LPA model

with pu, = 1 exhibits the famous period doubling route-to-chaos with respect to the
dynamics at every third step. (A similar result follows if either of the other two
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coordinate axes is considered.) For example, if 1 < n the Ricker equation has a
unique positive equilibrium z = ¢~!Inn. This equilibrium corresponds to a fully
synchronous 3-cycle of the LPA model. The Ricker equilibrium is (asymptotically)
stable and globally attracting (on the positive axis) if 1 < n < e? and consequently
the 3-cycle is (asymptotically) stable and globally attracting with respect to fully
synchronous, positive orbits of the LPA model. For n > e the Ricker equation has a
2-cycle and this 2-cycle corresponds to a fully synchronous 6-cycle of the LPA model.
A cycle of period p of the Ricker equation produces a fully synchronous 3p-cycle
of the LPA model. A quasi-periodic or chaotic orbit of the Ricker map produces a
similar type of fully synchronous orbit of the LPA model. The stability properties
of Ricker orbits is inherited by the LPA orbits when one restricts attention to fully
synchronous orbits (motion on the coordinate axes).

With p, = 1 it is also true that the coordinate planes are invariant and that
an orbit lying in the coordinate planes moves sequentially from one to the other.
Let

denote every third point on an orbit of the LPA model (2.1)-(2.3). An orbit lying in
a coordinate plane (but not on a coordinate axis) always has one zero and is called
partially synchronized. After three steps a partially synchronized orbit returns to
the same coordinate plane. Consider, for example, the (L, A) coordinate plane.
From (2.1)-(2.3) we find that an initial condition in this plane results, at every
third step, in an orbit satisfying the two dimensional system

z(t + 1) = nz(t) exp (—cz(t)) (3.1)
z(t + 1) = [nexp (—ax(t))] 2(t) exp (—Bz(t))

where

Cel + Cpa (]- - /'LI)

B = Cea-

a

This system has nonnegative equilibria
(0,0)

(w): (L1nn,0) ifn>1

(%lnn,%lnn) ifn>1landy>0

where

[lo

1— a (Cea = Cpa) (1 — ) — ce
c

7 B Cea (1 - ,ul)
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A linearization analysis shows the following results:

( 8 ) is a repeller if n > 1

r

is LAS stableif 1 <n < e? and v <0
( llnn ) ) isasaddleif 1 <n <e?, v>0
0 is asaddleif n > €2, vy < 0

is a repeller if n > €2, v >0
is LAS stable if 1 <n < min {e?,e?/7} and v >0
( llnn ) ) is a saddle if ¥ > 1 and €*/7 < n < €?

Zlnn is a saddle if 0 < vy < 1 and e < n < /7
| is a repeller if n > max {e2,e*/"} .

7

Of these many cases, only the case
l<n<elandy<0 (3.3)

has been analyzed in detail.

In the system (3.1)-(3.2) the first equation shows that the z-component sat-
isfies a Ricker equation which is uncoupled from the second equation. Thus, an
initial condition z(0) > 0 equation (3.1) determines a sequence x(t), which when
substituted into equation (3.2) produces a non-autonomous Ricker equation for the
dynamics of the z-component. Under the assumption (3.3) it follows that lim; 4
z(t) = ¢ !'Inn and equation (3.2) becomes “asymptotically autonomous” with a
“limiting equation” obtained by replacing x(t) with its limit ¢ !Ilnn. Let w(t)
denote the solutions of the limiting equation

w(t + 1) = n"w(t) exp (—fw(t)) .

This is a Ricker equation and from (3.3) it follows that lim¢— 1 cw(t) = 0. Known
theorems concerning asymptotically autonomous difference equations [5] relate the
dynamics of this limiting equation to those of (3.2). In [8] these theorems are
used to show that the equilibrium (z,2) = (c’1 Inn, 0) is globally attracting in the
positive (z,z) quadrant.

A completely analogous analysis can also be carried out in the other two coordi-
nate planes with regard to the equilibrium points (z,y) = (0,3~ !Inn) and (y,2) =
(0,47 t1nn). It follows, under assumption (3.3), that all orbits (z(t),y(t), z(t))
starting in a coordinate plane asymptotically equilibrate. What this result means
for the LPA model is that all orbits (L(¢), P(t), A(t)) lying in the coordinate planes
asymptotically approach a 3-cycle located on the coordinate axes, namely the cycle
defined by the three axis points

L lln 0 0
P )= 0 — | gln | — 0 ) (3.4)
A 0 0 %lnn

These three points are also fixed points of the three step (second composite) LPA
map, which we denote by

T1 % In To 0 T3 0
(1 = 0 ) Y2 = % Inn ) Ys = 0
21 0 22 0 23 % Inn

(3.5)
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The cases other than (3.3) provide open problems concerning the asymptotic
dynamics of synchronous orbits of the LPA model when p, = 1. It is worth noting,
however, that in terms of the original model parameters, the condition v < 0 (i.e.,
(Cea — Cpa) (1 — i) — et < 0) holds for the experimentally estimated values of the
parameters in the Tribolium experiments.

Theorem 3.2 [8] Under assumptions
pa=1, 1<n<e® (Ca—Ccpa)(1—m)—ca<0 (3.6)

all synchronous orbits of the LPA model (2.1)-(2.3) tend asymptotically to the fully
synchronous 3-cycle (3.4).

More can be said about the case (3.3). In the full, three dimensional phase
space of the LPA model, the fully synchronous 3-cycle (3.4) is unstable. A calcu-
lation of the products of the Jacobian evaluated at the three points of the 3-cycle
shows, in fact, that the 3-cycle is a saddle, with a two dimensional stable manifold
(the coordinate planes) and a one dimensional unstable manifold [8]. What is the
attractor of nonsynchronous orbits in this case?

We return, for a moment, to the general case of the LPA model when p, = 1.
It was shown in Sec. 2 that there exists a (unique) positive equilibrium when n > 1.
It was also shown that when, in addition, p, < 1 the positive equilibrium is stable
at least for n near 1. It turns out, however, that when p, = 1 this is no longer
true. A tedious perturbation analysis carried out in [8] shows that for all n > 1
near 1 the positive equilibrium is a saddle (with a one dimensional stable manifold
and a two dimension stable manifold on which the equilibrium is a stable spiral).
Therefore, in case (3.3) when n > 1 is close to 1, neither the origin, the positive
equilibrium, nor the fully synchronous 3-cycle are stable attractors.

The reason for the failure of the exchange of stability principle for the tran-
scritical bifurcation at the origin when n = 1 is seen from the Jacobian (2.8) of
the LPA model evaluated at the origin and with pu, = 1. The eigenvalues of that
matrix are the cube roots of n = b(1 — p;) and hence are the cube roots of unity
when n = 1. Thus, when u, = 1 the origin loses stability as n increases through 1
because all three eigenvalues leave the unit circle simultaneously and, as a result,
the bifurcation is “nongeneric”. The eigenvalue that crosses at +1 is associated
with the transcritical bifurcation of two equilibrium branches at n = 1 and the
existence of the positive equilibrium for n > 1. The two complex eigenvalues that
also occur at n = 1 would be associated, in a generic situation (when they were
the only eigenvalues crossing the unit circle at n = 1), with the bifurcation of an
invariant loop. This suggests the bifurcation of an invariant loop from the origin
at n =1.

Although the general invariant loop bifurcation theorem (Neimark/Sacker or
discrete Hopf Theorem) cannot be used for the nongeneric case bifurcation at n = 1,
the existence of an invariant loop can be proved in case (3.3) by a straightforward
analysis as follows. With regard to the dynamics of every third step (the second
composite of the LPA model), the first equilibrium point in (3.5) lies in both the
(z,2) and the (z,y) coordinate planes. We saw above that in the (z,z) plane
all positive orbits tend to this equilibrium while in the (z,y) all orbits tend to
the second equilibrium point in (3.5). Therefore, the (one dimensional) unstable
manifold of the first equilibrium point [6] tends to the second equilibrium point.
That is to say, there a heteroclinic orbit lying in the (z,y) coordinate plane that



The LPA Model 41

connects the first two equilibrium points in (3.5). Similarly, there are heteroclinic
orbits lying in the (y, ) and (z, 2) coordinate planes that connect the second to the
third and the third to the first equilibrium points respectively. This set of three
equilibria and their connecting heteroclinic orbits form an invariant loop. In terms
of the original (one step) LPA model, each of the three equilibria (3.5) correspond,
as initial points, to the three different phases of the 3-cycle (3.4). The heteroclinic
orbits are partially synchronized orbits connecting the three phases of the 3-cycle.

Theorem 3.3 [8] Under assumptions (3.6) there exists an invariant loop for
the LPA model (2.1)-(2.3) having the form of a cycle chain of synchronous or-
bits. The cycle chain consists of the fully synchronous 3-cycle (3.4) and partially
synchronous orbits that heteroclinically connect the three temporal phases of the
3-cycle.

The 3-cycle is unstable in the three dimensional phase space of the LPA model.
When (3.6) holds, numerical simulations suggest, however, that the synchronous
cycle chain on which the 3-cycle lies is an attractor (for nonnegative orbits) at least
for n > 1 close to 1 [8]. A rigorous proof of this is currently unavailable. If this is
true, then we see in this case that the nongeneric bifurcation at n = 1 results in
both a positive equilibrium and an invariant loop, but it is the invariant loop that
inherits the stability from the origin.

Many open questions remain concerning the case p, = 1. When v > 0 replaces
v < 01in (3.6), the equilibrium (z,2) = (¢! Inn,y3~"Inn) gives rise to a partially
synchronous 3-cycle. Does this produce a cycle chain invariant loop for the LPA
model? If so, when is it stable? When n > e? the Ricker equation (3.1) has non-
equilibrium attractors, including chaos. What kind of attractors do these produce
for the planar system (3.1)-(3.2)? What kind of synchronous orbits of the LPA
model do they yield?

Recall that p, = 0.96 has been an important case in applications. Another
open mathematical question is how the dynamics in the case u, = 1 relate to those
when p, is near 1.

4 The periodically forced LPA model

The LPA model (2.1)-(2.3) is an autonomous model; all parameters are as-
sumed constant in time. The majority of models used in the mathematical ecology
literature are autonomous, even though real world ecological systems are likely to
be significantly influenced by external forces. If random external forces are taken
into account (i.e., perturbations in the model system that are described proba-
bilistically rather than deterministically), then a model determines a stochastic
process. At the other extreme, if the external forces have strong pattern of regu-
larity, which can be reasonably modeled deterministically, then the dynamic model
becomes non-autonomous. An example of external fluctuations that can show such
regularity are those related to natural cycles such as daily, monthly, or seasonal
oscillations in physical and/or biological parameters. In laboratory experiments,
such as those carried out using Tribolium and the LPA model, environmental fluc-
tuations can be held to a minimum (temperature, humidity, nutrient availability,
habitat size, etc.). On the other hand, in controlled laboratory experiments one
can also deliberately fluctuate an environmental parameter, in order to study the
resulting effects on the population dynamics. In the case of laboratory cultures of
Tribolium such an experiment was reported by Jillson [26]. In this experiment the
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habitat of the beetle cultures (the volume of flour medium) was changed accord-
ing to a periodic schedule. Jillson noted in one of his experiments (he performed
experiments using several different periodic patterns of volume changes) that the
total biomass of Tribolium was significantly higher in the oscillating habitat than
it was in a habitat held constant at the average volume. This observation was
noteworthy for at least two reasons. First, it suggested that a population manager
might increase yield by periodically oscillating resource availability, rather than
holding it constant. Second, Jillson’s experimental result contradicts what at the
time was a commonly held tenet that fluctuating environments were deleterious to
biological populations [35, 34, 36]. Jillson made no mathematical study of his ex-
periment, but a mathematical explanation of his result has been obtained by using
the LPA model, suitably modified to account for periodically oscillating volumes V'
[4, 7, 18, 19, 22].

If a sequence V (t) > 0 of period p is substituted for V in (2.1)-(2.3), the result
is the periodically forced LPA model

L(t+1) = bA(t) exp (—%L(t) - %A(t)) (4.1)
P(t+1)=(1-m)L{®) (4.2)
A(t+1) = P(t) exp (— ;IEt) A(t)) + (1= pa) A®). (4.3)

An important mathematical problem is to determine the long term dynamics of
solutions with nonnegative initial conditions. It is clear from the equations that
nonnegative (positive) initial conditions produce nonnegative (positive) solutions.

The origin is an equilibrium point of the periodic LPA model (4.1)-(4.3). As
for the autonomous LPA model, the origin is LAS and it globally attracts all non-
negative solutions if n < 1. The proof of this statement follows closely that of the
autonomous case since the inequalities (2.5) remain valid for the periodic model
(4.1)-(4.3).

Suppose n > 1. The linearization of (4.1)-(4.3) at the origin has coefficient
matrix (2.8) which, as we noted in Sec. 2, has a real eigenvalue greater than 1 (if
also pg < 1). Thus, as in the autonomous case, the origin is unstable when n > 1
and po < 1.

Furthermore, when n > 1 solutions of (4.1)-(4.3) are (forward) bounded. The
proof of this fact follows from the same comparison argument given for the au-
tonomous case in Section 2 once the inequalities

0<L(t+1) <bA(t) exp (—%A(t)) < ch”e, fort =0,1,2,...
m pa

OSP(t-i—l)S(l—m)me, fort=1,2,3,...

Cpa®

0<A+1)=Q1Q—-mw)d Vin +(1—pa) At), fort=2,3,4,...
Cpa€
are noted. Here V,;, = maxV (¢) > 0.
The challenge is to determine the asymptotic properties of solutions when n >
1. A first approach is to obtain basic results for the periodic LPA model that
parallel those of the autonomous LPA model in Theorem 2.1. For example, is the
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periodic LPA model (4.1)-(4.3) uniformly persistent with respect to the origin (and
nonnegative orbits) when n > 17 This result has been established for period p = 2
in [22], but has not been proved for periods p > 2. (Perhaps the proof in [22] can be
generalized to the case p > 2.). It is shown in [7] (using degree theory) that when
o < 1 the periodic LPA model has an unbounded continuum of positive p-cycles
for values of n > 1 that bifurcates from the origin at » = 1. This continuum is
the counterpart to the continuum of (unique) positive equilibria that exists for all
n > 1 in the autonomous case. Aside from its unboundedness, little is known about
the continuum and the properties of the p-cycles lying on it. One case that has
been studied in some detail is period p = 2 case.

When p = 2. we can write V(t) = (V) (1 +oz(—1)t) where (V) > 0 is the

average of the cycle and |a| is the relative amplitude. Absorbing (V) into the
coefficients ¢, Ceq, Cpg We write

V() =1+ a(-1) (4.4)

in the periodic LPA model equations (4.1)-(4.3). In [18] it is shown, for a general
class of periodic maps, that the bifurcating continuum of positive p-cycles has a
parameterization (Liapunov-Schmidt expansion) near the origin for n near 1, and
formulas for calculating the lowest order terms are given. When applied to the
p = 2 periodic LPA model, these formulas yield the expansions

Lat) = 7= -+ 0 (|<2]) )
P (t) = paga + O (|€5]) () (4.5)

Ay(t) =eq+ 0O (|Ei|) (t)

a

I 1
n=1+ (cea + 1 —chel +cpa> mea+0 (|E§|)

for the positive 2-cycles near the bifurcation point (i.e., for small €, > 0) [22]. In
each equation O (|e2|) (t) represents terms that are 2-periodic in ¢ and of order
two or higher in g, for small |e,|. The subscript @ denotes dependence on the
(amplitude/phase) parameter a.

The expansions (4.5) can be used to approximate the dominant eigenvalue
associated with the linearization of the model taken at the 2-cycle in order to
determine the cycle’s stability. It turns out that the dominant eigenvalue has the
expansion

1
. f’;m <Cea + l_‘a’ul_cez + cpa) T—atet O (|€2])
and hence is less than 1 for €, > 0 small. This shows that the bifurcating 2-cycles
are LAS for n > 1 close to 1.

These facts about the periodic LPA model are summarized in the theorem
below. More details can be found in [7, 18, 22].

1-2

Theorem 4.1 Assume V(t) > 0 is a p-periodic sequence. The following hold
for the periodically forced LPA model (4.1)-(4.3).

(a) Orbits associated with nonnegative initial conditions are (forward) bounded
and remain in the nonnegative cone for allt =0,1, 2,... .

(b) If n < 1 then the origin is locally asymptotically stable and global attracts
all nonnegative solutions.
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(¢) If uo, < 1 there exists an unbounded continuum of positive p-cycles for
positive values of n > 1 that bifurcates from the origin at n = 1.

(d) If po < 1 and p = 2 then the LPA model is uniformly persistent on the
nonnegative cone with respect to the origin for n > 1.

(e) If po < 1 and p = 2 then the positive equilibrium is locally asymptotically
stable for n > 1 sufficiently close to 1.

There are several interesting, unsolved problems left open by this theorem. Is
the range of n values associated with the continuum in (c) the entire half line n > 1
(i.e., is there a positive p-cycle for every n > 1)? For a given value of n is the
p-cycle from the continuum the only positive cycle? Under what conditions are
the positive p-cycles from the continuum LAS? Unstable? Globally attracting (for
positive orbits)? What kinds of bifurcations do they undergo? Do (d) and (e) hold
for periods p > 2?7 For n > 1 the case p, = 1 has not been studied.

The existence and stability results in Theorem 4.1 do not address the issue of
interest in Jillson’s experiment, namely the unexpected increase in population num-
bers observed in the periodically fluctuating volumes. Although Jillson conducted
experiments using several different periods, he observed an increase in population
numbers only when the period of the flour volume oscillation was p = 2. For this
reason studies of this problem using (4.1)-(4.3) have concentrated on the period
p = 2 case.

To address Jillson’s observation by using the periodic LPA model, we need to
relate the attractor of the periodic model (a # 0) to that of the autonomous model
(a = 0). One way to do this, under the assumption that the attractors in both
cases are cycles (an equilibrium is a 1-cycle), is to compare averages. This can be
done component-wise (comparing the cycle average of the L-stage components and
so on) or, more in keeping with Jillson’s result, using the cycle averages of total
population numbers L + P + A. If the cycle average is greater in the periodic case
(all other model parameters equal), then we say that the periodic forcing has caused
a resonance; if it is less, we say an attenuation occurs as a result of the periodic
forcing.

In general, whether resonance or attenuation occurs in periodically forced dif-
ference equations depends on the type of nonlinearities and on the values of param-
eters that appear in the equations. Resonance never occurs in certain types of one
dimensional monotone maps [10]. On the other hand, for a general class of period
p = 2 forced difference equations that exhibit a bifurcation of positive equilibria
from the origin, Henson [19] gives conditions under which attenuation or resonance
occurs near the bifurcation point [19].

Both attenuation and resonance is possible in the LPA model, depending on
the parameter values. For example, it is shown in [22] that attenuation always
occurs for n > 1 near 1, but that for n is sufficiently large resonance occurs for
some values of the model parameters.

For n > 1 near 1 we can see why attenuation occurs by making use of the
expansions (4.5), from which follow the expansions

(Lat) = 72520 +0 ()

tata + O (|€2))

~
Q

—~~
o~
~—
Nt
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(Aa(t))

n

ea+0(le2))

Ha 1
1+ (Cea + 1_—'[“661 + Cpa) 1_—a26a +0 (|E§|)

for the cycle averages of each 2-cycle component. For autonomous case a = 0 we

have the expansions

Ha
l_Nl
Po = ptago + O (eg)
Ao =e0+ O ([5])

Lo

20+ 0 (1)

ne=1+ (cm T cm) e +0 (|23))

for the positive equilibria for n > 1 near 1. In order to make a comparison between
the equilibria and the cycle averages for the same value of n, we need to choose the
parameter £, so that

1
Toae =

Thus,

Lo = (La(t)) = o 7% -0 + O (|ed)

Py — (Py(t)) = a®piqe0 + O (|63|)
Ao — (Aa(t)) = g0 + O (Jeg]) -
and for g9 > 0 sufficiently small it follows for all & # 0 that
Lo — (Lo(#)y >0, Py—(Py(t)) >0, Ao— (A,(t))>0.

We see that there is a component-wise attenuation for 9 > 0 small (i.e., n > 1 close
to 1). It follows, of course, that there is also an attenuation in total population size

Lo + Po + Ao > (La(t)) + (Pa(t)) + (4a(?)) -
as well.

Theorem 4.2 Consider the 2-periodically forced LPA model (4.1)-(4.8) with
V(t) given by (4.4) and p, < 1. For n > 1 sufficiently close to 1 the locally
asymptotically stable, positive 2-cycles that bifurcate from the origin at n = 1(see
Theorem 4.1) are (component-wise) attenuant.

This Theorem does not provide an explanation of Jillson’s experimental obser-
vation. However, resonance can occur in the periodic LPA model when n > 1 is
sufficiently large. A numerical example appears in Figure 3, in which the positive
2-cycles change from attenuant to resonant as n increases. In [22] sufficient condi-
tions for resonance when n > 1 is large were obtained using regular perturbation
techniques.

Implicit function based proofs show, if n > 1 and pu, < 1, that there exist pos-
itive 2-cycles for |a| sufficiently small, that these cycles are infinitely differentiable
functions of «, and that they approach the equilibrium as a — 0. These 2-cycles
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have Taylor expansions
Lo(t) = Lo + Li(t)a + La(t)a” + O (o) (2)
P,(t) = Py + Pi(t)a + Pa(t)a® + O (o®) (2) (4.6)
An(t) = Ao + A1 (t)a + As(t)a? + O (o) (2)
where O (a3) (t) represents terms that are 2-periodic in ¢ and of order three or
higher in « for small |a| and (Lo, Py, Py) is the positive equilibrium of the au-

tonomous LPA model (which is assumed hyperbolic). It turns out that (L;(t)) =
(P1(t)) = (A1(t)) = 0 and some tedious calculations using (4.6) show

lim (La(t)) — Lo = o Cpakty + 2Ceatta — 2Ceq

2 3
0 4.7
n—-+0o /J%,cpacel o + (a ) ( )

lim (P,(t)) — Py = 2Cpa/~t3 + 2Ceqfla — 2¢Cea

(1—m)e® +0 (a?) (4.8)

n—+o00 /J%Cpacel
: R 3
Jim (Aa() = Ao = 45202 + 0 (o). (4.9)

From the coefficients of o2 in these expressions, one can determine conditions on
the model parameters under which these limits are positive or negative for small
|a|] and hence when the components of the 2-cycle are resonant or attenuant for
large n.

For example, for small amplitudes « and sufficiently large n we see from (4.9)
that the A component of the 2-cycles is resonant. On the other hand, the L and
P components are resonant (attenuant) if cpqp2 + 2Ceqpta — 2¢ea > 0 (< 0). Thus,
we find that it is possible for some components to be resonant while others are
attenuant. By summing the three limits (4.7)-(4.9) we can determine conditions
under with the total population size is resonant or attenuant from the a? coefficient
in

Hm (La(t) + Pa(t) + Aa(t))
n—-+oo
- 9 <(2 _ ,U/l) cpa,,Uzz + 22cea,U/a — 2¢Ceq + 21 2_ Na) a2 +0 (ag) )
Mo CpaCel HaCpa

These results show that the question of resonance posed by Jillson’s experiment
is a complicated one. Moreover, there is yet another issue. In order to be meaningful
in applications the 2-cycles (4.6) must be stable. If the equilibrium (Lg, Py, Ag) is
LAS then, for |a| small, so are the 2-cycles. It turns out, however, that this is
not the case for parameter values estimated from Jillson’s data (see the caption
of Figure 3). Instead, for those parameters the autonomous LPA model has an
unstable equilibrium and the attractor is a 2-cycle.

Consequently, to address Jillson’s resonance question we have to ask what hap-
pens when the LPA model with a stable 2-cycle is periodically forced? A perturba-
tion analysis in a can also be carried out in this case. The result is that for a small
there exist two stable 2-cycles. These cycles result from the two different phases of
the 2-cycle of the autonomous case, but they themselves are not (in general) has
shifts of one another. This result is a corollary of a general theorem of Henson
[20] in which a perturbation analysis is done for a general class of difference equa-
tions when the autonomous case has a stable g-cycle and the system is periodically
forced with period r (also see [41]). Moreover, Henson shows that of all the cycles
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of the forced system that perturb from the phase shifts of the g-cycle at least one
is attenuant and at least one is resonant.

When applied to the LPA model (4.1)-(4.3) and (4.4), Henson’s results show
for the Jillson estimated parameters that there exist two LAS 2-cycles, one resonant
and one attenuant, for small amplitude forcing. Thus, for small o there exist in
this case two stable 2-cycles (perturbations of the phases of the stable 2-cycle of the
autonomous model a = 0) and one unstable 2-cycle (a perturbation of the unstable
equilibrium of the autonomous model o = 0). This multiple attractor scenario has
been experimentally verified by laboratory experiments using Tribolium [21].

In Jillson’s experiment, however, @ = 0.6 and numerical simulations show there
are not multiple attractors, but instead a globally attracting 2-cycle. Numerical
simulations suggest an explanation for this. As « is increased from 0, the unstable
2-cycle and the stable attenuant 2-cycle collide and annihilate one another in a
saddle node bifurcation at approximately a = 0.45 [4], leaving a globally attracting
resonance 2-cycle for o > 0.45. There are at this time no mathematical proofs of
these assertions.

As we see, many challenging mathematical questions concerning periodically
forced difference equations have arisen from applications involving the LPA model.
While some results have been obtained, there remain numerous open questions
concerning the existence, stability, and resonance of cycles induced by periodic
forcing (including a rigorous explanation of the Jillson experiment).

5 Concluding remarks

In this paper I have discussed the LPA model and one of its variations (the
periodically forced LPA model). Other variations of the model have arisen in appli-
cations, most of which have been little studied from a rigorous mathematical point
of view. In this final section, I briefly discuss some of these variations.

Animals come in whole numbers. Even so, most mathematical models in pop-
ulation dynamics utilize state space variables that are continuous. This is the case
of the LPA models in the previous sections. In recent studies it has been shown
how restriction of state variables in the LPA model to a finite lattice of values (such
as whole integers or to a finite number of densities obtained from integers divided
by volume) explains distinctive patterns observed in data that find no explanation
from the continuous state space version of the model [11, 23, 27]. An example of an
“integerized” LPA model results from simply rounding the right hand sides of each
equation (2.1)-(2.3) to the nearest integer. This rather ad hoc mathematical way
of obtaining an integer model can be replaced by a more sophisticated derivation
from an integer valued probabilistic model [11]. The continuous state space LPA
model (2.1)-(2.3) derives from that probabilistic model by taking the expectations
(means) of the random state variables. On the other hand, a deterministic model
that remains integer valued results from the modes of the random state variables.
Thus, the “mean” LPA models treated in this paper can be derived from a sto-
chastic “master” model, but so can an integer valued “mode” LPA model, which it
turns out is given by the difference equations

Lit+1) = floor [bA(t) exp (—%L(t) - %A(t))]
P(t+1) = floor[(1— m)L(t)]
Alt+1) floor [P(t) exp (—%A(t))] + floor [(1 — ) A(2)] .
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(floor [z] is the largest integer less than or equal to ). The mathematical properties
of such integerized versions of the LPA model have not been studied in a systematic
or rigorous way. It is not difficult to show that the nonnegative cone (on the lattice)
is forward invariant for these integerized LPA models, that all nonnegative orbits
are bounded, and, as a result, that all orbits become periodic after a finite number
of steps. However, a study remains to be made of the set of final periodic states,
their uniqueness or lack of uniqueness, their regions of attraction, and so on. Other
interesting questions concern the relationship among the dynamics of the mean,
integer, and random LPA models; see [11, 27, 24].

A genetics variation of the LPA model has recently played a role in experimental
studies of how genetic adaptation can alter a population’s dynamics. For the case
of 2 alleles at a single locus the model takes the form [3]

Li(t+1) = st 00 (ObAW) exp (e L(t) = ceu A(D)

Pi(t+1) = (1 — i) Li(t) (5.1)
Ai(t+1) = Pi(t) exp (—cpaA(t)) + (1 — pa) Ai(2)

where ¢ = 0,1,2 and

L(t) =Y Li(t), Pt =) PR(t), A®t)=) At
i=0 =0 =0
plo) = 228D g =100,

(A number of simplifying biological assumptions have been made in order to at-
tain this model, including random mating, a Hardy-Weinberg distribution of newly
formed zygotes, and the restriction that all three genotypes have the same canni-
balism coefficients and adult stage survival rates.) In this model Ly and Lo are the
larval numbers of the homozygote population and L; is the larval numbers of the
heterozygote population. The notation is similar for the pupal and adult stages P;
and A;.

If initially only the homozygote population ¢ = 0 is present, then the nine
dimensional genetics LPA model (5.1) reduces to the three dimensional LPA model
(2.1)-(2.3) with L(t) = Lo(t), P(t) = Po(t), A(t) = Ag(t)-

With other genetic strains present, some algebraic manipulations show that the
total numbers L, P, and A satisfy the equations

L(t +1) = b(t)A(t) exp (—car L(t) — cea A(t))
P(t+1) = (1— m(t = 1)) L(t) (5.2)
At +1) = P(t) exp (—cpaA(t)) + (1 — pa) Af)
where
b(t) = p*(t)bo + 2p(t)a(t)br + ¢* (t)b2
P*(O)boru0 +2p(t)a()brju + ¢* (H)bopu,>
b(t) '
From the similarity of the equations (5.2) and the LPA model (2.1)-(2.3) one can

see how the genetics (embodied in b(t) and p;(t)) cause the parameters b and y; in
the LPA model to change with time. From this point of view, genetic change and
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adaptation in a population is expressed as parameter changes in the LPA model.
As we have seen, parameter changes in the LPA model can result in dynamic
bifurcations. The experiment reported in [3] (involving the adaptation of species
of Tribolium to the pesticide malathion) documented such dynamic changes as
predicted by the genetic LPA model (5.1).

A mixture of population dynamics and genetics is unusual in biomathematical
modeling. This, together with its role in the genetics experiments involving flour
beetles, make the genetics LPA model (5.1) an interesting model to investigate
mathematically. There has been virtually no analysis made of the model.

Another interesting variation of the LPA model arises from the historical im-
portance of Tribolium in the theory of ecological competition. During the formu-
lation of competition theory in the 1940-1950’s, laboratory experiments utilizing
two species of Tribolium were influential is establishing some fundamental princi-
ples relating to the concepts of ecological niche, limiting similarity of species, and
competitive exclusion or coexistence [37, 38, 39, 40]. A basic tenet was formulated
that an ecological community could have no more species than the number of avail-
able (limited) resources and, in particular, that two similar species relying on one
resource could not coexist indefinitely. This principle is supported by many mathe-
matical models (including the famous two species model of Lotka/Volterra). Given
this history and the recent establishment of the LPA model as an accurate model
for the dynamics of Tribolium, it is interesting to consider a competition version of
the LPA model.

In particular, it is interesting to compare the predictions of a LPA competi-
tion model to those of the classical Lotka/Volterra model (and similar competition
models). Such a study was initiated in [14]. The competition LPA model results
from two copies of the system (2.1)-(2.3) which have been coupled as follows:

(t+1) = BA(t) exp (—CETLL(t) - CE7AA(t)) exp (—%l(t) - c‘]i“a(t))
P(t+1)=(1—pg)L(t)
At +1) = P(t) exp (—%A(t)) exp (—C‘i“a(t)) + (1 pa) At)

It + 1) = bAa(t) exp (—%Z(t) - %“a(t)) exp (—%L(t) - ";f‘ A(t))
p(t+1) =1 —m)i?)

a(t + 1) = p(t) exp (—%"a(t)) exp (—C%‘A(t)) + (1= pa) a(t).

Some results concerning asymptotic dynamics appear in [14], including analyses
of the extinction equilibrium (in which both species are absent) and the competi-
tive exclusion equilibria (in which one species is absent), a persistence result when
both ny = B(1 —pr) /ua > 1 and ne = b(1 — ) /pe > 1, and some existence
and bifurcation results for coexistence (positive) equilibria. However, a great deal
is unknown about the asymptotic dynamics of this six dimensional system (the
properties of attractors, their uniqueness or lack of uniqueness, their bifurcations
as parameters change, and so on). Given the model’s high dimensionality and
large number of parameters, it perhaps comes as no surprise that complicated
non-equilibrium dynamics are possible, including chaotic dynamics [14], unlike the
famous Lotka/Volterra equations.
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Interestingly, recent numerical studies have also shown that the model can
possess scenarios that are not found in classical competition theory [14, 15]. For
example, it is possible for the system to possess two exclusion attractors (equilibria)
and a coexistence attractor (a 2-cycle in which both species are present) and, as
a result, whether or not one species goes extinct or both coexist depends on the
initial conditions. (There is even some evidence for this scenario in the historical
experiments involving Tribolium carried out by T. Park [15].) Currently there
is no mathematical proof of this dynamic scenario, or for any of the many other
complicated scenarios of multiple attractors that have been discovered by numerical
simulations.

Difference equations have a long history of application to population dynamics.
The LPA model has a distinctive place in that history because of its close ties with
data and of its key role in a long list of experimental studies. For a mathematician
the model, and its many variations, provide many interesting problems to study
and abundant opportunities to make meaningful contributions to both theoretical
and applied population biology.
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F1cURE 1. Bifurcation diagrams are shown in which the total “pop-
ulation size” L+ P+ A of the attractor of the LPA model (2.1)-(2.3)
is plotted against n. In both plots p; = 0.2, ¢ = 0.01, ¢, = 0.01,
¢pa = 0.005, and V =1. In (a) p, = 0.5 and in (b) p, = 0.96.
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FIGURE 2. (a) The cycle chain in Theorem 3.3 is shown for parameter
values o, = 1, py = 0.5, cey = 0.007, cee = 0.01, ¢, = 0.01, and
V = 1. (b) A positive orbit is shown approaching the cycle chain
in (a). Initial conditions are (L(0), P(0), A(0)) = (4,2,2). Several
consecutive points are connected by straight lines in order to show
the temporal sequence.
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FIGURE 3. The solid line shows the equilibrium total population
size T = L + P + A of the autonomous LPA model as a function of
n = b(1— )/ 1. Parameter values are those estimated from the con-
trol cultures of Jillson’s experiment [12]: p, = 0.1542, p; = 0.4794,
cer = 0.0584, ¢, = 0.0058, ¢pq = 0.0105, b = 4.445 with V =1 (rep-
resenting the volume occupied by the standard laboratory volume of
20g of flour medium). The lines of solid circles show the maxima Tiax
and minima T;, of the positive 2-cycles from the periodically forced
LPA model with the same parameter values and a = 0.6 (which is
the relative amplitude of Jillson’s resonance experiment). The line of
open circles shows the cycle averages (T') = (Tmax + Tmin)/2 of the
2-cycles. For n less than 2.8 (approximately) the cycle averages are
less than the equilibria; they are greater for n greater than 2.8. For
n greater than 3 (approximately) even the cycle minima are greater
than the equilibria. This diagram is consistent with the attenuation
assertion of Theorem 4.2, but shows resonance for n sufficiently large.
Note that the estimated value of n = 15.18 for Jillson’s experiment
does not appear in this graph.
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