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Abstract In many stage-structured species, different life stages often occupy sepa-
rate spatial niches in a heterogeneous environment. Life stages of the giant flour bee-
tle Tribolium brevicornis (Leconte), in particular adults and pupae, occupy different
locations in a homogeneous habitat. This unique spatial pattern does not occur in the
well-studied stored grain pests T. castaneum (Herbst) and T. confusum (Duval). We
propose density dependent dispersal as a causal mechanism for this spatial pattern.
We model and explore the spatial dynamics of T. brevicornis with a set of four den-
sity dependent integrodifference and difference equations. The spatial model exhibits
multiple attractors: a spatially uniform attractor and a patchy attractor with pupae
and adults spatially separated. The model attractors are consistent with experimental
observations.
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1 Introduction

Spatial segregation of life stages is a common occurrence in stage-structured species.
In many circumstances, the spatial separation of life stages occurs in heterogeneous
environments, resulting in each stage occupying a separate spatial niche (Jormalainen
and Shuster 1997; Ribes et al. 1996; Hill 1988; Hunte and Myers 1984). In cannibal-
istic species, the physical separation of predator and prey stages can serve to reduce
predation mortality. There is evidence of the vulnerable stage moving in response to
the cannibalistic stage (Leonardsson 1991), suggesting that the spatial distribution of
life cycle stages in certain cannibalistic species may be the result of density dependent
avoidance mechanisms.

Density dependent dispersal mechanisms can also be found in aphids. Aphid lar-
vae can develop into one of two adult morphs—winged or wingless. Studies reveal
that the proportion of adults having the winged morph (which aids in dispersal of the
population) is density dependent, changing with the number of tactile encounters lar-
vae have with other aphids (Harrison 1980). Another example of a density dependent
polymorphism affecting dispersal ability is wing length in the brown planthopper
Nilaparvata lugens (Kisimoto 1956). Nymphs developing under crowded conditions
lead to a greater fraction of long-winged adults.

The spatial segregation of pupae and adults in the giant flour beetle Tribolium bre-
vicornis in a homogeneous habitat suggests that life stage interactions alone may be
sufficient for the formation of nonuniform spatial patterns. While the giant flour bee-
tle is a cannibalistic species, the vulnerable stages are immobile and, therefore, unable
to avoid cannibalism directly. Our hypothesis is that the spatial patterns of T. brevi-
cornis are the consequence of density dependent dispersal driven by the interactions
among the life stages.

We begin by presenting the observed spatial patterns in flour beetle populations
that motivated this work. Next, we discuss the unique biological features of the
species T. brevicornis and write a difference equation model to describe its popula-
tion dynamics. We then develop a stage structured integrodifference equation model
to describe the spatial dynamics and give conditions under which density dependent
dispersal can lead to spatial segregation of the life stages.

2 Empirical Spatial Patterns

On the surface of a homogeneous container of flour, adults and pupae of the giant
flour beetle T. brevicornis cluster in separate life stage groups rather than disperse
uniformly over the surface of the media (Fig. 1). The segregation of the life stages
has not been reported in any of the other 25 species in the genus Tribolium. However,
there is evidence of spatial segregation in the depth distribution of larvae and adults
of T. castaneum and T. confusum in cylindrical vials of flour (Ghent 1966) that may
result from density dependent dispersal (Robertson and Cushing 2011a, 2011b).

Patterns similar to those in Fig. 1, showing the segregation of adults and the other
life stages, are seen on the surface of domains of many different shapes and sizes,
including rectangular boxes and cylindrical vials. Adults have been observed aggre-
gating along the boundaries of the domains as well as in the interior. The specific
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Fig. 1 Culture of T. brevicornis
showing segregation of adults
(black, in two dense clusters)
and pupae (tan colored,
primarily on the left side and
top) in a 12′′ by 9′′ box

location of the adults varies greatly among cultures, even among containers of the
same size and shape.

3 Genus Perspective

There are 26 species of flour beetles in the genus Tribolium. T. castaneum and T. con-
fusum are major pests of stored grain in the world and are the most extensively studied
species of the genus. Among the species in the genus there are currently five known
types of interactions among the life stages: larvae eat eggs, adults eat eggs, adults eat
pupae, adults inhibit larval metamorphosis, and larvae inhibit larval metamorphosis.
These interactions appear in different species in different combinations. They do not
all appear in any one species. In cultures with two or more species, these interactions
form the basis for competition in this genus. The time spent in each life stage also
varies among species. In this section, we focus on the species T. brevicornis, com-
paring and contrasting it with T. castaneum (we note T. castaneum and T. confusum
share the same stage transitions and interactions).

3.1 Species Comparison

The species T. brevicornis and T. castaneum have four life stages: egg, larva,
pupa, and adult. The larvae and adults of both species eat eggs. However, there
are several major biological differences between the species (Sokoloff et al. 1980;
Jillson and Costantino 1980). First, T. brevicornis adults inhibit larval metamorpho-
sis (Jillson and Costantino 1980) which does not occur in T. castaneum. T. brevicornis
larvae may remain in the larval stage indefinitely until local adult densities lower and
they can pupate. Secondly, the innate length of the larval stage for T. brevicornis (in
the absence of adults) is four weeks, two weeks longer than T. castaneum. Larvae
are noticeably larger and more mobile in the latter 2-week period than the former.
A third notable biological difference between these species is the absence of pupal
cannibalism by adults in T. brevicornis. Pupal cannibalism is a mechanism that con-
trols adult recruitment in T. castaneum; T. brevicornis has the alternate control mech-
anism of inhibition. The life cycles for T. castaneum and T. brevicornis are shown in
Fig. 2.
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Fig. 2 Life cycles of Tribolium castaneum (left) and T. brevicornis (right). Solid arrows indicate tran-
sitions between life stages. Dotted lines denote interstage predation; both species exhibit cannibalism of
eggs by larvae and adults, and T. castaneum adults also cannibalize pupae. The dot-dashed line indicates
inhibition; T. brevicornis larvae are prevented from pupating in the presence of high adult densities, and
can remain in the larval stage until local adult densities are low enough to complete their life cycle

In order to model the spatial dynamics observed in T. brevicornis, we first need a
nonspatial model to describe the population dynamics of the species. The dynamics of
T. castaneum are well described by a system of three nonlinear difference equations
known as the Larva–Pupa–Adult or LPA model (Cushing 2004; Cushing et al. 2003;
Dennis et al. 1995). We note eggs are not modeled, as the length of the egg stage
is short relative to the other three stages (Dennis et al. 1995). In the next section,
we present the LPA model and then modify it to take into account the biological
differences between these species.

3.2 LPA Model of T. castaneum

The LPA model is a stage-structured nonlinear difference equation model designed
to describe the population dynamics of the flour beetle T. castaneum (Cushing 2004):

Lt+1 = bAt exp(−celLt − ceaAt )

Pt+1 = (1 − μL)Lt

At+1 = Pt exp(−cpaAt ) + (1 − μA)At

(1)

Lt , Pt , and At represent the number of individuals in the L-stage (feeding larvae),
P-stage (which includes nonfeeding larvae, pupae, and callow adults) and A-stage
(sexually mature adults) at time t , respectively. The time step for the model is 2
weeks, the amount of time spent in the L and P stages. Recruitment into the larval
class occurs at an inherent rate b, and eggs must survive cannibalism by larvae and
adults in order to become larvae. The term exp(−celLt − ceaAt ) represents the sur-
vival rate of eggs per unit time, where cel ≥ 0 and cea ≥ 0 are cannibalism coefficients
of eggs by larvae and eggs by adults, respectively. The larval death rate is denoted
by μL, 0 < μL < 1. The death rate of pupae is negligible, so no μP term is included
in the model. Pupae must escape cannibalism by adults (cpa) to emerge as adults at
the next time step. Adults die at a rate μA, 0 < μA < 1, and so the fraction of adults
surviving to the next census is (1 −μA). A flow diagram of the LPA model depicting
transitions between life stages is given in Fig. 3. We note that while the LPA model
was originally developed for T. castaneum, it has also been successful at modeling
the dynamics of T. confusum (Benoit et al. 1998).
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Fig. 3 Flow diagram of the
LPA model (1) for Tribolium
castaneum. The time step
between stages is two weeks

3.3 SLPA Model of T. brevicornis

In this section, we modify the LPA model to incorporate the biology of T. brevicor-
nis. In order to account for the longer larval stage, we split the L stage of the LPA
model into two new stages and denote them by S and L. St represents the number
of younger or “small” larvae at time t and Lt now represents the number of “large”
larvae at time t . This class includes third week and fourth week old larvae, as well as
older larvae who have failed to pupate due to inhibition. The time step of the model
remains 2 weeks. We model inhibition with a Ricker type, or exponential, nonlin-
earity. This is appropriate given the assumption that inhibition is a result of random
tactile encounters of larvae with adults at a rate ki and the fraction of larvae inhibited
increases with the density of adults. This is the same modeling methodology used to
describe cannibalism (Cushing et al. 2003). T. brevicornis eggs are subject to canni-
balism by small larvae as well as large larvae. Since large larvae have been observed
to be more voracious eaters than small larvae, we allow each larval stage its own can-
nibalism rate (Hastings and Costantino 1991). Thus, ces is the cannibalism coefficient
of eggs by small larvae, and cel is the cannibalism coefficient of eggs by large lar-
vae. Since adults do not eat pupae the coefficient for this term, which appears in the
LPA model, is zero (Jillson and Costantino 1980). Pupal mortality is zero. The SLPA
(Small larva–Large larva–Pupa–Adult) model is given by the following equations:

St+1 = bAt exp(−cesSt − celLt − ceaAt )

Lt+1 = St + (1 − μL)
(
1 − exp(−kiAt )

)
Lt

Pt+1 = (1 − μL) exp(−kiAt )Lt

At+1 = Pt + (1 − μA)At .

(2)

As in the LPA model, Pt represents the number of nonfeeding larvae, pupae, and
callow adults, and At represents the number of sexually mature adults at time t . We
note that when the inhibition constant ki = 0, all surviving large larvae pupate after
one time step. If either the inhibition constant or adult density is large, the fraction
of large larvae pupating will be small. A flow diagram of the SLPA model depicting
transitions between life stages is given in Fig. 4. The SLPA model (2) can also be
written in matrix form:

�nt+1 = P̂ (�nt )�nt (3)

where

�nt =

⎛

⎜
⎜
⎝

St

Lt

Pt

At

⎞

⎟
⎟
⎠ (4)
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Fig. 4 Flow diagram of the SLPA model (2) for Tribolium brevicornis. The time step between stages is
two weeks

Table 1 Maximum likelihood
parameter estimates for the
SLPA model. (∗μA calculated
from data)

Parameter Estimate

b 11.4096

ces 0.0135

cel 0.0169

cea 0.0223

μL 0.1339

ki 0.0194
∗μA 0.0158

and

P̂ (�nt ) =

⎡

⎢⎢⎢
⎣

0 0 0 b exp(−cesSt − celLt − ceaAt )

1 (1 − μL)(1 − exp(−kiAt )) 0 0

0 (1 − μL) exp(−kiAt ) 0 0

0 0 1 1 − μA

⎤

⎥⎥⎥
⎦

(5)

In order to construct a spatial model for T. brevicornis, maximum likelihood
parameter estimates were first calculated for the non-spatial SLPA model. Details
are given in Robertson (2009), and follow the parameterization methodology out-
lined in Dennis et al. (1995). The adult death rate, μA, was not included in the
maximum likelihood parameterization but rather calculated directly as μA = 0.0158
based on recorded observations of the number of dead adults at each census. Thus,
there are 6 remaining unknown parameters in the deterministic model equations.
Maximum likelihood estimates for these parameters are given in Table 1. The
deterministic SLPA model with the maximum likelihood parameter estimates in
Table 1 predicts a equilibrium. The equilibrium stage vector is (S∗,L∗,P ∗,A∗) =
(12.21,71.77,2.59,163.84). Numerical simulations show that as the inhibition pa-
rameter ki increases, all other parameters remaining fixed, the number of large larvae
in the equilibrium stage vector increases until eventually L is the dominant stage with
L∗ > A∗.
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4 The Spatial SLPA Model

In this section we construct a spatial extension of the SLPA model on a spatial do-
main Ω , following the modeling methodology for structured populations with density
dependent dispersal developed in Robertson (2009). We assume that population dy-
namics (reproduction and class transitions) occur first each time step, followed by
dispersal, using general stage-structured integrodifference equation models that in-
corporate density dependent dispersal in two ways.

For each stage j , j ∈ {S,L,P,A}, density may affect an individual’s probabil-
ity of dispersing (determined by a decision function, γj ), and/or the probability of
moving to another spatial location, given dispersal occurs (determined by a dispersal
kernel, Kj ). In general, these processes may depend on the density of any stage at
any spatial location(s), in addition to possible explicit spatial dependence.

These kinds of spatial models have been successfully applied to T. castaneum and
T. confusum (Robertson and Cushing 2011a). Theoretical treatments of equations of
this type can be found in Robertson (2009), Robertson and Cushing (2011b).

Not all life-stages of T. brevicornis disperse. Pupae are sedentary, so γP
.= 0. Since

younger larvae in their first 2 weeks are smaller and slower than older larvae, we make
the simplifying assumption that larvae in the S class do not disperse (γS

.= 0). This
is consistent with observations of T. brevicornis cultures. The remaining two stages,
L and A, are dispersers. We assume adults always disperse (γA

.= 1) and the fraction
of large larvae dispersing depends on the local density of adults.

Although the patterns observed in T. brevicornis have all been on a two-
dimensional surface, we take advantage of an approximate cross-sectional symmetry
in some patterns observed in T. brevicornis (namely, those in Figs. 11 and 12, de-
scribed in Sect. 6) and model one spatial dimension by choosing Ω to be a finite
interval [0,M]. We note there were no inherent or observed heterogeneities in the
surface habitat, as the incubator where cultures were kept is dark and all locations
were under the same temperature and humidity conditions. For modeling dispersal
on this domain, we assume no explicit spatial dependence of movement. Rather, we
assume that adult beetles tend to prefer locations with lower pupal densities than their
starting location. This is biologically reasonable since pupae are more likely to pu-
pate and enter the sexually mature adult class with a lower incidence of tactile contact
with adults. Recall that adults do not eat pupae. We incorporate density dependent
dispersal into the adult kernel by an exponentially decreasing function of pupal den-
sity, recalling pupal density is determined by the density of larvae and adults at the
previous time step. Specifically, KA = KA(�nt (x)) where

KA

(�nt (x)
) .= 1

C
exp

{−DAP

(
(1 − μL) exp

{−kiAt (x)
}
Lt(x)

)}
. (6)

Here, C is a normalization constant to ensure the integral over space of KA is equal
to one and DAP denotes the sensitivity of adults to pupae.

Large larvae do not avoid small larvae or pupae; they do avoid adults. With high
adult densities large larvae are inhibited and are unable to pupate; consequently, con-
sistent with the biology we assume that local adult density affects the fraction of large
larvae dispersing at any time and location. We model the fraction of large larvae dis-
persing at each time step by an increasing function of local adult density, making
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the simplifying assumption that dispersing large larvae then redistribute uniformly
over the entire habitat. These assumptions lead to the following decision function
and dispersal kernel for large larvae:

γL

(�nt (x)
) .= 1 − exp

{−DLA

(
Pt (x) + (1 − μA)At (x)

)}
, (7)

KL
.= 1

M
(8)

where DLA represents sensitivity of larvae to adults.
Incorporating the dispersal kernels, decision functions, and SLPA population dy-

namics, we arrive at the following spatial SLPA model written in matrix form—
a stage-structured density dependent integrodifference equation model on the homo-
geneous spatial domain Ω = [0,M]:

�nt+1(x) =
∫ M

0
K

(�nt (x)
)
Γ

(�nt (y)
)
P̂

(�nt (y)
)�nt (y)dy

+ (
I − Γ

(�nt (x)
))

P̂
(�nt (x)

)�nt (x) (9)

where K(�nt (x)) = diag(0,KL,0,KA(�nt (x))) with KL and KA(�nt (x)) as in (8)
and (6), Γ (�nt (x)) = diag(0, γL(�nt (x)),0,1) with γL(�nt (x)) as in (7), and P̂ (�nt (x))

as given by (5). We can also write (9) as the following system of difference and inte-
grodifference equations:

St+1(x) = bAt (x) exp
{−cesSt (x) − celLt (x) − ceaAt (x)

}

Lt+1(x) =
∫ M

0

1

M

[
1 − exp

{−DLA

(
Pt(y) + (1 − μA)At (y)

)}]

× [
St (y) + (1 − μL)

(
1 − exp

{−kiAt (y)
})

Lt(y)
]
dy

+ exp
{−DLA

(
Pt (x) + (1 − μA)At (x)

)}

× [
St (x) + (1 − μL)

(
1 − exp

{−kiAt (x)
})

Lt(x)
]

Pt+1(x) = (1 − μL) exp
{−kiAt (x)

}
Lt(x)

At+1(x) =
∫ M

0

1

C
exp

{−DAP

(
(1 − μL) exp

{−kiAt (x)
}
Lt(x)

)}

× [
Pt(y) + (1 − μA)At (y)

]
dy.

(10)

In cultures of T. brevicornis, animals can occupy space right up to the boundary, but
cannot pass through the boundary walls. We note this model preserves such no-flux
boundary conditions at both endpoints. That is, if ∂

∂x
�n0|x=0,π = 0, then ∂

∂x
�nt |x=0,π =

0 for all t > 0.

5 Model Simulation Results

To simulate this model, we must first choose initial conditions. We note that an initial
condition with a uniform spatial distribution will remain a uniform spatial distribu-
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Fig. 5 Equilibrium attractor of
spatial SLPA model. Attractor is
spatially uniform with
(Se,Le,Pe,Ae) =
(12.21,71.77,2.59,163.8).
Parameter values used for SLPA
model are maximum likelihood
estimates: b = 11.41,
μL = 0.134, μA = 0.0158,
ces = 0.0135, cea = 0.0223,
cel = 0.0169, ki = 0.0194.
DAP = 1, DLA = 0.05, and
M = 1. Initial condition:
L0 = 100, A0 = 0 on the
subinterval of domain [0,0.25]

tion for all time since no preferences for different spatial locations are built into the
model. Rather, the fraction of individuals leaving or settling at a given location de-
pends only on the population density at that location. There are many non-uniform
initial distributions one could consider. We restrict our investigation to initial con-
ditions (0,L0(x),0,A0(x)). We can think of this initial condition as representing a
biological invasion of a new environment; the only possible invaders are the dispers-
ing stages, L and A.

We subject our initial vector (0,L0(x),0,A0(x)) to a uniform distribution on a
subinterval of the spatial domain [0,m]. Thus L0(x) = CL, A0(x) = CA for 0 ≤ x ≤
m < M and L0(x) = 0,A0(x) = 0 for m < x ≤ M . These initial conditions can be
easily reproduced experimentally.

Extensive numerical simulations show that for this set of initial conditions, under
the maximum likelihood SLPA model parameter estimates in Table 1, the spatial
SLPA model admits multiple attractors. These attractors include a spatially uniform
distribution and a “patchy” distribution.

The patchy attractor consists of a spatially uniform equilibrium (Se,Le,Pe,Ae)

on [0,m] and a spatially uniform equilibrium (S∗
e ,L∗

e ,P
∗
e ,A∗

e ) on (m,M]. For DAP

large enough, adults are essentially restricted to either [0,m] or (m,M] with in-
creased densities of pupae in the other patch. Thus, the model predicts that pupae
form a “nest,” i.e., a patch of pupae not occupied by adults. As we will see in Sect. 6,
these nests have been observed in experimental cultures of T. brevicornis.

These findings are illustrated in Figs. 5 and 6, which show the uniform and patch
attractors resulting from the same set of parameter values (SLPA model parameters
from Table 1, DAP = 1, DLA = 0.05), but different initial conditions. Note that
the domain size M does not affect model attractors. For simulations in this paper,
we used M = 1 and m = 0.25. In Fig. 5, the initial conditions are L0(x) = 100,
A0(x) = 0 for x ∈ [0,0.25] and the attractor is a spatially uniform equilibrium with
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Fig. 6 Equilibrium attractor of
spatial SLPA model, consisting
of two patches with
(Se,Le,Pe,Ae) =
(0.015,13.93,12.06,0.0016) on
[0,0.25] and
(S∗

e ,L∗
e ,P ∗

e ,A∗
e ) =

(6.58,13.92,0.08,259.4) on
(0.25,1]. Parameter values used
for SLPA model are the
maximum likelihood estimates:
b = 11.41, μL = 0.134,
μA = 0.0158, ces = 0.0135,
cea = 0.0223, cel = 0.0169,
ki = 0.0194. DAP = 1,
DLA = 0.05, m = 0.25, and
M = 1. Initial condition:
A0 = 100, L0 = 0 on the
subinterval of domain [0,0.25]

(Se,Le,Pe,Ae) = (12.21,71.77,2.59,163.8). In Fig. 6, the initial conditions are
L0(x) = 0, A0(x) = 100 for x ∈ [0,0.25], and the result is a two patch spatial dis-
tribution that equilibrates in time. The population density on the left patch [0,0.25]
is (Se,Le,Pe,Ae) = (0.015,13.92,12.06,0.0016) and the population density on the
right patch (0.25,1] is (S∗

e ,L∗
e ,P

∗
e ,A∗

e ) = (6.58,13.92,0.08,259.4).
The two attractors in Figs. 5 and 6 are not the only possible attractors for this set

of parameter values, but they are the most common for the set of initial conditions
we investigated (a uniform distribution of dispersing stages on a subinterval of the
domain) and they are also the two attractors seen in the laboratory, as described in
Sect. 6. The initial condition L0(x) = 0, A0(x) = 25 for x ∈ [0,0.25] (see Fig. 7)
results in a third type of attractor, a nonequilibrium “recurrent nest” characterized by
time intervals where one patch has increased densities of pupae and essentially no
adults present.

All initial conditions of the form (0,CL,0,0), x ∈ [0,m] converge to the spatially
uniform attractor. Initial conditions of the form (0,0,0,CA), x ∈ [0,m] may result
in the patch attractor, the spatially uniform attractor, or another attractor (such as the
recurrent nest) depending on the value of CA and m. Basins of attraction are shown
in Fig. 8.

When inhibition is absent (ki = 0) the patchy distribution was not found after
extensive numerical simulation. The only attractor observed was the spatially uniform
distribution, suggesting that inhibition is an important factor for the segregation of life
cycle stages in a homogeneous habitat.

The initial condition of L0(x) = 0, A0(x) = 100 on the left quarter of the domain
(x ∈ [0,0.25]) leads to a patchy attractor for many values of the inhibition coefficient
ki , including 0.01 ≤ ki ≤ 0.1. For these same values of ki , an initial condition of
L0(x) = 100, A0(x) = 0 for x ∈ [0,0.25] leads to a spatially uniform attractor.
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Fig. 7 Recurrent nest attractor of spatial SLPA model, characterized by periods of low adult density
and high pupal density in one patch. The left patch is the interval [0,0.25] and the right patch is
the interval (0.25,1]. Parameter values used for SLPA model are the maximum likelihood estimates:
b = 11.41, μL = 0.134, μA = 0.0158, ces = 0.0135, cea = 0.0223, cel = 0.0169, ki = 0.0194. DAP = 1,
DLA = 0.05, m = 0.25 and M = 1. Initial condition: A0 = 25, L0 = 0 on the subinterval of domain
[0,0.25]

Fig. 8 Basins of attraction for spatial SLPA model with initial conditions of the form (0,0,0,CA) on the
subinterval of the domain [0,m]. Model (10) was simulated for values of CA between 0 and 2100 in incre-
ments of 10, and values of m between 0 and 1 in increments of 0.01. Initial conditions converging to the
patchy attractor are shown in gray, those converging to the spatially uniform attractor are shown in black,
and initial conditions resulting in other attractors, such as the recurrent nest, are left white. Model pa-
rameters: b = 11.41, μL = 0.134, μA = 0.0158, ces = 0.0135, cea = 0.0223, cel = 0.0169, ki = 0.0194,
DAP = 1 and DLA = 0.05, M = 1. An increase in DAP to DAP = 2 extends the basin of attraction of
the patchy attractor to the right, while an increase in DLA to DLA = 0.5 lowers the boundary marking the
transition to the spatially uniform attractor. When ki = 0, all initial conditions shown here converge to the
spatially uniform attractor

Figure 9 shows how the spatially uniform and patchy attractors change as inhi-
bition increases. While the patchy attractor remains almost constant as ki increases,
the spatially uniform attractor is more sensitive to the degree of inhibition. As ki in-
creases, the densities of small and large larvae increase while the densities of pupae
and adults decrease.



502 S.L. Robertson et al.

Fig. 9 Comparison of equilibrium stage densities for patchy and uniform attractors as a function of in-
hibition, ki , on the spatial domain [0,1]. Black curves represent the equilibrium density of the spatially
uniform attractor. Simulations were started with an initial distribution of L0(x) = 100, A0(x) = 0 on
[0,0.25]. The grey curves represent the equilibrium densities of the patchy attractor; the dashed line gives
the density in the left patch (0 ≤ x ≤ 0.25) and the dot-dashed line gives the density in the right patch.
Simulations were started with an initial distribution of L0(x) = 0, A0(x) = 100 on [0,0.25]. All other
parameter values used (for all simulations) were: b = 11.41, μL = 0.134, μA = 0.0158, ces = 0.0135,
cea = 0.0223, cel = 0.0169, DAP = 1, and DLA = 0.05

We can also compare the total population size, as well as the number of individuals
in each stage, for the two attractors. Figure 10 shows that as the degree of inhibition ki

increases (i.e. it takes fewer adults to inhibit the same fraction of large larvae) the total
population size decreases for both attractors. Yet the difference in total population
size between the attractors also decreases and for ki large enough the total population
size is greater for the patchy distribution than the uniform distribution. The relative
density of each of the classes also changes as the degree of inhibition increases. For
ki = 0.01, we see from Fig. 10 that the uniform attractor has a larger total density of
all stages compared to the patchy attractor. For ki = 0.0194 (the maximum likelihood
parameter estimate for historical T. brevicornis census data), the patchy attractor has
a greater number of pupae and adults.

6 Comparison of Model Predictions and Experimental Observations

Patterns similar to those in Fig. 1 are seen in a box similar in size but that can be
subdivided into smaller rectangles by inserting removable panels. Figure 11 shows
three replicate cultures in habitats two-thirds the length as those in Fig. 1 but only a
quarter of the width. In each replicate on the left side of the figure, there is a region
of high pupal density that we refer to as a “pupal nest.” The pupal nest persists over
time; new callow (light brown) adults seen emerging from the pupal nest indicates
large larvae return there to pupate. Pupal nests have also been observed in domains
longer than those shown in Fig. 11, but the pupal nest is not the only pattern observed
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Fig. 10 Comparison of
population sizes for patchy and
uniform attractors as a function
of inhibition, ki , on the spatial
domain [0,1]. Solid and dashed
curves represent the total
number of individuals in each
stage, as well as the total
population size, for the spatially
uniform and patchy attractors,
respectively. For each value of
ki , the total number of small
larvae, large larvae, pupae,
adults, and total population size
(the sum of all stages) are
calculated for each attractor by
integrating each equilibrium
distribution (given in Fig. 9)
from 0 to 1 with respect to the
spatial variable x

Fig. 11 Culture of Tribolium brevicornis. Three replicates show segregation of adults and pupae, illus-
trating the pupal nest on the left side of each row. Each row was started with large larvae and adults on
the left half of the domain. They were contained in this subhabitat for 6 weeks, then a panel was removed
and they were allowed to disperse throughout the entire row. Photo was taken a week after the door was
opened
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Fig. 12 Culture of Tribolium
brevicornis. Panels are removed
at ends of rows to allow animals
to move throughout the entire
domain. The culture was started
with adults in the upper right
corner, and the beetles were
immediately permitted to
disperse. No pupal nest is
established

in cultures with this type of domain. Rather, the pattern formed depends on the initial
condition of the culture and whether the pupal nest has had a chance to establish itself
before widespread dispersal takes place. Figure 12 shows a culture of T. brevicornis
in which a pupal nest was never established and exhibits no segregation of life cycle
stages. We note that the domain in Fig. 12 is longer than those in Fig. 11 but is the
same width.

The culture in Fig. 12 was started with T. brevicornis adults in the upper right
corner of the box. The adults immediately spread out and no pupal nest was ever
established. To simulate this situation where adults are immediately allowed to dis-
perse, the spatial SLPA model needs to be started with an initial condition of only L

stage individuals. Since reproduction occurs before dispersal in the model, L stage
individuals will all pupate immediately (since no A stage individuals are present to
delay pupation) and emerge as adults. These adults will then disperse according to
(6), the adult dispersal kernel. The absence of pupae results in the adults dispers-
ing uniformly throughout the entire domain, matching what is seen experimentally.
Therefore, a laboratory initial condition of only adults who are immediately permitted
to disperse corresponds to a model simulation initial condition of only large larvae.
In two time steps, this initial condition will result in a cohort of dispersing adults,
with no other stages present.

The three cultures in Fig. 11 were started with L and A stage animals mixed to-
gether on the left half of the domain. The movement of these animals was restricted
by a panel inserted to divide each row of flour in half. After 6 weeks, the panel was
removed and animals were able to migrate into the right half of each row. This re-
sulted in the formation of a pupal nest. Such a patchy attractor can be predicted by the
model for initial conditions of adults only, or of both adults and large larvae. Since
reproduction occurs before dispersal in the model, the initial condition of A only re-
sults in A and S stage individuals present at the time of dispersal. The small larvae do
not disperse, but the A spread out across the entire domain. The next time step, small
larvae become large larvae. These large larvae will not disperse provided the adult
density is low enough (this depends on the decision parameter DLA) from the adults
spreading out over the entire habitat. At the next time step, these same large larvae
will pupate in their original location if adult density is low enough (this depends on
the inhibition parameter ki ). Once they do, a pupal nest has been established and it
will be avoided by the adults in subsequent time steps.
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If the model is instead started with both L and A stage individuals present, a situ-
ation similar to the one just described (for an initial condition of A only) occurs. The
initial density of A may be great enough to inhibit large larvae. If so, a fraction of
them, determined by γL, will disperse uniformly over the whole domain along with
the adults. The next time step, adults should be spread out enough to allow all large
larvae to pupate. Unless all L dispersed, the density of L should be greater in their
starting interval than the rest of the domain and this will result in a greater density
of pupae and mark the location of the pupal nest. The moment the door is opened
in the laboratory culture corresponds to halfway through a model time step—after
reproduction but right before dispersal.

Over time, the nest persists both in model simulations (since the patchy attractor
is an equilibrium attractor) and laboratory cultures, in the location it was originally
established. This location does not have to be at the edge of the domain; it can be an
interval in the center of the domain as well. Adults can become very dense outside
of the nest, and this may provide a barrier to any invading species, including those
where adults cannibalize pupae.

In summary, the spatial SLPA model (10) has been able to predict observed spatial
segregation in T. brevicornis. We were able to further connect model (10) with exper-
imental observations for select cases, providing experimental support for the multiple
spatial attractors predicted by the spatial SLPA model. The fact that we were unable
to find initial conditions leading to the patchy attractor when the inhibition parameter
ki = 0 suggests that the inhibition of large larvae is a necessary condition for spatial
segregation of life cycle stages. This is consistent with the absence of surface pat-
terns in non-inhibiting species such as T. castaneum and T. confusum. Furthermore,
the model predicts that for a species with the parameterized inhibition level of T. bre-
vicornis (ki = 0.0194), the spatial separation of life cycle stages can affect the relative
total population sizes of the stages. Specifically, the total number of pupae and adults
are higher for the patchy attractor relative to the uniform attractor. Sexually mature
adults become the dominant stage in the patchy attractor, whereas the immature large
larvae dominate for the spatially uniform attractor.

7 Discussion

The patterns observed in T. brevicornis are striking and unique, with adults clearly
aggregating together in cultures of many different sizes and shapes. To the authors’
knowledge, such patterns have not been documented for any other Tribolium species,
even other inhibiting species such as T. freemani. However, T. freemani larvae are
inhibited by other larvae, so escaping high densities of adults would not help them
pupate. In fact, laboratory cultures of this species almost always result in a strong
larval bottleneck with very few adults present. In T. brevicornis, on the other hand,
when larvae escape to areas of low adult density they may immediately pupate (pro-
vided they are old enough). Mathematically, inhibition plays an important role in the
formation of spatial segregation. The number of initial conditions giving rise to the
patchy attractor of the spatial SLPA model decreases as the severity of inhibition de-
creases; the patchy attractor could not be found when the inhibition parameter ki was
set to zero.
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Density dependent dispersal can have a notable affect on population size and struc-
ture of the equilibrium stage-class vector for inhibiting species. All other parameters
equal, the model always predicts a non-inhibitor will have greater total population
sizes than an inhibiting species. This makes sense intuitively, since 100% of larva
surviving mortality go on to pupate in the absence of inhibition. Inhibition only de-
creases this number and can only decrease total population size.

We also compared population numbers for an inhibiting species in two different
spatial structures, finding that if inhibition is strong enough, the spatially segregated
model attractor has a greater population size than the spatially uniform attractor. This
also makes biological sense. If a species is a strong inhibitor, very few larvae will be
able to pupate once an adult cohort has been established. Eggs will still be laid but
few new sexually mature adults will be produced. The model shows that separating
the stages spatially and giving the larvae a refuge in which to pupate results in higher
population numbers.

For the parameterized inhibition level of T. brevicornis, spatial segregation does
not result in greater total population numbers, but it does shift the composition of
the equilibrium stage vector (S∗,L∗,P ∗,A∗) in favor of higher numbers of P ∗ and
A∗. If dispersal is really important in this species’ natural habitat, adults may be the
primary invaders of new colonies. Increasing the number of adults could mean larger
founding populations at their next location.

As noted above, the spatial SLPA model exhibits multiple attractors, including
a spatially uniform attractor and a patchy attractor with pupae and adults spatially
separated. These two attractors have been seen in experimental cultures of T. brevi-
cornis. The spatial segregation of adults and other life cycle stages has been observed
in many different sizes and shapes of T. brevicornis cultures. However, the shape of
the surface of the container used in Figs. 11 and 12 are the closest to being one-
dimensional and also produces the most reproducible patterns. Vertical cross sections
through each row yield an approximately uniform distribution of beetles and so the
pattern can be collapsed to one dimension more easily than that in Fig. 1.

Figure 11 clearly shows the formation of the pupal nest that is predicted by the
patchy attractor of the spatial SLPA model, while Fig. 12 shows the uniform attractor
of the spatial SLPA model. As discussed in Sect. 6, initial conditions for the labora-
tory cultures are consistent with those used in model simulations. A patchy attractor
is reached if a pupal nest has a chance to be established. If a culture is started with
adults who immediately have the opportunity to disperse, they spread out, taking ad-
vantage of the entire habitat. If a culture is started with large larvae and adults who
are contained in a subsection of the habitat, the adults inhibit the large larvae and pre-
vent them from pupating. Once the “door” is opened, allowing them to access to the
entire habitat, the adults disperse quickly. The large larvae do not get very far before
sensing conditions are right to pupate, and a pupal nest is established. Once the nest
is established, it persists over time. New adults emerge and leave the nest, while large
larvae from outside the nest have been observed returning to the nest.

Our results may have important implications for future multispecies competition
studies. Many experiments have been done on the subject of competition between
closely related species (Leslie et al. 1968). In cultures of T. confusum and T. casta-
neum, almost all cultures saw one species exclude the other according to the principle
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of competitive exclusion. The winning species depended on initial conditions. The
LPA model has had previous success modeling competition; an extension of the LPA
model to a competition model has led to potential counterexamples to the principle
of competitive exclusion, explaining prolonged coexistence between two species of
closely related flour beetles observed by Park (Edmunds et al. 2003).

Jillson and Costantino experimented with competition between T. brevicornis and
T. castaneum. Every culture resulted in competitive exclusion, with T. brevicornis al-
ways being eliminated regardless of initial conditions (Jillson and Costantino 1980;
Costantino and Desharnais 1991). Inhibition of T. brevicornis larvae is not species
specific, so contact with T. castaneum adults will also delay pupal metamorphosis
(Jillson and Costantino 1980). Furthermore, T. castaneum adults will cannibalize
T. brevicornis pupae in addition to their own. Thus, T. brevicornis has a two-fold
disadvantage. Their larvae are inhibited by both species’ adults and their larvae that
do manage to pupate are now subject to cannibalism.

We note that while the environment is uniform at the onset of the culture seen
in Fig. 11, it does not remain so. T. brevicornis deliberately modifies the habitat of
the nest; it becomes devoid of any nutritious value, possessing only metabolic wastes
and quinones that are secreted through the odoriferous glands. The altered section of
the habitat seemingly becomes a refugium for larvae to undergo pupation. The high
densities of T. brevicornis adults surrounding the nest may also provide a barrier to
potentially cannibalistic invaders.

These factors suggest spatial structure may play an important role when consider-
ing competition between T. brevicornis and a non-inhibiting species such as T. cas-
taneum or T. confusum. If T. brevicornis has a chance to establish a pupal nest, the
species may be better able to survive an invasion by another species of the genus
Tribolium.
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