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Introduction

These lectures are intended to serve as an introduction to the application of non-
linear matrix models in the study of population dynamics. Matrix models define
discrete time (semi) dynamical systems that can be used to project population
state variables from time t to t + 1. They have a long tradition of use in describ-
ing the dynamics of so-called structured populations. By a structured population is
meant one in which individual members are assigned to classification categories and
thereby are not considered identical (as they are in many classical models in pop-
ulation dynamics and theoretical ecology). These categories are most often based
on physiological characteristics regarded as important to vital processes driving
the dynamics of the population. In their seminal papers, Lewis [49] and Leslie
[47, 48] classified individuals by means of (discrete) chronological age classes, but
their methodology is straightforwardly applicable to other kinds of classifications
such as body size, gender, life cycle stage, location in a spatial habitat, and so
on [46]. Individual characteristics can correlate closely with vital rates that effect
and determine the dynamics of the population as a whole, including rates of repro-
duction, mortality, immigration/emigration and dispersal, resource utilization and
consumption, and so on.

In these lectures I am interested in discrete time models that describe the dy-
namics of (a finite number of) discrete classes based on a specified categorization of
individuals making up a population. Such matrix models, like all models, have their
advantages and disadvantages. They are appropriate under some circumstances and
not under others (for example when continuous time and/or continuous structuring
variables are more appropriate). Caswell gives a nice discussion of these modeling
issues in his book [1]. The books [55] and [4] contain treatments of continuous
models for structured populations.

Lecture 1 develops a general framework for the derivation of matrix models
that describe the dynamics of a population structured by a finite number of dis-
tinct classes. A fundamental question is the extinction or the persistence of the
population. In Lecture 1 this question is related to two fundamental quantities,
the inherent growth rate r and the inherent net reproductive number n. This is
done by means of general theorems implying the loss of stability of the extinction
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4 J. M. CUSHING, MATRIX MODELS AND POPULATION DYNAMICS

equilibrium at r = 1 (equivalently n = 1) and population persistence for r > 1
(equivalently n > 1).

The bifurcation of viable equilibrium states that occurs at n = r = 1 is a
main theme of Lecture 2. This primary bifurcation can lead to stable or unstable
equilibrium states for the population, depending on the relative roles of negative
and positive feedbacks from increased (but low level) population density. (Negative
feedback is called density regulation and positive feedback is referred to as an Allee
effect.) Stable bifurcating equilibria can undergo further bifurcations, including
those that give rise to periodic cycles or quasi-periodic motion on invariant loops.
Bifurcation cascades to chaos are a well known property of recursive formulas such
as those defined by matrix equations. The most famous is the period doubling
route to chaos that commonly occurs for the one dimensional case of unstructured
population models. For structured models many other bifurcation sequences are
also possible, such as the sequences that arise in the case studies presented in
Lecture 3.

The major themes in Lecture 3 include the connection of matrix models to
time series data, the evaluation of models (which necessitates stochastic versions of
the deterministic matrix models in Lectures 2 and 3), the use of models to study
nonlinear phenomena (such as bifurcation routes to chaos) by means of controlled
experiments, and a discussion of some issues that arose from these studies (e.g., the
importance of habitat size and the effects of discrete state space variables).

Lecture 4 extends the basic theory concerning time autonomous models pre-
sented in Lectures 1 and 2 to models with periodically forced model parameters.
Experimental observations of a nonlinear resonance phenomenon motivate this ex-
tended theory.

Lecture 5 returns to autonomous models, but considers interacting (structured)
species. Motivated by the use of discrete models in the early history of competition
theory, this lecture focuses on the (interference) competition between two species.

I would like to thank Robert F. Costantino, Brian Dennis, Robert A. Deshar-
nais, Shandelle M. Henson, and Aaron King. My collaborations with this inter-
disciplinary group of biologists, statisticians, and mathematicians (some of which
is reported in these lectures) has been a wonderful adventure into the marvelous
world of nonlinear population dynamics.



LECTURE 1

Matrix Models

One of the most important first steps in deriving a mathematical model of a
physical or biological system is the choice of the state variables that will be used
to describe the system. In the classical logistic differential equation

x′ = r
(

1 − x

K

)

x,(1.1)

as well as many other classic models in population dynamics and theoretical ecology,
the state variable is the total population size x = x(t) (e.g., the number, density,
or biomass of all individuals), which is assumed to vary with time t according to
this equation. Dynamic equations for the time evolution of the state variable(s)
derive from specified assumptions, hypotheses, and laws. The resulting models are
characterized as much by phenomena they ignore as they are by phenomena they
include. In the logistic equation, for example, since the state variable is total popu-
lation size, all individuals in the population are in effect treated as identical to each
other. Thus, the population is assumed homogeneous in its composition, as if the
individual organisms were identical billiard balls or molecules. And yet biologists
will often point out that there is often more variability among individuals within a
biological population or species than there is among populations or species. Even
for micro-organisms, for which this homogeneous population structure assumption
might be considered appropriate, a close examination usually reveals significant
differences among individuals (size, shape, weight, age, gender, etc.). Indeed, the
currency of Darwinian evolution is the reproducing individual, among all of whom
there are heritable variations on which natural selection can work.

There are other significant homogeneity assumptions in models such as the lo-
gistic differential equation (1.1) and many other similar classical differential equa-
tion models (e.g., the Lotka-Volterra competition and predator-prey models). The
model parameter K is the equilibrium to which all solutions tend asymptotically.
If we view this “carrying capacity” as a descriptor of the population’s environment,
then the assumption that K is a constant means that we ignore all environmental
fluctuations. Similarly, the inherent growth rate r (at which the population would
exponentially grow if unrestrained by negative effects of large population sizes) is
assumed unchanging in time. Certainly some populations live in relatively con-
stant environments, but a great many do not. For many there are variations in
innumerable physical and biological environmental factors (temperature, humidity,
food resources, etc.), some of which are irregular (random or stochastic) and some
of which are approximately periodic (e.g., seasonal or daily or monthly cycles).
Autonomous differential equations are convenient for mathematicians (since there
are many tools available to analyze them), but they do entail these simplifying
homogeneity assumptions which in many cases are biologically unwarranted.

5



6 LECTURE 1. MATRIX MODELS

One of the goals of these lectures is to provide an introduction to a theory for the
dynamics of structured populations in which individuals are not assumed identical.
The modeling methodology uses classes of individuals as state variables (based, for
example, on age, body size, life cycle stage, etc.). This is a compromise between, at
one extreme, treating all individuals as identical and, at the other extreme, treating
each individual as a state variable. I will develop some basic dynamic properties
and features of these models in a mathematically general context from the point of
view of bifurcation theory.

Another goal of the lectures is to apply the modeling methodology and analysis
in some specific biological and ecological contexts. Cases studies involving applica-
tions to some controlled and replicated laboratory experiments not only illustrate
the effectiveness of matrix models, but provide an investigation into the occurrence
of a variety of model predicted nonlinear phenomena in a real biological population.
I will address several issues in these case studies. One issue concerns the connection
of theoretical models to data for the purpose of calibrating (parameterizing) the
model and evaluating its descriptive accuracy. Another aim is to provide examples
in which theoretical models are quantitatively predictive of the dynamics of a real
biological population. That is to say, the parameterized model is used to create
protocols for experiments designed to test (observe) and study model predicted dy-
namics. This combined modeling and experimental system provides a powerful tool
for the study of nonlinear population dynamics. One can use it to corroborate the
theoretical predictions of nonlinear theory as they can occur in a real population
(e.g., equilibrium destabilization, bifurcation to non-equilibrium dynamics, chaos,
etc.). Moreover, the modeling/experimental system often provides explanations for
observations that previously had none and in several instances predicts new and
sometimes unexpected phenomena that are subsequently corroborated by experi-
ments. It can also provide a means to investigate the extent to which tenets and
principles based on classical ecological models can be validated (or contradicted) in
a controlled experimental setting.

This and the next lecture develop an autonomous theory for a single popula-
tion (appropriate for the case of a constant environment and constant vital rates).
Lectures 3 and 4 will extend the theory to include both stochastic and regular pe-
riodic fluctuations in both environmental and individual characteristics. Lecture 5
contains a brief look at competition between two structured populations.

Broadly speaking, population dynamic models fall into two classes: those in
which time t is continuous and those in which time is discrete. Time is continuous
in the logistic differential equation (1.1) and the model is based, as is typical in this
case, on the consideration of the rate of change of the state variable x. For discrete
time models the approach is typically to build a model by prescribing instead the
state variable from one time step to the next. The point of view is that given a
sequence of population counts

x(0), x(1), x(2), · · ·
we want a rule that predicts the next census count x(t+1) from the current census
count x(t). Here x(t) can be a vector of state variables observable at the census
times t = 0, 1, 2, · · · .

For example, if the solution

x(t) = Kx(0)
ert

K − x(0) + x(0)ert
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of the logistic differential equation (1.1) is sampled at times t = 0, 1, 2, · · · , the
resulting sequence of population sizes satisfies the discrete logistic difference (or
recursive) equation [47, 48, 59, 60]

x(t + 1) = b
1

1 + cx(t)
x(t)(1.2)

where b , er and c , (b − 1) /K. We can use this difference equation to predict the
population size from one census to the next.

Derivations of discrete time models are not best made from continuous time
models. The reason is that approximation errors are likely to be introduced in such
derivations and the resulting discrete time models can have dynamic properties
that are attributable to these errors and not to any biological mechanisms. This
is not the case for the discrete logistic (1.2), whose census counts exactly match
those obtained from the solution of the differential equation. However, rarely is a
solution formula for a differential equation model available. If instead we use an
approximating discretization procedure to obtain the prediction x(t+1) from x(t),
then the resulting difference equation is no longer exact. For example, the Euler
method applied to the logistic differential equation (1.1) yields the approximation
scheme x(t + 1) = x(t) + b(1 − x(t)/K)x(t) or x(t + 1) = (1 + b − bx(t)/K)x(t).
This quadratic difference equation (often also called the discrete logistic equation)
makes dynamic predictions, such as periodic cycles and chaos, that differ drastically
from those of the differential equation.

Discrete time models are best derived from first principles as discrete time
models. As a warm up example related to models I will use below, consider a popu-
lation that reproduces at discrete times (which we census just before reproduction).
Suppose there are x(t) adult individuals at census time t who then produce bx(t)
newborns, where b is the per capita birth rate. If all these newborns survive one
unit of time, then they contribute bx(t) individuals to the adult census count at
time t + 1. However, suppose the survival of a newborn depends on the number
of adults x(t) present. Suppose that a contact between a newborn and an adult
increases the probability that the newborn will die. (One example, relevant to
the case studies in Lecture 2, is cannibalism.) Specifically, suppose the probability
that a newborn encounters one specific adult, and as a result dies (with a certain
probability), is approximately proportional to the length of time that passes. If
we divide the time unit t to t + 1 into 1/∆t steps and consider encounters during
each sub-step as independent probabilities, then the probability that a newborn

survives exposure to one adult is approximately (1 − c∆t)1/∆t where c > 0 is the
constant of proportionality. If encounters with adults are independent events, then
the probability that the newborn will survive in the presence of x(t) adults is

approximately (1 − c∆t)
x(t)/∆t

. Letting ∆t → 0, we find the probability that a
newborn will survive and join the adult population one time unit later is equal to
exp (−cx(t)). Thus, the contribution of the newborns to the next adult census is
bx(t) exp(−cx(t)). This contribution is added to the surviving adults. The resulting
difference equation is

x(t + 1) = bx(t)e−cx(t) + (1 − µ)x(t)

where µ is the adult death rate (0 ≤ µ ≤ 1). If µ < 1 the population is iteroparous
(adults reproduce more than once). If µ = 1 it is semelparous (adults reproduce
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only once) and the equation reduces to the Ricker equation [62]

x(t + 1) = be−cx(t)x(t).(1.3)

Over the entire range of the parameter values b > 0 and c > 0, the Ricker
equation makes quite different predictions from those of the discrete logistic (1.2).
Both predict population extinction (x(0) > 0 =⇒ limt→+∞ x(t) = 0) if b < 1
and the existence of a unique positive equilibrium (fixed point) if b > 1, namely,
x = c−1(b − 1) for the discrete logistic and x = c−1 ln b for the Ricker equation.
The discrete logistic predicts that when b > 1 all populations x(0) > 0 tend to the
equilibrium as t → +∞. (We can see this from the way in which the equation was
derived from the logistic equation, or we can prove it directly without reference to
this derivation.) This is (not necessarily) true for the Ricker equation (1.3). When b
is sufficiently large, populations can tend asymptotically to non-equilibrium states,
such as periodic cycles or chaotic attractors. This story (which is not easy to
analyze rigorously from a mathematical point of view) is summarized in Figure
1 which shows the attractor plotted against the parameter b. This bifurcation
diagram, which is perhaps familiar to the reader, has become a virtual icon of
chaos theory and illustrates the extraordinary complexity that discrete models of
populations dynamics can exhibit. This complexity was first noted by Lord May in
several influential papers in the 1970’s that served to popularize chaos theory; e.g.,
see [28, 52, 53] (also see [51]).

Figure 1. (a) The final state (attractor) of all solutions x(0) > 0 of
the discrete logistic equation (1.2) with c = 1 is the equilibrium x = 0
for b < 1 and the unique positive equilibrium x = c−1(b − 1) for b > 1.
(b) The attractor of solutions x(0) > 0 of the Ricker equation (1.3)
with c = 1 is shown plotted against b > 0. For b < 0 the attractor
is the equilibrium x = 0 and for b > 1 but less than (approximately)
7.4 the attractor is the unique positive equilibrium x = c−1 ln(b − 1).
For larger values of b the attractor consists of more than one point.
For example, for b between (approximately) 7.4 and 12.5 the attractor
consists of the two points of a periodic 2-cycle. For some values of b the
attractor apparently consists of a large number of points. The plot was
constructed by iterating the Ricker equation 1000 times from the initial
condition x(0) = 1 and plotting the last 100 points.
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The state variable in the discrete time logistic and Ricker difference equations
is a single class of homogeneous individuals. To motivate discrete time models that
structure the population into more than one class, I consider the classic example of
such models in which the structuring classes are based on chronological age. The
Leslie model age structured model classifies individuals into m age classes xi of equal
length l and tracks the changes in these classes at discrete time intervals of duration
l which we take, for notational simplicity, to be l = 1. Then xi+1(t+1) = τi+1,ixi(t)
where τi+1,i is the fraction of individuals of age i that survive one unit of time (and
hence move from class i to class i+1). The survivors at time t+1 are the components
of the vector Tx(t) where x(t) = col(xi(t)) is an m-dimensional column vector (and

hence lies in m-dimensional Euclidean space Rm , R × · · · × R) and where

T =















0 0 · · · 0 0
τ21 0 · · · 0 0
0 τ32 · · · 0 0
...

...
...

...
0 0 · · · τm,m−1 0















is the matrix of age class survivorships (or class survival probabilities). This as-
sumes no individual lives more than m time units. Sometimes this assumption
is not made and the final class xm consists of all individuals of age greater than
or equal to m, in which case a survival fraction τmm appears in the lower right
hand corner of T . This model also assumes no individuals migrate in or out of the
population.

Since by definition newborn individuals are in the first age class x1, the total
number of newborns at time t + 1 is x1(t + 1) =

∑m
i=1 f1ixi(t) where f1i is the

number of newborns (i.e., class i = 1 individuals), contributed by individuals of age
i, who survive to t + 1. For a non-reproductive age class j, we have f1j = 0. The
matrix equation











x1(t + 1)
x2(t + 1)

...
xm(t + 1)











=















f11 f12 · · · f1,m−1 f1m

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0

























x1(t)
x2(t)

...
xm(t)











+















0 0 · · · 0 0
τ21 0 · · · 0 0
0 τ32 · · · 0 0
...

...
...

...
0 0 · · · τm,m−1 0

























x1(t)
x2(t)

...
xm(t)











summarizes the bookkeeping of the census counts in the age categories from one
census time to the next. The matrix

F =















f11 f12 · · · f1,m−1 f1m

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0















.
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contains the per capita fertilities of each age class in the first row. The remaining
rows of zeros indicate that all newborns belong to the first age class. The projection
matrix P = F + T in this example is called a Leslie matrix.

Other classification schemes for the individuals in a population result in tran-
sition and fertility matrices T and F of different forms. (See [1] for a detailed
treatment of matrix models in population dynamics.) In general, we obtain a re-
cursive matrix (or difference) equation of the form

x(t + 1) = (F + T )x(t).(1.4)

The entry τij in the transition matrix T = (τij) is the fraction of j class individuals
that survive and become i class individuals in one unit of time. The entry fij in
the fertility matrix F = (fij) is the (surviving) number of i class offspring born to
a j class individual in one unit of time. Thus,

fij ≥ 0, 0 ≤ τij ≤ 1,
m
∑

i=1

τij ≤ 1.(1.5)

The reason for the last inequality on the column sums of the transition matrix T
is that the number of individuals from class i that get distributed to all classes
(including the class i itself) by time t + 1 cannot exceed the number available in
class i at time t. Notice that if newborns cannot arise in class i, then the entire
ith row of F consists of zeros. For example if, as in the Leslie age class model,
newborns arrive in only one class (usually taken to be the class i = 1), then all
rows except the first consists entirely of 0’s.

A matrix is called positive (non-negative) if all its entries are positive (non-
negative). In applications to population dynamics positive (non-negative) class
distribution vectors x > 0 (and x ≥ 0) are of interest. We call the set of positive
(m-dimensional) column vectors x > 0 the positive cone in Rm and denote this set
by Rm

+ . The set of non-negative vectors x ≥ 0 is the non-negative cone R̄m
+ .

The entries in the fertility and transition matrices, and hence the projection
matrix P = F + T , is non-negative. This implies the solution x(t) of (1.4) starting
from a non-negative initial condition x(0) ≥ 0 remains non-negative for all t =
1, 2, 3 · · · . The non-negative cone R̄m

+ is said to be forward invariant with respect
to the matrix equation (1.4).

A matrix is reducible if we can, by reordering the classes, put it in block trian-
gular form

(

A 0
C D

)

where A and D are square matrices. It is irreducible if it is not reducible. The
projection matrix P is irreducible means that individuals from the i-class contribute
to the j-class in a finite number of steps (by transition or by births), for every i and
j. (It also means that the directed graph associated with P is strongly connected.)
As an example, a Leslie matrix is irreducible if all τi > 0 and fm > 0 (the oldest
class is fertile).

The eigenvalue of P with the largest absolute value is the dominant eigenvalue.
The absolute value of the dominant eigenvalue is the spectral radius of P, which we
denote by r or sometimes by ρ(P ).

By iterating the matrix equation (1.4), we obtain the formula x(t) = P tx(0)
for the solution of (1.4) with initial condition x(0).
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Theorem 1.1. ([37], Theorem 5.612) Consider the matrix equation (1.4) under
the assumptions (1.5). If r = ρ(P ) < 1, then all solutions satisfy limt→+∞ x(t) = 0.

The famous Perron-Frobenius Theorem implies that if the non-negative matrix
P is irreducible, then r is an algebraically simple eigenvalue of P . Moreover, r
has a positive eigenvector v > 0 and no other eigenvector associated with any
other eigenvalue is non-negative. An irreducible matrix P is said to be primitive if
r = ρ(P ) is strictly dominant (the magnitude of all other eigenvalues are strictly
less than r). It turns out that P is primitive (hence irreducible by definition) if
and only if some integer power of P is positive, i.e., there exists a positive integer
k such that P k > 0 ([26], p. 80).

Theorem 1.2. Consider the matrix equation (1.4) under the assumptions (1.5).
Assume P is primitive. If r = ρ(P ) > 1, then all solutions with initial conditions
x(0) ≥ 0, x(0) 6= 0 satisfy limt→+∞ |x(t)| = ∞.

The case r = ρ(P ) = 1 is not covered by Theorems 1.1 and 1.2. In this case,
solutions with an initial condition x(0) that is a multiple of an eigenvector of P
remain constant: x(t) = v for all t = 0, 1, 2, · · · . Thus, at this (and only at this) one
value of r = ρ(P ) = 1 the population dynamics do not necessarily imply extinction
or unlimited growth.

Suppose we view the dynamics of the linear model (1.4) as a function of the
spectral radius r = ρ(P ). Theorems 1.1 and 1.2 imply that a bifurcation occurs at
r = 1 in the sense that there is a drastic change in the asymptotic dynamics for
r < 1 and r > 1, a change from extinction to unbounded growth. At the bifurcation
point r = 1 there is a branch of equilibria (all scalar multiplies of v) that intersects
the equilibrium x = 0; that is to say, two equilibrium branches intersect at r = 1.
Therefore, with regard to the existence of nontrivial equilibria, the linear model
(1.4) has a “point spectrum”. Feasible asymptotic population dynamics – that is,
non-extinction states that are not unbounded – occur only at an isolated value of
the bifurcation parameter.

The lowest dimensional case, when the number of classes m = 1, is a one
dimensional map x(t + 1) = (f + τ)x(t) for which r = f + τ. The conditions r < 1,
r = 1, and r > 1 are equivalent to n < 1, n = 1, n > 1 where

n ,
f

1 − τ
.

This number, which we can rewrite as

n = f + τf + τ2f + · · · + τ tf + · · · ,

has an important biological interpretation. If a newborn survives for t time steps,
then f offspring result. Since the probability of surviving t time steps is τ t, the
expected number of offspring from the newborn at time t is τ tf . As a result, n is
the expected number of offspring (for each newborn) over the course of its entire
lifetime. The number n is called the net reproductive number (often denoted R0).

In the m > 1 dimensional case we can define the net reproductive number n as
follows. Assume that I−T is invertible (i.e., 1 is not an eigenvalue of the transition

matrix T ). The net reproductive number n is the spectral radius of F (I − T )
−1

,

i.e., n = ρ
(

F (I − T )−1
)

.

A theorem relating the spectral radius r to n appears in [50]. A slightly different
version of this result appears in [15].
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Theorem 1.3. ([50], Theorem 3.3) Suppose the projection matrix P = F + T ,

where F and T satisfy (1.5), is primitive. Let r = ρ(P ) and n = ρ
(

F (I − T )
−1
)

.

If T 6= 0 and ρ(T ) < 1, then one and only one of the following holds:

r = n = 1 or 1 < r < n or 0 < n < r < 1

The assumption that ρ(T ) < 1 means that no individual has an infinite life
expectancy. This follows from the fact that iterations of the transition component
of the model T tx(0) tend to 0 if and only if ρ(T ) < 1 ([37], Theorem 5.16). The
condition on T appearing in (1.5) implies ρ(T ) ≤ 1, but not necessarily that ρ(T ) <
1. (T = I is an example.)

It follows from Theorem 1.3 that we can use either quantity r or n to determine
the asymptotic fate of a population modeled by (1.4). However, whereas formulas
for r (in terms of the matrix entries) are not available except for models of low
dimension (m small), formulas for n often are available for models of arbitrary
dimension [4].

For example, for a Leslie matrix we have

n =
∑m

i=1f1i

∏i
j=1τj,j−1(1.6)

where, for notational convenience, τ10 = 1. The biological interpretation of this

formula for n when P is a Leslie matrix is straightforward:
∏i

j=1τj,j−1 is the

probability of surviving to age i, f1i

∏i
j=1τj,j−1 is the number of offspring produced

when at age i, given survival to age i. Therefore, n is the sum total of all offspring
produced during all ages, i.e., is the expected number of offspring per newborn per
lifetime.

The general biological interpretation of n is more complicated. The i, j entry
in (I − T )

−1
is the expected amount of time a j class newborn will spend in the i

class during its lifetime. The i, j entry in F (I − T )−1 is the expected number of i
class newborns that will be produced by a j class newborn during its lifetime. If
(without loss in generality) the classes into which offspring can be born are listed
first, then the last m − k rows of the fertility matrix F will consist 0’s and, as a

result, so will the last m − k rows of F (I − T )
−1

. The k × k matrix Q in

F (I − T )−1 =

(

Q S
0 0

)

is nontrivial, non-negative and irreducible ([50], Proposition 4.1) and n = ρ (Q) is
its dominant eigenvalue. If we denote the first k entries in x by z, a well known
formula for the dominant eigenvalue of a non-negative irreducible matrix is

n = max
z≥0

min
1≤i≤m,zi 6=0

(Qz)i
zi

where zi is the ith component of z and (Qz)i is the ith component of Qz ([26],
p. 65). Consider an initial cohort z of newborns. The quantity (Qz)i /zi is the
expected number of i class offspring produced by the cohort per member of the i
class in the cohort. According to the formula above, the net reproductive number n
is found by selecting the smallest of these expected numbers, from among all classes
represented in the cohort z (zi 6= 0), and then maximizing this minimum over all
possible initial cohorts z of newborns. If there is only one newborn class (k = 1),
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then the biological interpretation of n is the same as that the Leslie matrix case
given above.

Having a formula for the net reproductive number n, in terms of parameters
appearing in F and T, means we can study how n depends on any of these model
parameters. While Theorem 1.3 provides some comparisons between n and r, it
does not provide a functional relationship between r and n. Thus, for example, it is
not clear whether an increase in a selected parameter in one of the model matrices
F and/or T which results in an increase in n (presumably interpreted as favorable
for the population) will result in an increase or decrease in r. Such questions arise
in the “sensitivity analysis” of models [1].

A linear matrix model (1.4) implies extinction or unbounded growth, except
when n = 1. Long term sustainable population growth is only possible at the point
spectrum n = 1. This situation represents a “vertical” bifurcation, by which is
meant that a branch of nontrivial equilibria intersects the branch of trivial (extinc-
tion) equilibria x = 0 at and only at n = 1. (By Theorem 1.3 we could also use
r.)

Many parameters appear in the projection matrix P (fij and τij) but the
asymptotic dynamics of the matrix model (1.4) depends on only one composite
parameter, namely, n or equivalently r. These important quantities do not ex-
plicitly appear in the matrix model. However, since formulas relating n to model
parameters are often available, one can often introduce n explicitly into the model.
For example, we can in principle scale the entries in the fertility matrix by n so

that F = nΦ where the dominant eigenvalue of Φ (I − T )
−1

equals 1. Then (1.4)
becomes

x(t + 1) = (nΦ + T )x(t).

To have long term sustainable population growth, for other than the isolated
value n = 1, the matrices Φ and T cannot remain constant in time. One important
way in which the projection matrix can change in time is through a dependence
on x = x(t). In this case, the model is called density dependent. As will be seen
below, in general such nonlinear models have a branch of nontrivial equilibria that
bifurcates from the extinction equilibrium, just as linear models do. However, unlike
the case for linear models, the spectrum of n for which unbounded but sustainable
growth will, in general, no longer be an isolated point, but instead be an interval.
The vertical branch of nontrivial equilibria of a linear model gets “bent” into a non-
vertical curve for a density dependent (nonlinear) model, producing a continuous
spectrum.

Consider a nonlinear (density dependent) matrix model

x(t + 1) = (F (x(t)) + T (x(t))) x(t)(1.7)

where now the entries in the fertility and transition matrices F (x) and T (x) are
(continuously differentiable) functions of x on some open domain D ⊂ Rm that
contains the non-negative cone R̄m

+ ⊂ D :

fij ∈ C1 (D, [0, +∞)) , τij ∈ C1 (D, [0, 1]) .(1.8)

Assume F (0) and T (0) satisfy (1.5), that F (0)+T (0) is primitive, and that T (0) 6= 0
satisfies ρ (T (0)) < 1 so that n > 0 is defined. Normalize the fertility matrix so

that F (x) = nΦ(x) where ρ
(

Φ(0) (I − T (0))
−1
)

= 1.
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In summary, consider the matrix equation

x(t + 1) = (nΦ(x(t)) + T (x(t)))x(t), x(0) ∈ R̄m
+(1.9)

under the assumptions

ϕij ∈ C1 (D, [0, +∞)) , τij ∈ C1 (D, [0, 1])(1.10)

and

nΦ(0) + T (0) is primitive for n > 0
m
∑

i=1

τij(0) ≤ 1, T (0) 6= 0, ρ (T (0)) < 1(1.11)

ρ
(

Φ(0) (I − T (0))
−1
)

= 1

on the normalized fertility matrix Φ = (ϕij) and the transition matrix T = (τij).
The quantity n is called the inherent net reproductive number associated with the
nonlinear model (1.9). That is to say, n is the reproductive number when population
density is low (mathematically is zero).

Example 1.4. The m = 3 dimensional projection matrix P (x) = F (x) + T (x)
with

F (x) =





0 0 f13 exp (−c11x1 − c13x3)
0 0 0
0 0 0





T (x) =





0 0 0
τ21 0 0
0 τ32 exp (−c33x3) τ33





f13, cij > 0, 0 < τ21, τ32 ≤ 1, 0 < τ33 < 1

is a nonlinear Leslie matrix that describes a common life cycle that occurs in insect
populations. Class i = 1 is the (only) newborn class and class i = 3 is the only
reproducing (adult) class. Class i = 2 is an intermediate non-reproductive develop-
mental stage. We can think of class i = 1 as a larval stage, after one unit of time
in which surviving individuals become pupae. After another unit of time surviving
pupae become adults. The component model equations are

L(t + 1) = bA(t) exp
(

−cel

V
L(t) − cea

V
A(t)

)

P (t + 1) = (1 − µl)L(t)

A(t + 1) = (1 − µp)P (t) exp
(

−cpa

V
A(t)

)

+ (1 − µa)A(t)

where, in order to conform with the notation used in the literature [5, 11], some
parameters are re-labeled as

x = col (x1, x2, x3) = col (L, P, A)

f13 = b, τ21 = 1 − µl, τ32 = 1 − µp, τ33 = 1 − µa

c11 = cel/V, c13 = cea/V, c33 = cpa/V.

When x = 0, the projection matrix P (0) is a Leslie matrix and by (1.6) we find
that

n = b
(1 − µl) (1 − µp)

µa
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provided µa > 0. This model has the form (1.9) with normalized fertility matrix

Φ(x) =





0 0 µa

(1−µl)(1−µp) exp
(

− cel

V L − cea

V A
)

0 0 0
0 0 0



 .

Calculations show

T (0) =





0 0 0
1 − µl 0 0

0 1 − µp 1 − µa





nΦ(0) + T (0) =





0 0 n µa

(1−µl)(1−µp)

1 − µl 0 0
0 1 − µp 1 − µa





Φ(0) (I − T (0))
−1

=





1 (1 − µl)
−1

(1 − µl)
−1

(1 − µp)
−1

0 0 0
0 0 0





and ρ (T (0)) = 1 − µa < 1, ρ
(

Φ(0) (I − T (0))−1
)

= 1. Conditions (1.10) and

(1.11) are met.

The nonlinear matrix equation (1.9) has the trivial (extinction) equilibrium
x = 0 for all values of n. An important question is whether or not the solution of
(1.9) tends to x = col(0, 0, 0) as t → +∞ or not. For the linear case, according to
Theorem 1.3, the solution does so when n < 1 and does not do so when n > 1. The
nonlinear case requires some definitions and theorems.

Let O be an open subset of Rm and f : O → Rm. An equilibrium xe ∈ O of
the (difference) equation x(t + 1) = f(x(t)) is a fixed point of f , i.e., xe = f(xe).
The following definitions are standard in stability theory for dynamical systems.

Definition 1.5. An equilibrium xe of the equation x(t + 1) = f(x(t)) is sta-

ble if ∀ε > 0 ∃ δ = δ(ε) > 0 such that |x(0) − xe| < δ =⇒ |x(t) − xe| < ε for
t = 0, 1, 2, · · · . An equilibrium xe is a local attractor if ∃ δ0 > 0 such that
|x(0) − xe| < δ0 =⇒ limt→+∞ |x(t) − xe| = 0 and it is locally asymptotically

stable if it is a stable local attractor. The set B of all x(0) ∈ O for which
limt→+∞ |x(t) − xe| = 0 is the basin of attraction of xe. An equilibrium is a
global attractor with respect to a set G if G ⊆ B. An equilibrium is globally

asymptotically stable with respect to a set G if it is both asymptotically stable
and a global attractor with respect to G.

For the linear matrix model (1.4) the extinction equilibrium xe = 0 is globally
asymptotically stable (with respect to Rm) if ρ(P ) < 1. If ρ(P ) > 1 then xe = 0
is unstable (not stable). For nonlinear models local stability of equilibria can be
determined by the linearization principle. See [24] (chapter 4).

Theorem 1.6. Assume xe is a fixed point of f ∈ C1 (O, Rm) and J is the Jacobian
matrix1 evaluated at xe. If ρ(J) < 1, then xe is locally asymptotically stable. If
ρ(J) > 1 then xe is unstable.

1The Jacobian of f is the matrix (∂ifj) of first order partial derivatives of f, where ∂ifj is the

derivative of the jth component fj of f with respect to the ith component xi of x.



16 LECTURE 1. MATRIX MODELS

Consider the matrix model (1.9). The Jacobian of f(x) = (nΦ(x) + T (x))x
evaluated at the equilibrium xe = 0 is nΦ(0) + T (0). It follows from Theorem 1.3
and 1.6 that, just as does for the linear model (1.4), the extinction equilibrium of
the nonlinear model (1.9) loses stability as n (or r) increases through 1.

Theorem 1.7. The extinction equilibrium xe = 0 of the matrix model

x(t + 1) = (nΦ(x(t)) + T (x(t))) x(t),

under the assumptions (1.10)-(1.11), is locally asymptotically stable if n < 1 and
is unstable if n > 1.

This theorem applies, for example, to the three life cycle stage model in Exam-
ple 1.4.

We will see examples below for which xe = 0 is not globally asymptotically
stable for n < 1. Further restrictions are required on the dependence of Φ and T
on x in order to have global stability.

Suppose, for example, that all entries ϕij(x) and τij(x) in the matrices Φ(x)
and T (x) satisfy the inequalities

ϕij(x) ≤ ϕij(0), τij(x) ≤ τij(0), x ∈ R̄m
+ .(1.12)

Then for x(0) ≥ 0 we have

0 ≤ x(t + 1) ≤ (nΦ(0) + T (0))x(t).

By induction 0 ≤ x(t) ≤ y(t) where y(t) solves the linear initial value problem

y(t + 1) = (nΦ(0) + T (0)) y(t), y(0) = x(0).

If n < 1 then, using Theorem 1.1 with P = nΦ(0) + T (0), we conclude that
limt→+∞ y(t) = 0 and hence limt→+∞ x(t) = 0.

Theorem 1.8. If n < 1, the extinction equilibrium xe = 0 of the matrix model

x(t + 1) = (nΦ(x(t)) + T (x(t))) x(t),

under the assumptions (1.10)-(1.11) and (1.12), is globally asymptotically stable on
the non-negative cone R̄m

+ .

The conditions (1.12) describe a strong case of deleterious density dependence
(or negative feedback) in the sense that the fertility and transition/survivorship
rates of all age classes are decreased in the presence of (stage specific) population
densities. These conditions are satisfied by the LPA model in Example 1.4.

What are the dynamics of a nonlinear matrix model (1.9) when x = 0 is unstable
(for example when n > 1)? Two basic questions are: when are solutions bounded
(i.e., when is unlimited population growth avoided) and when do solutions not tend
to 0 (i.e., when do no populations go extinct)?

Define the vector norm |x| =
∑m

i=1 |xi|, which for population models is the total
population size. For this norm the induced matrix norm2 is ||M || = supj Σi |mij |,
i.e., the largest vector norm from among the columns of M . Assume

|F (x)x| ≤ f∞ < +∞, ||T (x)|| ≤ τ∞ < 1 for all x ∈ R̄m
+ .(1.13)

2Let |x| be a vector norm on Rm. The induced (or operator) norm of a matrix M is ||M || =
sup|x|=1 |Mx| = sup|x|6=0 |Mx| / |x|. In addition to the defining properties of a norm, the induced

norm has the property ||MN || ≤ ||M || ||N ||. By definition, |Mx| ≤ ||M || |x| for all x ∈ Rm.
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This assumption on F implies that the total number of newborns (per unit time)
in all classes, produced by adults from all classes, is bounded. This is a reasonable
biological assumption. The assumption on T implies that there is always some
loss in the transitions among classes during a unit of time (due, for example, to
mortality). This is also a reasonable biological assumption, although occasionally
a model will violate this condition because its transition matrix has a column sum
equal to 1.

The matrix model (1.9) is dissipative if there exists a constant β > 0 (that does
not depend on the initial state x(0)) and a time t∗ such that t ≥ t∗ (which might
depend on x(0)) implies |x(t)| ≤ β. This means populations are of total size no
greater than β after a finite number of time steps.

Theorem 1.9. Assume (1.8). The conditions (1.13) imply the matrix model (1.7)
is dissipative.

Proof. From the inequalities

0 ≤ |x(t + 1)| ≤ f∞ + ||T (x(t)|| |x(t)| ≤ f∞ + τ∞ |x(t)|

and an induction we find that |x(t)| ≤ y(t) where y(t) ≥ 0 is the solution of the
scalar linear difference equation y(t +1) = f∞ + τ∞y(t) that satisfies y(0) = |x(0)|.
The formula y(t) = τ t

∞ |x(0)| + f∞
∑t−1

i=0τ
i
∞ for the solution of this linear recursion

equation implies limt→+∞ y(t) = f∞/ (1 − τ∞) . Thus, we can take, for example,
β = 1 + f∞/ (1 − τ∞) in the definition of dissipativity. �

The second question, when n > 1 and x = 0 is unstable, concerns the possibility
that some solutions with x(0) ≥ 0 tend to 0 (i.e., that some populations will still go
extinct). The matrix model (1.9) is uniformly persistent (with respect to xe = 0)
if there exists an α > 0 (that does not depend on x(0)) such that 0 ≤ x(0) 6= 0
implies lim inft→+∞ |x(t)| ≥ α. For a uniformly persistent matrix model, the total
size of all populations (starting from a nonzero initial class distribution) eventually
is no less that α.

The following theorem follows from Theorem 3 in [45]. Note: R̄m
+ /{0} consists

of all nonzero, non-negative x ∈ Rm.

Theorem 1.10. Assume (1.10), (1.11) and n > 1. Assume the matrix model (1.9)
is dissipative and that R̄m

+ /{0} is forward invariant. Then the matrix model (1.9)
is uniformly persistent.

That R̄m
+ /{0} is forward invariant means x(t) ∈ R̄m

+ /{0} implies x(t + 1) ∈
R̄m

+/{0}. This is the same thing as saying that no population goes extinct in
a finite number of steps. This assumption is necessary in Theorem 1.10, as the
m = 1 scalar example x(t + 1) = nf(x(t))x(t), f(x) , (1 − x + |1 − x|) /2, shows.
In this example, if n > 4 and x(0) = 1/2, then x(2) = 0.

Example 1.11. For the LPA model

L(t + 1) = bA(t) exp
(

−cel

V
L(t) − cea

V
A(t)

)

P (t + 1) = (1 − µl)L(t)

A(t + 1) = (1 − µp)P (t) exp
(

−cpa

V
A(t)

)

+ (1 − µa)A(t)
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we have

F (x)x =





bA exp
(

− cel

V L − cea

V A
)

0
0



 , T (x) =





0 0 0
1 − µl 0 0

0 1 − µp 1 − µa





(x = col (L, P, A)) and hence

|F (x)x| = bA exp
(

−cel

V
L − cea

V
A
)

≤ bA exp
(

−cea

V
A
)

≤ b
V

cea
e−1 , f∞ < +∞

||T (x)|| = sup{1 − µl, 1 − µp, 1 − µa}.

The conditions (1.13) are satisfied if µl, µp, µa > 0 and as a result the model is
dissipative by Theorem 1.9 for all values of b (and V ).

Suppose x = col (L(t), P (t), A(t)) > 0. Then it is easy to see from the model
equations that col (L(t + 1), P (t + 1), A(t + 1)) > 0 and as a result Rm

+ /{0} is for-
ward invariant.

It follows from Theorem 1.10 that if µl, µp, µa > 0, then the model is uniformly
persistent whenever

n , b
(1 − µl) (1 − µp)

µa
> 1.

EXERCISES

Exercise 1. (a) The discrete logistic (1.2) is called a monotone map because
bx/(1 + cx) is a monotone function of x > 0. Use this fact to prove that x(0) > 0
implies limt→+∞x(t) = (b − 1)/c. (b) Show that the change of variables y = 1/x
transforms (1.2) to a linear difference equation. Use this fact to find a solution
formula for x(t) and use the solution formula to prove that x(0) > 0 implies
limt→+∞x(t) = (b − 1)/c.

Exercise 2. Suppose the non-negative matrix P is primitive and diagonalizable in
the matrix equation x(t + 1) = Px(t). For x(0) ≥ 0, x(0) 6= 0 prove

lim
t→+∞

x(t)

|x(t)| =
v

|v|

where v > 0 is the positive eigenvector associated with the dominant eigenvalue of
P . This result (which is also true when P is not diagonalizable) is known as the
Strong Ergodic Theorem or the Fundamental Theorem of Demography.

Exercise 3. Prove Theorem 1.2 when P is diagonalizable (i.e., Rm has a basis of
eigenvectors of P ).
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Exercise 4. Consider the fertility and transition matrices

F =















f11 f12 · · · f1,m−1 f1m

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0















, and

T =















τ11 0 · · · 0 0
τ21 τ22 · · · 0 0
0 τ32 · · · 0 0
...

...
...

...
0 0 · · · τm,m−1 τmm















.

The matrix P = F + T is sometimes called an Usher matrix and the associated
matrix model the “standard size structured model”. Here the categories are size
classes (weight, volume, length, biomass, etc.) and an individual either remains
in the same class or grows into the next class in one unit of time. An individual
cannot skip a size class nor shrink in size. All newborns lie in the smallest size class.
Derive a formula for the net reproductive number n. Use the formula to obtain a
biological interpretation of n.

Exercise 5. Consider a size structured (Usher) matrix with two newborn and two
reproducing classes, large and small. (See Exercise 4.) Assume larger size individu-
als produce larger size offspring while smaller size individuals produce smaller size
offspring. A model for this population has projection matrix P = F + T where

F =









0 0 f13 0
0 0 0 f14

0 0 0 0
0 0 0 0









, T =









τ11 0 0 0
τ21 τ22 0 0
0 τ32 τ33 0
0 0 τ43 τ44









.

Derive a formula for the net reproductive number n. Use the formula to obtain a
biological interpretation of n.

Exercise 6. The matrix model

F =

(

0 f13

0 0

)

, T =

(

τ11 0
τ21 τ22

)

, 0 ≤ τii < 1, 0 < τ21 ≤ 1

describes a population with a juvenile stage and an adult stable. Find formulas for
n and r. Find a functional relationship r = φ(n) that relates n to r. Show that
φ(n) is an increasing, concave (down) function of n.

Exercise 7. (a) Show all eigenvalues of a 2 × 2 matrix

A =

(

a b
c d

)

lie inside the unit complex circle if and only if the “Jury Conditions”

|detA| < 1, |tr A| < |1 + det A|
hold. (b) Show trA = 1+detA implies λ = 1 is an eigenvalue and trA = −(1+detA)
implies λ = −1 is an eigenvalue. (c) Show |detA| = 1, |tr A| < |1 + detA| imply
the eigenvalues are complex conjugates with absolute value equal to 1.





LECTURE 2

Bifurcations

This lecture concerns the bifurcation of positive equilibrium solutions of the
nonlinear matrix equation

x(t + 1) = (nΦ(x(t)) + T (x(t))) x(t).(2.1)

In addition to the smoothness assumption (1.10) on the fertility and transition
matrices Φ and T , it is assumes for non-negative x ≥ 0 and n > 0 that

the matrix nΦ(x) + T (x) is primitive,
m
∑

i=1

τij(x) ≤ 1, T (x) 6= 0, ρ (T (x)) < 1 and(2.2)

ρ
(

Φ(0) (I − T (0))−1
)

= 1.

Assumptions (2.2) implies (1.11).
Nontrivial equilibria x ∈ Rm, and in particular non-negative or positive equi-

libria, of the matrix equation satisfy the equilibrium equation

x = (nΦ(x) + T (x))x.

Using the Taylor expansion

nΦ(x) + T (x) = nΦ(0) + T (0) + H(n, x),

where ‖H(n, x)‖ = O (|x|),1 we can rewrite the equilibrium equation as

x = nLx + g(n, x)(2.3)

where2

L , (I − T (0))
−1

Φ(0), g(n, x) , (I − T (0))
−1

H(n, x)x, |g(n, x)| = O
(

|x|2
)

.

Those values of n are sought for which there is a non-negative, nontrivial solution
of (2.3) (i.e., an equilibrium of (2.1) lying in R̄m

+ /{0}). We call such a pair (n, x) a
nontrivial, non-negative equilibrium pair of (2.1). A nontrivial equilibrium pair is
a positive equilibrium pair when x > 0 (i.e., when x ∈ Rm

+ /{0}).
Define S to be the set of all nontrivial solution pairs of (2.1). If (nc, 0) ∈ S̄

(the closure of S) we say (nc, 0) is a bifurcation point. A necessary condition that
(nc, 0) is a bifurcation point is that nc is a characteristic value of L, that is to
say, v = ncLv for some vector v 6= 0 in Rm, or in other words nc is the reciprocal
of a nonzero eigenvalue of L. (See Exercise 8.) Note that a characteristic value

1This means for any interval n1 ≤ n ≤ n2 there are constants a, b > 0 such that ‖H(n, x)‖ ≤ b |x|
for all |x| ≤ a and n1 ≤ n ≤ n2.
2This means for any interval n1 ≤ n ≤ n2 there are constants a, b > 0 such that |g(n, x)| ≤ b |x|2

for all |x| ≤ a and n1 ≤ n ≤ n2.

21
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of L = (I − T (0))
−1

Φ(0) is a characteristic value of the matrix Φ(0) (I − T (0))
−1

(and vice versa).
The following theorem states that for quite general nonlinear matrix models,

nc = 1 is a bifurcation value (just as it is for linear matrix models).

Theorem 2.1. Consider the nonlinear matrix model (2.1) under assumptions
(1.10) and (2.2). There exists a continuum3 C+ in S̄ that contains the bifurcation
point (ncr, 0) = (1, 0) and such that C+/ {(1, 0)} contains only positive equilibrium
pairs. The range of the continuum C+ (that is to say, the set
{x : (n, x) ∈ C+/ {(1, 0)}}), is unbounded in Rm

+ and the spectrum σ (C+)

, {n : (n, x) ∈ C+/ {(1, 0)}} associated with C+ contains only positive n > 0.

This theorem follows from Theorem 1.2.7 in [4] (which is proved using the
global bifurcation theorems of Rabinowitz [39, 61]).

Example 2.2. Consider the matrix model (1.7) with

F (x1, x2) =

(

cbx2e
−x2 be−x2

0 0

)

, T (x1, x2) =

(

0 0
τ21 τ22

)

b, c > 0, 0 < τ21 ≤ 1, 0 ≤ τ22 < 1.

This describes a population in which newborns lie in class 1. If c = 0 then the two
classes x1 = J and x2 = A could properly be referred to as juveniles and adults
(reproductively immature and mature). With c > 0 both classes reproduce, with
fertility dependent on the population density x2 of class 2. In this case we can refer
to a population with a younger class and an older class.

In this model, fertility of the older individuals is negatively affected by increased
density of the older class, x2. Younger individuals reproduce very little when few
older individuals are present (x2 is small), but their reproduction increases as x2

increases, until a maximum is reached (at x2 = 1) after which negative density
effects reduce their reproduction. This kind of effect, in which increased fertility
occurs with increased population density (in this case, adult density) is called an
Allee effect. Allee effects have been attributed to a variety of biological mechanisms
(e.g., enhanced mating opportunities in denser populations, the care and nurture of
young, social behavior, group defense, and many others).

The model equations are

J(t + 1) = cbA(t)e−A(t)J(t) + be−A(t)A(t)

(2.4)

A(t + 1) = τ21J(t) + τ22A(t).

The calculation

F (0, 0) (I − T (0, 0))
−1

=

(

b τ21

1−τ22

b 1
1−τ22

0 0

)

yields the formula n = bτ21/ (1 − τ22) for the inherent net reproductive number .
The solution of the equilibrium equations

J = cbAe−AJ + be−AA

A = τ21J + τ22A

3A continuum is a closed, connected set.
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for nontrivial solutions (J, A) 6= (0, 0) reduces to solving the scalar equation

eA =

(

c
1 − τ22

τ21
A + 1

)

n

for A 6= 0 and letting J = (1 − τ22)A/τ21. This equation for A leads to two
kinds of bifurcation graphs in the (n, A)-plane, as shown in Figure 2. When c ≤
τ21 (1 − τ22)

−1
the spectrum σ (C+) = [1, +∞) and positive equilibria exist for and

only for n > 1. However, if c > τ21 (1 − τ22)
−1 then the spectrum is a larger

interval and includes the bifurcation value n = 1 on its interior. In this case,
positive equilibria (two of them) also exist for some values of n < 1.
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Figure 2. The A components of the positive equilibria of (2.4) are plot-
ted against n. (a) For c ≤ τ21/ (1 − τ22) the bifurcation is supercritical.
(b) For c > τ21/ (1 − τ22) it is subcritical.

The two distinct cases that occur in Example 2.2 are distinguished by the
direction of bifurcation at n = 1. When, near the bifurcation point (1, 0), positive
equilibrium pairs (n, x) exist for n > 1, then the bifurcation is called supercritical
(or forward). On the other hand, when near the bifurcation point (1, 0) the positive
equilibrium pairs (n, x) exist for n < 1, then the bifurcation is subcritical (or
backward). Allee effects typically can lead to a subcritical bifurcation. Models in
which fertility and mortality never increase with increases in population density
lead to supercritical bifurcations.

One technique that can determine properties of the bifurcating continuum of
positive equilibria is based on the net reproductive number n(x) at equilibrium x

defined as the dominant eigenvalue of F (x) (I − T (x))
−1

. This quantity should
not be confused with the inherent net reproductive number n. We write n(x) =
nν(x) where n = n(0) is the inherent net reproductive number and where the

dominant eigenvalue ν(x) of Φ(x) (I − T (x))
−1

satisfies ν(x) > 0, ν(0) = 1. If x is
an equilibrium associated with inherent net reproductive number n(x), then

nν(x) = 1.(2.5)

Thus, n(x) = nν(x) is an invariant (2.5) along the bifurcating branch C+ in The-
orem 2.1. Properties of ν(x) can often give information about the direction of
bifurcation at n = 1 and the spectrum σ (C+). For example, if ν(x) < ν(0) for
x near 0 satisfying 0 ≤ x 6= 0, then to maintain the invariance of nν(x) the local
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bifurcation must be supercritical (i.e., near the bifurcation point n would have to
satisfy n > 1). For more on this approach see [4].

As an example, for the model in Example 2.2 it turns out that

ν(J, A) =
1 − τ22

τ21
cAe−A + e−A.

If c < τ21 (1 − τ22)
−1

then ∂Aν(0, 0) < 0. It follows in this case that, near
(J, A) = (0, 0), the inequality ν(J, A) < 0 for positive equilibria. Thus, near bifur-
cation the bifurcation point n = 1, it must be the case that n > 1 and hence the

bifurcation is supercritical. Similarly, we deduce that if c > τ21 (1 − τ22)
−1

then the
bifurcation is subcritical (since ∂Aν(0, 0) < 0). We can also deduce from ν(J, A)
that the spectrum is unbounded. This is because the continuum C+ is unbounded
by Theorem 2.1 and consequently either the spectrum is unbounded or the equilib-
ria on the branch are unbounded. However, even in the latter case the spectrum
must be unbounded (as a consequence of the invariant (2.5)) because in this case
ν(x) = ν(J, A) tends to 0 as A tends to +∞.

An important problem is to determine when the positive equilibria guaranteed
by Theorem 2.1 are stable or unstable. It turns out that the stability of the positive
equilibria near the bifurcation point usually depends on the direction of bifurcation.
The bifurcation n = 1 described in Theorem 2.1 is called stable if the equilibria
from the positive equilibrium pairs near the bifurcation point (n, x) = (1, 0) are
(locally asymptotically) stable. If these positive equilibria are unstable then the
bifurcation is unstable.

Under some additional conditions, the bifurcation at (n, x) = (1, 0) in Theorem
2.1 is stable when it is supercritical and unstable when it is subcritical. This fact
is a consequence of the Theorem 1.2.6 in [4].

Define γij to be the gradient of ϕij(x) + τij(x) evaluated at (n, x) = (1, 0) :

γij , ∇x (ϕij(x) + τij(x))|(n,x)=(1,0) ∈ Rm.

Let

dij , γ∗
ijv

(the prime “ ∗ ” denotes transpose) and form the matrix D = (dij). Let w > 0 and
v > 0 denote the positive left and right eigenvalues of Φ(0) + T (0) and define

κ , −wDv.

Theorem 2.3. Assume

ϕij ∈ C2 (D, [0, +∞)) , τij ∈ C2 (D, [0, 1])

(1.11), and κ 6= 0. Then the bifurcation of positive equilibrium pairs in Theorem
2.1 is stable if it is supercritical (κ > 0) and unstable if it is subcritical (κ < 0).

Since w > 0 and v > 0, some of the dij must be positive in order for a sub-
critical bifurcation to occur, i.e., at least one gradient γij must have some positive
components. This means Allee effects of some kind are necessary for a subcritical
to occur (although they are not necessarily sufficient).

Example 2.4. For the juvenile/adult model in Example 2.2

Φ(x1, x2) =

(

c 1−τ22

τ21

x2e
−x2 1−τ22

τ21

e−x2

0 0

)

, T (x1, x2) =

(

0 0
τ21 τ22

)
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and n = bτ21/ (1 − τ22). Positive right and left eigenvalues of

Φ(0, 0) + T (0, 0) =

(

0 1−τ22

τ21

τ21 τ22

)

associated with eigenvalue 1 are

w =
(

τ21 1
)

, v =

(

1 − τ22

τ21

)

.

The matrix D evaluated at (n, x) = (1, 0) is

D =

(

c (1 − τ22) − (1 − τ22)
0 0

)

and

κ = τ21 (1 − τ22)
2

(

τ21

1 − τ22
− c

)

.

Thus, the bifurcation at (n, x) = (1, 0) is stable (supercritical) if c < τ21/ (1 − τ22)
and unstable (subcritical) if c > τ21/ (1 − τ22).

Even when they contain Allee effects at low population densities4, most models
assume negative density effects for large population densities. The latter assump-
tion is responsible for the “turning around” of the bifurcating branch, at a point
(nsn, xsn), as illustrated in Figure 2(b). This creates a sub-interval in the spectrum
σ (C+) on which multiple positive equilibria exist.

Figure 3 shows the basins of attraction5 of the two stable equilibria (the extinc-
tion equilibrium and one of the positive equilibria) when a subcritical bifurcation
occurs in Example 2.2. This plot illustrates the commonly occurring situation in
which the “smaller” positive equilibria from the “lower” portion of the bifurcating
branch of positive equilibria is unstable (consistent with Theorem 2.3), while the
“larger” positive equilibrium from the “upper” portion as stable. For those n values
less than 1 there are two stable equilibria, the unstable positive equilibrium lies of
the boundary of the basins of attraction.

In the typical subcritical bifurcation scenario illustrated in Figure 4, a popu-
lation can survive for n < 1 provided its initial state x(0) is sufficiently far from
the extinction equilibrium xe = 0; otherwise it will go extinct. Notice the sudden
collapse and extinction of the population as n < 1 decreases (and the population
follows the stable equilibrium) below the critical value nsn < 1 where the bifurca-
tion curve “turns around”. If we increase n < nsn (in an attempt to recover the
population) the population follows the extinction equilibrium (unless there is also a
perturbation so as to move the population sufficiently far from xe = 0) until n = 1
is exceeded, at which point the population recovers. This phenomenon where the
collapse point nsn is less than the recovery point n = 1 is called hysteresis.

As we move along the bifurcating branch from the bifurcation point (n, x) =
(1, 0) in the subcritical case illustrated in Figure 4, equilibrium stability is gained as
we move “around” the turn the branch at the point (nsn, xsn) where the lower and
upper branches meet. This occurs because the spectral radius of the Jacobian of

4Some argue that accurate population models should contain Allee effects [16], especially if one
is concerned with the possibility of extinction.
5The basin of attraction of an equilibrium is the set of initial conditions x(0) that tend to the
equilibrium.
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Figure 3. The set of initial conditions whose orbits tend to an equi-
librium is the equilibrium’s basin of attraction. For c = 2.5, τ21 =
0.75, τ22 = 0.25 and n = 0.5 (b = 0.5) in the juvenile-adult model
in Example 2.2 there are two stable equilibria: the extinction equilib-
rium (J, A) = (0, 0), whose basin of attraction is the dark region, and
(J, A) = (1.363, 1.363) whose basin of attraction is the light region. The
unstable equilibrium (J, A) = (0.3919, 0.3919) lies on the basin bound-
ary on which orbits tend to this unstable equilibrium. The unstable
equilibrium is a saddle and the basin boundary is its stable manifold.
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Figure 4. A subcritical (unstable) bifurcation caused by Allee effects
at low population densities and negative density regulated at high pop-
ulation densities leads to a hysteresis effect.

the model system, evaluated at the equilibrium, changes from greater to less than 1.
Thus, an eigenvalue of the Jacobian moves into the unit circle in the complex plane
as we move around the turning point, from the lower to the upper branch, and, as
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a result, the Jacobian at the point (nsn, xsn) has an eigenvalue of magnitude equal
to 1.

We can distinguish three ways in which an eigenvalue λ of the Jacobian can
migrate out of (or into) the complex unit circle as a model parameter changes:
either λ passes through +1 or −1 or eiθ for some θ 6= 0, π. Different kinds of
bifurcations result according to which of these three cases occurs.

If λ passes through +1 as a parameter in the model is changed, the bifurcation
generally involves equilibria. Theorem 2.1 shows that such a bifurcation occurs
quite generally in matrix models. When n (or r) increases through 1 two branches
of equilibria intersect in what is called a transcritical bifurcation6. It is characteristic
of transcritical bifurcations that one branch losses stability and the other branch
gains it, a phenomenon called an exchange of stability. Another common bifurcation
that can occur when λ leaves the unit circle at +1 is that exemplified by the multiple
equilibrium case in Figure 4 (as can occur in the subcritical case caused by Allee
effects). The bifurcation at n = nsn, which occurs as two nontrivial equilibria
are created when n increases through nsn, is called a saddle-node or (tangent or
blue sky) bifurcation. Other bifurcation scenarios involving equilibria can occur
when destabilization results from λ passing through +1 (for example, the pitch
fork bifurcation), but the saddle-node and transcritical are the most common ones
to occur in population dynamic models.

When, as a model parameter is changed, an eigenvalue of the Jacobian leaves
the unit circle through −1 and an equilibrium thereby loses stability, typically there
exists a branch of 2-cycles (periodic solutions of the matrix equation of period 2)
that intersects the equilibrium branch at the critical parameter value where λ = −1.
The 2-cycles collapse into an equilibrium at the bifurcation point and so we say
small amplitude cycles “bifurcate out of” the equilibrium as it loses stability. Such
a 2-cycle (or period doubling bifurcation7) can involve stable or unstable cycles
and can occur as the model parameter increases or decreases, depending on the
circumstances. This famous bifurcation is familiar in maps of dimension m = 1
(such as the Ricker map (1.3)).

There are formal theorems to be found in many textbooks that provide con-
ditions under which period doubling and transcritical bifurcations are guaranteed
to occur in the cases λ = ±1, and conditions that determine the direction of bi-
furcation and the stability properties of the equilibria and cycles involved. See for
example [24, 67].

Transcritical and saddle-node bifurcations commonly occur in population ma-
trix models (1.4) (or 2.1)). Period doubling bifurcations occur commonly in m = 1
dimensional models. After all, in m = 1 models only two possibilities arise for
an eigenvalue λ of the Jacobian (derivative) of the equation, which is necessarily
real, to leave the unit circle, namely ±1. In higher dimensional models, in which
eigenvalues can be complex, λ can leave the unit circle at any of infinitely many
points eiθ other than ±1. (Of course, in the latter case a complex conjugate pair of
eigenvalues λ crosses the unit circle.)

6Although not considered here, the general bifurcation theory for matrix models presented here
also implies a bifurcating continuum of negative equilibrium pairs from the point (n, x) = (1, 0).
Thus, the set S contains a continuum of nontrivial equilibrium pairs that transversely crosses the
extinction equilibrium branch.
7An equilibrium is 1-cycle.
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When an equilibrium destabilizes because an eigenvalue λ of the Jacobian
crosses the unit circle at a point eiθ 6= ±1, a more complicated bifurcation typ-
ically occurs. As a warm up for this case, consider the m = 2 dimensional linear
matrix model x(t + 1) = Px(t) with coefficient matrix

P =

(

a cos θ −a sin θ
a sin θ a cos θ

)

where a > 0 and 0 < θ < π are model parameters. The spectral radius is ρ(P ) = a
and for a < 1 the origin xe = 0 is globally asymptotically stable while for a > 1
nontrivial solutions grow exponentially in magnitude. For a = 1 orbits remain
on the circle x2

1 + x2
2 = x2

1(0) + x2
2(0) in the x1, x2-plane as each successive point

is rotated θ radians counter-clockwise. Each circle, centered at the origin, is an
invariant loop and the characteristics of an orbit lying on the circle depend on θ. If
θ is rationally related to 2π, then the orbits are periodic cycles. If θ is irrationally
related to 2π, then the orbits are neither periodic, nor asymptotically periodic, but
are dense on the circle and are termed quasi-periodic ([63], p. 428). A bifurcation
diagram that represents this situation is vertical in that the invariant loops occur
only at a = 1, where the equilibrium xe = 0 is destabilized.

Branches of invariant loops can also bifurcate from a destabilized equilibrium
in nonlinear matrix equations (1.4). In this case, the branch of invariant loops is
generally non-vertical and the spectrum is no longer a single point, but instead
is an interval of parameter values. This is the subject of the invariant loop (or
Sacker/Neimark or discrete Hopf ) bifurcation theorem. This theorem (see [24, 67])
gives rigorous conditions under which a branch of invariant loops bifurcates out of
an equilibrium that destabilizes because an eigenvalue λ of the Jacobian passes
through the unit circle at a point eiθ 6= ±1. The theorem also gives conditions
that determine the direction of bifurcation and stability properties of the invariant
loops. (One of these conditions, rather unexpectedly, requires that θ 6= 2π/3 or
2π/4 or in other words that λ not equal a cube or quartic root of 1. What happens
in these exceptional “resonance” cases is apparently still not fully understood.) The
motion of orbits on the bifurcating invariant loops can, as in the linear example
above, be periodic or tend to a periodic cycle or be quasi-periodic and dense in
the loop. As the model (bifurcation) parameter changes, the dynamics on the loop
alternates between periodicity (in which case the system is said to be period locked)
and quasi-periodicity.

Example 2.5. Figure 5 shows a sample bifurcation diagram for the matrix model
(

J(t + 1)
A(t + 1)

)

=

(

cbA(t)e−A(t) be−A(t)

τ21 τ22

)(

J(t)
A(t)

)

(2.6)

in Example 2.2 using the bifurcation parameter n = bτ21/ (1 − τ22). Plotted against
each n value are 200 points of the A component of the attractor found after first
iterating this matrix model 500 times (in order to arrive at an attractor). When the
attractor is quasi-periodic 200 different points are plotted, which appear as a nearly
solid vertical line segment above the corresponding n value. When the attractor is a
cycle of period p, then only p points appear above the value of n. For the parameter
values indicated in the figure caption, we see an invariant loop bifurcation occurs at
a critical value of n ≈ 8.1. A plot of one such invariant loop, for n = 9, appears
in Figure 5(b) and the time series of the J component of a dense orbit on the loop
in Figure 5(c). It is often difficult to tell the difference between a cycle with a long
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period and a quasi-periodic orbit. Figures 5(d) and (e) show plots of what appear
to be a 33-cycle when n = 8.9624.
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Figure 5. Choose τ21 = 0.5, τ22 = 0.1 and c = 0 (no Allee effect)
in the juvenile-adult matrix model (2.6). (a) The bifurcation diagram
shows the transcritical bifurcation of positive equilibria at n = 1 and
the destabilization of the positive equilibria with a resulting an invariant
loop bifurcation at n ≈ 8.1. (b) An orbit starting near the unstable
equilibrium spirals out to the invariant loop when n = 9. (c) The time
series for the J component of a quasi-periodic orbit on the invariant
loop in (b). A time series plot of the A component exhibits similar
oscillations. (d) At n = 8.9624 an orbit spirally approaches a 33-cycle
(residing on an invariant loop). (e) The J component of the 33-cycle in

(d).
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While the primary bifurcation of positive equilibria from the extinction equi-
librium xe = 0 at n = 1 is a quite general phenomenon in population models, the
occurrence of further bifurcations through the loss of stability of the positive equi-
libria (or other positive attractors such as cycles or invariant loops) is dependent
on the details of specific models. Period doubling and invariant loop bifurcations
might or might not occur in a specific model.

In many cases numerous bifurcations occur as n increases, such as the famous
period doubling cascade of the Ricker equation. In principle the study of cycles and
cycle bifurcations is reducible to the study of equilibrium bifurcations of a compo-
sition of the model equations. (A 2-cycle is a fixed point of the first composite,
and so forth.) For m = 1 dimensional maps, the common occurrence of a λ = −1
bifurcation can lead to repeated bifurcations of period doublings for higher and
higher composites. Therefore, period doubling cascades are common for the m = 1
dimensional case. For the higher dimensional cases which arise in the study of
structured population dynamics, invariant loop bifurcations often play a significant
role.

Cycles also can lose stability through invariant loop bifurcations. For example,
a 2-cycle can bifurcate into two disjoint invariant loops (surrounding each point of
the cycle). Bifurcations involving invariant loops are more complicated and difficult
to study analytically. As n increases invariant loops often suddenly disappear from
the bifurcation diagram, yielding to other attractors (e.g. to periodic cycles in what
are called period locking windows), or they can become twisted and convoluted
or even break into pieces, as the dynamics become more complex and chaotic.
Given the complexity of the dynamics in such regions of parameter space, it is
not surprising that there are many technical definitions of chaos in the literature
and a growing list of exotic bifurcation phenomena identified and classified by
mathematicians (usually with the aid of computer simulations). Definitions of a
chaotic attractors generally assume (or imply) that such attractors contain infinitely
many unstable periodic cycles, bounded orbits that are not periodic and do not tend
to a periodic cycle, orbits that are dense in the attractor, phase space directions in
which orbits expand and other directions in which orbits contract, and sensitivity
to initial conditions. The latter property is perhaps the most famous property
of chaotic attractors. It means that orbits initially infinitesimally close diverge
exponentially from one another over time, a property that has serious consequences
with regard to the ability to predict the future state of a system, even though its
dynamics are deterministic.

Needless to say, the study of the complicated dynamics that can occur in some
models (e.g., the bifurcation diagram in Figure 6) is usually analytically intractable.
Not only can the attractors at selected values of the bifurcation parameter n be
chaotic, but the mix of chaotic and tame dynamics throughout in an interval of
n values can be complicated. Chaotic and non-chaotic attractors can be densely
packed throughout a parameter interval. For this reason, as well as the fact that
parameter estimates are not exact and come at best with confidence intervals, in
these regions of parameter space the best point of view to take would not be that a
particular times series of data has a specific type of model attractor type – chaotic,
for example. It might be better to say in such cases that the population’s dynamics
are “influenced by chaos” [20].
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Example 2.6. Figure 6(a) shows the same bifurcation diagram for the
juvenile/adult model in Example 2.2 shown in Figure 5, but extended over a larger
interval of n values. After the invariant loop bifurcation at n ≈ 8.1, there occurs a
complicated sequence of bifurcations in which periodic cycles play a role as well as
other complicated chaotic and strange attractors. In Figure 6(b) we see the break
up of an invariant loop into a strange attractor consisting of several distinct pieces.
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Figure 6. Let τ21 = 0.5, τ22 = 0.1 and c = 0 (no Allee effect) in the
juvenile-adult matrix model (2.6). (a) The bifurcation diagram shows
complicated bifurcations after the invariant loop bifurcation at n ≈ 8.1.
(b) The attractor evolves from an invariant loop at n = 11 to a 4-cycle
at n = 13 to a strange chaotic attractor at n = 25.

The parameter n is a convenient parameter to use in the general theory and
discussion above. It is well defined in a general setting, there often exists an ex-
plicit formula relating it to model parameters, and it has an important biological
interpretation (the inherent net reproductive number). In some applications, how-
ever, we might want to study the dynamics of a matrix model as a function of a
different parameter, one that appears explicitly in the model equations. Theorems
generalizing Theorems 2.1 and 2.3 appear in [4] (Theorems 1.2.3 - 1.2.6) for matrix
models in which F (0) is linear in a parameter µ, that is, for matrix models of the
form

x(t + 1) = (A + µB + H(µ, x)) x(2.7)

where |H(µ, x)| = O (|x|) near x = 0. These theorems provide more alternatives for
the bifurcating continuum C+ than are given in Theorem 2.1 (e.g., see Theorem 4.1
in Lecture 4). Nonetheless, the direction of bifurcation of the positive equilibrium
branch still determines the stability of the equilibria, although the relationship
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between direction and stability can be reversed. An example using the death rate
µa in the LPA model of Example 1.4 as the bifurcation parameter appears in [4].

Example 2.7. Figures 7 and 8 show two sample bifurcation diagrams for the LPA
model in Example 1.4 using µa and cpa as bifurcation parameters. In Figure 7 the
x1 = A component of the attractor is plotted against the bifurcation parameter µa.
In Figure 7(a) we see a period doubling bifurcation at µa ≈ 0.045 and an invariant
loop bifurcation at µa ≈ 0.83. There is a re-equilibration that occurs because of a
subcritical 2-cycle bifurcation of the equilibrium at µa ≈ 0.565 and a 2-cycle saddle-
node bifurcation at µa ≈ 0.59; this sequence of bifurcations is seen more clearly in
Figure 7(b).
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Figure 7. (a) and (b) show bifurcation diagrams for the LPA model
in Example 1.4 using the adult stage death rate µa as the bifurcation
parameter. The x1 = A component of the attractor is plotted against
µa. Other parameter values are b = 10, µl = 0.2 and cea = cea = cpa =

0.01.

Figure 8. In this bifurcation diagram for the LPA model in Exam-
ple 1.4, the total population size x1 + x2 + x3 = L + P + A of the
attractor is plotted against the bifurcation parameter cpa. Other pa-
rameter values are b = 10, µl = 0.2, µa = 0.95 and cea = cea = 0.01.
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In Figure 8 the total population size x1 +x2 +x3 = L+P +A of the attractor is
plotted against cpa. A 2-cycle at cpa = 0 undergoes a reverse period doubling bifur-
cation to an equilibrium at cpa ≈ 0.0025. The equilibrium undergoes an invariant
loop bifurcation at cpa ≈ 0.00625. Further bifurcations occur for large cpa values,
bifurcations that lead to period locking windows (such as the large window on the
interval 0.012 < µa < 0.03) interspersed with strange, chaotic attractors.

EXERCISES

Exercise 8. If (n∗, 0) is a bifurcation point of x = nLx + h(n, x), prove that n∗

must be a characteristic value of L

Exercise 9. (a) Calculate the quantity κ for the LPA model in Example 1.4. (b)
Show that for n > 1 there exists exactly one nontrivial equilibrium and it is positive.

Exercise 10. (a) Consider the linear scalar (m = 1) difference equation y(t+1) =
ay(t) + b(t) where 0 ≤ a is a constant satisfying 0 ≤ a < 1 and where b(t) is a
bounded sequence: 0 ≤ b(t) ≤ b∞ < ∞, t = 0, 1, 2, · · · . Show that solutions y(t)
with non-negative initial conditions y(0) = c ≥ 0 are bounded. Specifically, show
there exists a constant β > 0 (independent of c) and an integer t∗(c) such that
0 ≤ y(t) ≤ β for t ≥ t∗(c). (b) Consider the linear scalar equation z(t + 1) =
α(t)z(t) + β(t) for which the coefficients α(t), β(t) satisfy |α(t)| ≤ a < 1 and
|β(t)| ≤ b(t) ≤ b∞ < ∞, t = 0, 1, 2, · · · . Show that solutions z(t) are bounded.
Specifically, show there exists a constant β > 0 (independent of c) and an integer
t∗(c) such that 0 ≤ |z(t)| ≤ β for t ≥ t∗(c). (c) Consider the nonlinear scalar (m =
1) difference equation w(t+1) = α(t, w(t)w(t)+β(t, w(t)) for which the coefficients
satisfy |α(t, w)| ≤ a < 1 and |β(t, w)| ≤ b(t) ≤ b∞ < ∞ for t = 0, 1, 2, · · · and all
w ∈ R1. Show that solutions w(t) with are bounded. Specifically, show there exists
a constant β > 0 (independent of c) and an integer t∗(c) such that 0 ≤ |w(t)| ≤ β
for t ≥ t∗(c).

Exercise 11. (a) Consider the juvenile/adult model in Example 2.2

J(t + 1) = cbA(t)e−A(t)J(t) + be−A(t)A(t)

A(t + 1) = τ21J(t) + τ22A(t)

under the assumption that c > 0 satisfies the inequality

c < e
τ21

1 − τ22
.

Recall n , bτ21/(1 − τ22). Show the model is dissipative when

1 < n <
e

c

τ21

1 − τ22
.

(Hint: Use the results in the preceding Exercise 10.) (b) Show the model is uni-
formly persistent if, in addition, 0 < τ21, τ22 < 1.

Exercise 12. Analyze the transcritical bifurcation at (J, A) = (0, 0), n = 1 of
juvenile/adult model

J(t + 1) = b1A(t)
1

1 + A(t)
J(t) + b2

1

1 + A(t)
A(t)

A(t + 1) = τ21J(t) + τ22A(t).

Here n , b2τ21/ (1 − τ22) is the inherent net reproductive number.
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Exercise 13. The m = 2 dimensional matrix model with fertility and transition
matrices

F =

(

0 b
0 0

)

, T =

(

0 0
τ21 τ22

)

describes a population classified by juveniles and adults: x1 = J and x2 = A
respectively. If all three parameters b, τ21, and τ22 are constants, the model is
linear. Consider the nonlinear model in which τ21 is replaced by τ21f(J) where f
models a fractional decrease in juvenile maturation due to the density J of juveniles.
Thus, assume b > 0, 0 < τ21, τ22 < 1 and f(0) = 1, 0 < f(J) ≤ 1 for J ≥ 0. (a)
Let f(J) = 1/(1 + J). Show positive equilibria exist for, and only for, n > 1 and
that they are (locally asymptotically) stable. (b) Let f(J) = e−J . Show positive
equilibria exist for, and only for, n > 1. Show that there exists an ncr > 1 such that
the positive equilibria are (locally asymptotically) stable for 1 < n < ncr. What
happens at n = ncr?



LECTURE 3

Experimental Case Studies

The influential papers of Li and Yorke [51] and Lord May [52, 28, 53] ignited
interest in complex (chaotic) dynamics that can result from simple rules described
by difference equations. Ecologists (and other scientists) found this possibility fasci-
nating for several reasons. From a philosophical point of view, there is a paradigm
shift away from the long held notion that complex phenomena require complex
causes (and, conversely, that only simple phenomena result from simple causes)
to one in which extraordinarily complex phenomena can result from simple rules.
Indeed, dynamics virtually indistinguishable from randomness or stochasticity can
result from simple deterministic rules. From a practical perspective, there arose
the possibility that some of the apparent randomness or “noise” that is so common
in population and ecosystem data might have a deterministic – indeed a simple
(i.e., low dimensional) – component. This opened up new avenues to explore for
possible explanations of observed patterns in data and, thereby, to deeper insights
that might lead to improved predictability.

Complex sequences of bifurcations and complex/chaotic dynamics are readily
found in nonlinear matrix models for the dynamics of a structured population.
This is also true for more complicated situations such as multi-species interactions,
models with spatial structure, temporally forced models for non-constant environ-
ments, and so on. This being the case, we are led to wonder about the role that
such bifurcations and chaotic dynamics might play in the ecological world. During
the last few decades there have been many studies that examine ecological data for
the possibility of chaotic dynamics. Besides the inherent similarity between chaos
and stochasticity and the difficulty in distinguishing between the two1, there are
numerous obstacles to carrying out such investigations, including the lack of suffi-
ciently long time series of data, the measurement accuracy (sampling error) of data,
and the general lack of quantitatively accurate, mechanistic mathematical models
on which to base analyses [58].

A study of how a population responds to perturbations in vital parameters is
an alternative to the approach of focusing on time series of observations from a
population in a specific set of circumstances and trying to identify and classify the
dynamic as a particular type or another. This approach is directly based on what
a model bifurcation diagram is all about. It is a common approach in science and
engineering to disturb, perturb, change, and tweak a system in order to gain an
understanding from its responses into how it works. Furthermore, from a practical
point of view, the question of how a population or ecosystem responds to certain

1Chaos fascinated scientists and mathematics because of the “noise-like” complexity that can arise
from deterministic models (especially simple low dimensional models). Of course complicated
fluctuations arising from noisy systems are not unexpected or surprising. So, mathematical chaos
is of interest because it is deterministic phenomenon.

35
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perturbations is an important one in a world in which hardly any biological system
is unperturbed by natural and/or human causes. This is important not only for the
purposes of basic scientific understanding, but for the purposes of managing bio-
logical resources, preserves, and parks; controlling of invasive species and diseases;
insuring the survival of species endangered by resource loss, environmental change,
habitat pollution, habitat fragmentation, and so on. Nonlinearity can imply un-
expected responses to perturbations. Fluctuations of increasing complexity caused
by dynamic bifurcations, for example, can be surprising.

Of course, one usually cannot study an ecosystem by subjecting it to a scheme
of perturbations any more that an astrophysicist can subject the solar system or a
galaxy to an experimental plan of perturbations to see how it will respond. One
can however, like a physicist, study smaller and isolated components of a system
in order to gain insight into its workings. Similarly, there can be a role for focused
experimental study of population systems in manageable and controllable situations
in promoting an understanding how larger communities and ecosystems are put
together. To quote E. O. Wilson ([68], p.111)

When observation and theory collide, scientists turn to carefully
designed experiments for resolution. Their motivation is especially
high in the case of biological systems, which are typically far too
complex to be grasped by observation and theory alone. The best
procedure, as in the rest of science is first to simplify the system,
then to hold it more or less constant while varying the important
parameters one or two at a time to see what happens.

The main goal of experimental studies is not always limited to a better under-
standing of the particular biological species involved (although that results too).
Such studies help to develop methods for the study the dynamics of populations in
general, to test and corroborate various principles and dogma, to find explanations
of observed phenomena that previously had none, and (as inevitably occurs in such
studies) discover new phenomena and develop methods to deal with them. Thus,
even if a study is specialized to a particular biological organism (as is, of course,
necessarily the case in experimental studies) a broader goal is to demonstrate, elu-
cidate, refine, extend, and discover new principles, methods and hypotheses for the
dynamics of ecological populations which apply to and aid in the study of other
systems.

In order to carry out a study of nonlinear dynamics along the lines discussed
above it is necessary to connect mathematical models with data. There is a plethora
of mathematical models in theoretical ecology and population dynamics. Precious
few, however, have been tied to experimental or observed data to a standard of
description and predictability found in the so-called “hard” sciences. This is not to
say that mathematical models have not contributed to ecological theory. They have
in fact helped establish most of the fundamental principles found today in ecology
(exponential growth, logistic growth, carrying capacity, r and K selectors, com-
petitive exclusion, ecological niche, limiting similarity, predator-prey oscillations,
and so on). Nonetheless, if mathematical models are to rise above only qualitative
accuracy and verbal metaphors, they must be more closely tied to data. This is far
easier said than done; ecosystems are notoriously complex.

One approach to the study of biological systems is that advocated by Wilson
in the quote above. In that spirit, the focus here will be on some successful case
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studies that utilized a manipulatable experimental system. The goal in looking at
these selected research projects is to touch (briefly) on several general topics: some
methods for connecting models to data; the use of a dynamic model to design ex-
periments for the purpose of testing theoretical predictions and tenets; the ability
of models to provide new explanations for dynamic patterns observed in data; how
models can predict unexpected and counter-intuitive phenomena that subsequent
experiments corroborate; and how the interdisciplinary wedding of mathematical
models with controlled experimental studies can lead to the discovery of new phe-
nomena and new general principles.

Any mathematical model is based on assumptions concerning the biological and
physical mechanisms to be included in the model and those to be left out. These
assumptions might, of course, need re-evaluation when the model predictions are
confronted with data. Suppose we have available a time sequence of observations
y(0), y(1), · · · , y(q) of the stage distributions. How well does the model describe
this data? How are the model parameters chosen to best describe the data (i.e.,
how is the model parameterized or calibrated)?

Of course, the model might be so fundamentally inappropriate that it simply
cannot describe the data well no matter what parameter values are used. This
eventuality should ultimately be revealed in an evaluation of the parameterized
model, in which case we take the model back to the drawing board for an overhaul.
If the parameterized model is deemed an adequate descriptor of the data, then it
can be further evaluated by analyzing how well it describes other data not used in
the parametrization procedure. (Perhaps some of the original data is left aside for
this purpose, or other data sets are obtained by further experiments.) If the model
passes these evaluations, then we gain some confidence in its ability to describe – and
more importantly predict – the dynamics of the population under various (possibly
changed) circumstances. Experiments based on the model’s predictions, whose data
bear out the model’s predictions, provide further validation of the model’s accuracy.

Some model parameters might be known from experiments designed specifically
to measure them. Other parameters we can estimate from the data y(i). Given
numerical values for its parameters, the model makes a prediction x(t+1) from each
data point y(t). We do not expect this prediction to be 100% accurate, of course,
and so there is a residual, i.e., there is a nonzero difference between the model
prediction x(t+1) and the actual observation y(t+1). Most model parametrization
and evaluation procedures are based, in one way or another, on the study of these
residuals.

Nonzero residuals arise for many reasons. The model could be perfectly ac-
curate and the data contain measurement errors. Of course, no model perfectly
describes a population’s dynamics and residuals can also arise because some pro-
cesses are inaccurately described in the model (or even excluded from the model).
Such processes can be deterministic and/or stochastic. Stochastic events (noise) is
ubiquitous in ecological data. This point will forcibly be brought home in the case
studies below in which experimental results contain significant noise even though
they were obtained from highly controlled laboratory experiments with virtually no
measurement error.

One way to incorporate stochasticity into a model is include both the deter-
ministic and the stochastic aspects of the population’s dynamics into the model’s
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components. We can use the resulting stochastic model to study residuals, to pa-
rametrize and validate the model, to obtain descriptions of data from the validated
model, and ultimately to make model predictions.

There are many ways to build a stochastic version of a matrix model (1.7). One
class of stochastic models (called nonlinear autoregression models or NLAR models)
adds a random term to the deterministic model (the skeleton) on an appropriate
scale, i.e., for an appropriate transformation of the data y (say w = g(y)) and
the model predictions x (n = g(x)). “Appropriate” here means that the model
is transformed so that additive noise has a stabilized variance. This means in
the m = 1 dimensional case, for example, that the stochastic model has the form
n(t + 1) = f(n(t)) + E(t) where for each t the random variable E(t) has mean 0
and a constant variance v = σ2 that is independent of t. (It is also assume that
E(0), E(1), E(2), · · · are independent random variables.) For the multi-variate
case m > 1, E(t) is a vector of random variables with means 0 and a (symmetric)
variance-covariance matrix Σ.

Ecologists distinguish two fundamental types of noise in biological systems:
environmental noise and demographic noise [53]. Roughly speaking, environmen-
tal noise arises from random disturbances that effect all individuals in the same
way whereas demographic noise is due to random differences among individuals
(differences in birth rates, survival rates, etc.).

In [11] an instructive example is given that illustrates one way to model en-
vironmental and demographic stochasticity. (Also see [17].) Consider a simple
survival process and let µ denote the fraction of individuals who die during a unit
of time. In the case of environmental stochasticity µ is a random variable. The
total number of survivors at time t + 1

x(t + 1) = (1 − µ) x(t)(3.1)

is then a random variable that depends on the number of individuals x(t) present at
time t. The mean of this random variable is Mean [1 − µ] x(t) where Mean [1 − µ]
is the mean of the random variable 1 − µ and the variance is

V ar [x(t + 1)] = V ar [1 − µ] x2(t) = V ar [µ] x2(t)(3.2)

where V ar [µ] is the variance of the random variable µ.
In the case of demographic stochasticity each individual in the population has

an independent random chance of dying with probability µ. In this case the number
of survivors x(t + 1) at time t + 1 is a binomial random variable of x(t) trials with
success probability 1−µ. The mean of this random variable is (1 − µ)x(t) and the
variance is

V ar [x(t + 1)] = (1 − µ)µx(t) .(3.3)

Many statistical techniques are available for stochastic processes of the (non-
linear autoregressive or NLAR) form

n(t + 1) = f(n(t)) + E(t)(3.4)

where E(t) is a normal random variable with mean 0 and a constant variance σ2

and E(0), E(1), E(2), ... are uncorrelated. The nonlinear function f defines the
deterministic skeleton n(t+1) = f(n(t)), i.e., the the nonlinear model that describes
the model dynamics in the absence of noise [65]. The stochastic survival processes
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derived in the motivational illustrations above for environmental and demographic
stochasticity do not have the additive form (3.4).

One approach to take is to transform the state variable x(t) in such a way
that the stochastic process for the resulting transformed random variable n(t) does
have (at least approximately) the NLAR form (3.4). Toward this end, define a
transformation n(t) = g(x(t)) by means of a function g satisfying

n = g (x) ,
dg(x)

dx
> 0.

Consider the first order Taylor polynomial approximation

n(t + 1) = g (x(t + 1)) ≈ g (x(t)) + g′ (x(t)) (x(t + 1) − x(t))

in which x(t + 1) is a random variable conditioned on a given value of x(t). Then,
from basic facts about the variance of a random variable, we find that

V ar (n(t + 1)) ≈ V ar [g (x(t)) + g′ (x(t)) (x(t + 1) − x(t))]

= V ar [g′ (x(t)) (x(t + 1) − x(t))]

= V ar [x(t + 1) − x(t)] (g′ (x(t)))
2

= V ar [x(t + 1)] (g′ (x(t)))
2
.

If the (conditional) variance of x(t + 1) is a function of x(t), so that

V ar [x(t + 1)] = v (x(t)) ,(3.5)

then

V ar [x(t + 1)] ≈ v (x(t)) (g′ (x(t)))
2

.

The goal is to find a transformation g(x) so that V ar [x(t + 1)] is approximately
constant. That is to say, we need to solve the differential equation

v (x) (g′ (x))
2

= c0

for g(x), where c0 is a (yet to be specified) constant. The general solution of this
equation is

g(x) =

∫
(

c0

v(x)

)1/2

dx + c1(3.6)

where c1 is another arbitrary constant.
For a stochastic model for which the variance of x(t + 1) is a function v(x(t))

of x(t) as in (3.5), the function g(x) defined by (3.6) transforms the model (ap-
proximately) to an NLAR of the form (3.4) for the transformed state variable
n(t) = g(x(t)). The arbitrary constants c0, c1 of integration in (3.6) are free to be
used to simplify g(x) in any convenient way. Here are two fundamental examples.

For environmental stochasticity, from (3.2) we found above that

v(x) = V ar [µ] x2

which by (3.6) leads to the transformation

g(x) =

(

c0

V ar [µ]

)1/2

lnx + c1.

For demographic stochasticity, from (3.3) we have

v(x) = µ (1 − µ)x.
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which by (3.6) leads to the transformation

g(x) =

(

c0

V ar [µ]

)1/2

lnx + c1.

In these expressions c0 and c1 are arbitrary constants. If c0 = V ar [µ] and c1 = 0
in the environmental case and c0 = (1−µ)µ/4 and c1 = 0 in the demographic case,
then transformations simplify to log and square root transformations g(x) = ln x
and

√
x respectively.

Thus, one way to model environmental stochasticity for a m = 1 dimensional
model with deterministic skeleton

x(t + 1) = f(x(t))

is to add noise on the logarithm scale or, equivalently, by means of the stochastic
equation

x(t + 1) = f(x(t))eE(t).(3.7)

Here we proceed by analogy with the survivorship model and assumes that the
variance of x(t+1) conditioned on x(t) is approximately constant on the logarithmic
scale. (In a higher dimensional case m > 1, random exponential factors appear in
each component of the skeleton model.)

Similarly, a model for demographic stochasticity utilizes a square root transfor-
mation of the state variables. Thus, in the m = 1 case, a demographic stochastic

version of the model is x(t + 1) =
(

√

f(x(t) + E(t)
)2

, although
√

f(x(t) + E(t)

should be replaced by 0 if it turns out to be negative:

x(t + 1) =

(

φ(t) + |φ(t)|
2

)2

where φ(t) ,
√

f(x(t)) + E(t).

Example 3.1. An environmental stochastic version of the Ricker equation (1.3)
adds a random variable E(t) (of mean 0) to the equation on the log scale:

x(t) = be−cx(t)x(t)eE(t).

A demographic stochastic version of the discrete logistic equation (1.2) adds a ran-
dom variable E(t) on the square root scale:

x(t + 1) =

(

φ(t) + |φ(t)|
2

)2

, φ(t) ,

√

b
1

1 + cx(t)
x(t) + E(t).

A stochastic version of the juvenile/adult model in Example (2.2) in which both life
cycle stages are subject to environmental noise is

J(t + 1) =
[

cbA(t)e−A(t)J(t) + be−A(t)A(t)
]

eE1(t)

A(t + 1) = [τ21J(t) + τ22A(t)] eE2(t)

where E(t) = (E1(t), E2(t)) is a vector of random variables Ei(t).
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Given q + 1 observations y(0), y(1), · · · , y(q) what is the probability that these
stage vectors could be produced by a stochastic version of a matrix model (1.7),
for some choice of the model parameters? A formula that relates this probability
to model parameters is the likelihood function, and parameters that maximize this
function are maximum likelihood parameter (ML) estimates.

A maximum likelihood function is basic to statistical inference and analysis,
e.g., for estimation of parameters, the calculation of confidence intervals, and hy-
pothesis testing. (For more about maximum likelihood methods and comparisons
with other methods see [18].) A requirement for deriving an explicit formula for
a ML function is a distributional assumption about the random variable E(t). A
mathematical formula for the pdf (probability distribution function) of E(t) per-
mits a formula for the ML function and to maximize it as a function of the model
parameters. This maximization calculation can rarely be done analytically and
usually must be done numerically with the aid of a computer.

Consider the m = 1 dimensional case. Suppose w(0), w(1), · · · , w(q) are trans-
formed observations of a population’s transformed state variable. Let n(t + 1) =
f(n(t), θ)+E(t) be the model equations for the transformed variable, where θ is the
vector of model parameters appearing in the deterministic skeleton f . If the ran-
dom variables E(t) are normally distributed with mean 0 and variance v = σ2 (and
uncorrelated in time), then the probability of observing w(t) given the observation
w(t − 1) is

1√
2πv

exp

(

− (w(t) − f(w(t − 1), θ)
2

2v

)

and the probability of observing the q data points w(1), · · · , w(q) is the product

Λ ,

q
∏

t=1

1√
2πv

exp

(

− (w(t) − f(w(t − 1), θ)
2

2v

)

.

Λ = Λ(θ, v) is a function of the parameters θ and v. The maximum likelihood
parameter estimates for θ and v are those that maximize Λ(θ, v).

In practice one often maximizes instead the log likelihood function

l(θ, v) , ln Λ(θ, v) = −1

2
q ln 2π − 1

2
q ln v − 1

2v
S(θ)

where

S(θ) ,

q
∑

t=1

(w(t) − f(w(t − 1), θ))2(3.8)

is the sum of squared (transformed) one-step residuals. It is possible to show that
the maximum occurs for

v =
1

q
S(θ)(3.9)

where θ maximizes

l(θ, S(θ)/q) = −1

2
q ln (2π) − 1

2
q ln

(

1

q
S(θ)

)

− q

2
.

Thus, in the m = 1 case, the maximum likelihood estimates of the parameters in
the vector θ are those that minimize the sum of squared residuals S(θ) together
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with v defined by (3.9).2 (For m > 1 the ML estimates for the parameters in θ do
not necessarily minimize S(θ).)

Example 3.2. Consider the time sequence of 101 (q = 100) data points plotted in
Figure 9. To calculate the ML parameter estimates of the environmental stochastic
version (3.7) of the discrete logistic (1.2) we transform the data to the log scale and
minimizes S(θ), given by (3.8) with f(w, θ) = ln b + w − ln (1 + cew) , with respect
to b and c (with the help of a computer program). The results are (recall (3.0))

b ≈ 13.14, c ≈ 0.06059, v ≈ 0.08163.

For the environmental stochastic version of the Ricker model (1.3) the ML estimates
are, obtained , using the same minimization procedure with f(w, θ) = ln b+w−cew,
are

b ≈ 7.591, c ≈ 0.009751, v ≈ 0.009702.
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Figure 9. This plot shows the data points used to calculate ML param-
eter estimates for the environmental stochastic versions of the logistic
and the Ricker models in Example 3.2.

All solutions of the discrete logistic (1.2) model equilibrate for b > 1. If we were
to accept the parameterized version of this model in Example 3.2, then we would
conclude that the data in Figure 9 is a noisy equilibrium xe = (b−1)/c ≈ 200.4. On
the other hand, if we were to accept the parameterized Ricker model in Example
3.2 then, because the Ricker model (1.3) predicts a 2-cycle (that oscillates between
x1 ≈ 166.6 and x2 ≈ 249.2) when b = 7.591, we would conclude that the data in
Figure 9 is a noisy 2-cycle. Which of these different conclusions should we accept?

One of the fundamental issues with regard to connecting models to data is the
assessment or validation of a model. This is not usually an easy problem. It can
involve, among other things, a considerable amount of sophisticated statistical anal-
yses and careful considerations of the model’s assumptions (both the deterministic
and the stochastic portions) with regard to the biological mechanisms thought to
most predominant in the application. In the end we reject a model as inadequate or

2Note that the one-step residuals in S(θ) are not those calculated from points on an orbit of the
model. This method does not fit an orbit to the data.
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accept it (at least tentatively) as reasonably accurate. There is no clear cut, algo-
rithmic path to arrive at such decisions and there will always be room for criticism
and improvement.

One way to confront a model with data is to think in terms of two aspects:
an analysis of fit and an analysis of prediction. So, in Example 3.2 we ask “how
well does the environmental stochastic logistic” fit the data in Figure 9? We can
also ask that question of the environmental stochastic Ricker, and then ask “which
does a better job”? Answers help us choose between these two models, but it must
be remembered that there are other (infinitely many other) models. Having made
a choice, we then ask how well the chosen model predicts, in the sense that it
also adequately describes other data not used in the parametrization estimation
procedure. This other data might be subset of a given data set deliberately set
aside for this purpose. Or it might be another data set collected as a replicate or
from a different experiment or set of observations. A strong test of the model is to
test its ability to make accurate predictions (perhaps even unusual or unexpected
predictions) that are subsequently corroborated by controlled experiments or ob-
servations. This is perhaps the ultimate goal in modeling building and validation.
Accurate and trustworthy predictions not only serve scientific and engineering pur-
poses, but serve to further validate the model and add confidence in its accuracy.
This prediction aspect of a model will be a an important component of the case
studies described below.

Returning to Example 3.2, we consider only a couple of basic ways to quantify
an assessment of the two models. We want more than a plot of a model orbit
superimposed on the data that visually looks good. For example, if we plot the
solution of the parameterized logistic starting from the initial data point x(0) = 1 in
Example 3.2, we obtain an orbit that rather convincingly “goes through the middle
of the data”. Similarly, however, the orbit of the parameterized Ricker also looks
visually reasonable when superimposed on the original data time series. See Figure
10. We need quantifiable ways to assess the results of these two parameterized
models.

One way to proceed is to recall that the stochastic version of the model claims
that the one-step residuals are normally distributed with a mean 0 and with the
estimated variance v. The residuals constitute a data set that we can test for
normality using a number of normality tests from statistics. We will not dwell
on these statistical issues here, but simply be content with a visual inspection
histogram plots the residuals shown in Figure 11. The residuals from the ML
parameterized Ricker model appear more normally distributed than those of the
ML parameterized logistic model.

Moreover, the residuals of the parameterized Ricker model have a smaller vari-
ance (by an order of magnitude) than those of the parameterized logistic model.
That is to say, a one-step prediction of the deterministic Ricker model, made from
the data point at time t, is more often closer to the next data point at time t+1 than
is the one-step prediction of the deterministic logistic model. One way researchers
quantify this observation is by means of an “R-squared” value:

R2 , 1 − v

v0

where v = S/q (see (3.8)) and v0 is the variance of the transformed data w(t) :

v0 ⊜
1

q

q
∑

t=1

(w(t) − w0)
2
, w0 ,

1

q

q
∑

t=1

w(t).
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Figure 10. (a) and (b) show plots of the orbits of the discrete logis-
tic and the Ricker models (1.2) and (1.3), respectively, superimposed
on the data from Figure 9 used to parametrize the models. The initial
condition is the first data point x(0) = 1 and the parameters are the
ML parameters estimated in Example 3.2. It should be pointed out that
the ML parameter estimates in, for example (a), were not obtained by
minimizing the residuals between the data and this orbit (as in a regres-
sion analysis). This common procedure does not calculate the maximum
likelihood estimates of any obvious model and almost certainly not the
one being parameterized. The ML parameter estimates, which minimize
the residuals from the conditional one-step predictions (i.e., the resid-
ual at t + 1 conditioned on starting from the data point at t), are not
explicitly designed to “optimally fit an orbit through the data”.
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Figure 11. These plots show frequency histograms of the one-step con-
ditional log residuals of the ML parameterized logistic and Ricker, using
the data in Figure 9. For the data in Figure 9, v0 = 0.1899 and w0 =

5.258179.

One says that R2 is “the fraction of the variability in the data that is explained
by the model”. So, if R2 = 0.75, then one says that the model “explains 75%”
of the variability in the data. R2 values reported in Figure 11 show that the ML
parameterized logistic model explains 57% of the variability in the data in Figure
9, while the ML parameterized Ricker model explains 95%. On this basis, it is
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reasonable to conclude that the Ricker model is the more accurate model for this
data set.3

Figure 12 shows histograms of the log residuals of both parameterized models
applied to another data set from the same source – a replicate data set. The
predictive accuracy of the Ricker model is reflected in a virtually unchanged R2

value from that of the Ricker model fit shown in Figure 11, even though these data
were not used to estimate the ML parameters for the model. In contrast, the R2

value of the parameterized logistic drops over 50% in going from the fitted data to
the predicted data sets.
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Figure 12. The plot in (a) shows data from a replicate of the experi-
ment that produced the data in Figure 9 used for the ML parametriza-
tion of the logistic and the Ricker models in Example 3.2. Frequency
histograms of the one-step log residuals of the parameterized logistic and
Ricker appear in (b) and (c). Note that the data in (a) was not used to
obtain the ML parameter estimates. The R2 value of the logistic model
drops over 50% while that of the logistic remains nearly unchanged.

3To compare models one shouldn’t always simply compare their variances or R2 values. Such a
comparison is reasonable if both models have the same number of estimated parameters. However,
if one model has more parameters than the other, then its smaller R2 value might be due more to
its extra parameters than to its superior structure as a model. When two models have a different
number of parameters, one should use statistics that compensate, or penalize, for the number of
parameters when making comparisons. One example is the Akaike information criterion (AIC)
which quantifies the relative goodness-of-fit of statistical models, given a sample of data. The

model is preferred that has the smallest quantity A , 2k + q ln (S/q) where k is the number of
estimated parameters.
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Figure 13(a) shows a data set taken from a laboratory experiment. The data
show the adult numbers in an insect population (the beetle Tribolium castaneum)
obtained from census counts taken at two week intervals. The ML parameter esti-
mates for the environmental stochastic Ricker model turn out to be

b ≈ 3.5733, c ≈ 0.03026, v ≈ 7.756.(3.10)

The histogram of one step log residuals in Figure 13(b) shows a marked departure
from a normal distribution, a fact that leads us to reject this model as a description
of this data set. Indeed, if we were to accept the model as accurate then we would
conclude that the data in Figure 13(a) is a (very) noisy equilibrium. (The Ricker
map as an equilibrium xe = c−1 ln b ≈ 42.09 for the parameter estimates of b and
c above.) Yet the data in Figure 13(a) seems to have distinctive non-equilibrium
patterns that we might reasonably expect to be amenable to model description
and explanation. We can critique the rejected environmental Ricker in two ways.
Its deterministic skeleton (the Ricker equation) could be ill formulated for the
data in Figure 13(a) and/or the environmental stochastic version might be a poor
description of the noise present in the system. We can, of course, modify either of
these model components in any of innumerable ways.
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Figure 13. If we use the data time series in (a) to estimate the param-
eters in the environmental stochastic Ricker model (using the maximum
likelihood parameter estimation procedure), we obtain the estimates
(3.10). However, the histogram of one-step log residuals in (b) show
a significant departure from a normal distribution.

To obtain guidance in the construction of an improved model, one should con-
sider the important features of the population’s biology and the physical features
of its environment. A good model is based on mechanisms that are known, or
thought to be, significantly important in determining the population’s dynamics.
Biologists who study a particular species generally have a very good idea what such
mechanisms are. Indeed, biologists (by the nature of their training) generally know
a formidable number of details about a species, and it is often a challenge for a
modeler, when collaborating with a biologist, is to determine which of a plethora
of facts and details known to the biologist are to be incorporated into the model.
Mathematicians (by their training) tend to be generalists and the contrast with the
focused attention to a complexity of details that is characteristic of a biologist’s
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understanding of a biological system can make for lively (and frustrating) conver-
sations in this regard. Keeping in mind that a model with enough parameters can
fit virtually any data set, whether it is a reasonable model or not (after all, one can
find a high degree polynomial that passes through any number of given data points,
with all residuals equal to 0!), we try to find a few mechanisms that dominate the
dynamics of the population and build from them a model with as few parameters
as possible.

The data in Figure 13 are adult population numbers of an insect species, the
beetle T. castaneum. This beetle is a significant agricultural pest, and as a result
researchers have extensively studied this species (and others from the genus Tri-
bolium) since the early 20th century. Grown in a finite volume of medium4, which
is regularly renewed, sustainable populations must regulate their numbers in some
manner. The species T. castaneum regulates its population growth by means of
cannibalism.

T. castaneum has four main life cycle stages, egg, larval, pupal, and adult, and
the moving stages cannibalize the non-moving stages (although larvae cannibalism
of pupae is rare). This suggests a model with at least four state variables. However,
the egg stage is relatively short (2 to 3 days) compared to the census time (which
is taken to be the length of the larval stage, namely 2 week). We can utilize this
fact to construct a model with three state variables: larvae, pupae, and adults.
In this way, by using a stage structured model we are able to account for inter-
stage cannibalistic interactions, the mechanisms known to drive the dynamics of
this species.

It turns out that the pupal stage in T. castaneum is very nearly of the same du-
ration as the larval stage (two weeks). As a result a matrix model for the population
density distribution vector x = col (L, P, A) has the form of a Leslie age-structured
model with only the third stage fertile, i.e., a projection matrix P = F + T with

F =





0 0 b
0 0 0
0 0 0



 , T =





0 0 0
1 − µl 0 0

0 1 − µp 1 − µa



 .

Here the µi are the stage mortality fractions and b is the larval recruitment per
adult per unit time.

The cannibalism of eggs by larvae and adults decrease larval recruitment b by
a fraction dependent on the density of larvae and adults L and A. Cannibalism
of pupae by adults decreases adult recruitment fraction 1 − µp by an additional
fraction dependent on A (but not on L since observation has shown that for T.
castaneum pupal cannibalism by larvae is negligible). In this model Ricker type
exponential nonlinearities account for the cannibalistic interactions. The rationale
for this is as follows.

Cannibalism in T. castaneum occurs, as far as careful observation has revealed,
because of random encounters among individual adult or larvae (as they continu-
ally move and feed in the medium) with eggs or pupae (which are stationary). If
we begin with the assumption that the probability of an encounter between one
larva, say, with an egg during ∆t time units is proportional to ∆t and inversely
proportional to the volume V of the culture medium [2], then the probability that

4For many species of Tribolium growing in a finite container of medium is not far removed from
their “natural” habitat, since they have grown in containers of grain products stored by humans
for centuries. For example, evidence of Tribolium has been found in ancient Egyptian urns.
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the egg is not encountered by the larva is 1−cel∆t/V where cel > 0 is a constant of
proportionality (the cannibalism coefficient). The probability that the egg will not

encounter the larva during one full unit of time is (1 − cel∆t/V )
1/∆t

. If L larvae
are present, then the egg’s survivorship probability is the product

ΠL
i=1 (1 − cel∆t/V )

1/∆t
= (1 − cel∆t/V )

L/∆t
.

As ∆t → 0, the probability approaches exp (−celL/V ). A similar argument holds
for adult/egg and hence the probability that an egg survives cannibalism by both
larvae and adults is exp (−celL/V ) exp (−ceaA/V ). As a result larval recruitment
is reduced from bA in the absence of cannibalism to bA exp (−celL − ceaA) when
cannibalism is taken into account. A similar argument introduces a fractional
reduction term exp(−cpaA) in the survivorship of pupae to the adult stage.

The result of introducing exponential nonlinearities into the transition matrix
T is the LPA model in Example 1.4, namely

L(t + 1) = bA(t) exp
(

−cel

V
L(t) − cea

V
A(t)

)

P (t + 1) = (1 − µl)L(t)(3.11)

A(t + 1) = (1 − µp) P (t) exp
(

−cpa

V
A(t)

)

+ (1 − µa)A(t).

This m = 3 dimensional matrix model has eight parameters. The medium volume V
is known in experimental situations. Moreover, extensive observations have shown
that pupal survivorship of T. castaneum (and for the species in the genus Tribolium
in general) in the absence of cannibalism is virtually 100% and therefore we can
safely assume µp = 0. This leaves six parameters to be estimated, unless of course
some are controlled as part of an experimental protocol.

The three life cycle stages of Tribolium are easily recognized and can be rou-
tinely counted. (The example data in Figure 13(a) is, in fact, the x = A stage
component from a time series of all three life cycles L, P and A.) We can estimate
the model parameters from a time series of L, P, A data by using the maximum
likelihood procedure described above extended to the multivariate case when x is
a vector. (Sometimes we can instead estimate a parameter another ways. For
example, if dead adults are counted then we can estimate µa from the results.)

Suppose w(0), w(1), · · · , w(q) are transformed observations of a population’s
transformed (m > 1 dimensional vector) state variable. Let n(t + 1) = f(n(t), θ) +
E(t) be the model equations for the transformed (vector) variable, where θ is the
vector of model parameters appearing in the deterministic skeleton f . Here we
assume that E(t) is a vector of normal distributions (a multivariate normal distri-
bution) with mean 0 and (symmetric) variance-covariance matrix Σ. The variances
of the components of E(t) appear on the diagonal and covariances among the com-
ponents appear in the off diagonal elements. In situations in which a disturbance
that occurs in one stage is unlikely to effect other stages then the covariances can
be assumed equation to 0 and Σ is diagonal. The likelihood function is

Λ ,

q
∏

t=1

1
√

(2π)
m

detΣ
exp

(

− (w(t) − f(w(t − 1), θ))
∗
Σ−1 (w(t) − f(w(t − 1), θ))

2

)



J. M. CUSHING, MATRIX MODELS AND POPULATION DYNAMICS 49

and the log likelihood function is

l , ln L = −m

2
q ln(2π) − 1

2
q ln (detΣ)

− 1

2

q
∑

t=1

(w(t) − f(w(t − 1), θ))∗ Σ−1 (w(t) − f(w(t − 1), θ)) .

(The asterisk denotes the transpose of a vector or matrix.) The log likelihood
function l is a function of the skeleton’s parameters in the vector θ and of the entries
in the (symmetric) variance-covariance matrix Σ. The ML parameter estimates are
those values of θ and the entries in Σ that maximize l.

It turns out that the maximum occurs when Σ = RR∗/q where R is the matrix
with the residuals w(t) − f(w(t − 1), θ) as columns. If this expression for Σ is
substituted into l, then the problem becomes to maximize the resulting formula
for l as a function of θ only (and calculate Σ from R, in which the residuals are
calculated using the calculated ML estimate for θ).

Stochastic versions of the LPA model (3.11), and various modifications of the
model, constitute the basis for over fifteen years of experimental and theoretical
investigations of a long list of nonlinear phenomena in population dynamics5. Re-
ports on these studies appear in [1, 3, 11, 56]. I will give here only a summary
report of some of these studies.

There are several levels on which we can view the results of the studies. First of
all, we can consider them to be illustrative examples of the modeling methodology
discussed above. Second, the studies will demonstrate that a mathematical model
can “work” in population dynamics; that is to say, a mathematical model can make
accurate quantitative descriptions of the dynamics of a biological organism and, im-
portantly, can make predictions that are later born out by controlled experiments.
Thus, we can go beyond the statement that a model is only “qualitatively correct”,
as is found so often in the literature, and make a small contribution towards rais-
ing population dynamics and theoretical ecology above verbal metaphors. Third,
these studies often provide explanations for observations that had no previous ex-
planation. Fourth, an accurately validated model can make surprising predictions,
sometimes counter-intuitive, that are subsequently corroborated by experimental
observations. This leads to a deeper understanding of the population’s dynam-
ics and provides an ability to predict the outcome of disturbances and altered
circumstances (environmental perturbations, generic changes, application of con-
trol policies, etc.). Fifth, new phenomena are discovered and new mathematical
methodologies are developed to handle them. And finally, going beyond the partic-
ular experimental system used, the studies often elucidate, confirm, and sometimes
challenge accepted ecological principles and tenets. This provides some guidance
to the study of nonlinear dynamics of other systems, both laboratory and field
systems. Each of these aspects have played, and continue to play, a role in the
application of the LPA model to experimental cultures of Tribolium [3].

5The senior researchers involved are R. F. Costantino (University of Arizona), R. A. Deshar-

nais (California State University at Los Angeles), Brian Dennis (University of Idaho), Shandelle
M. Henson (Andrews University), Aaron A. King (University of Michigan) and J. M. Cushing
(University of Arizona). Many undergraduate and graduate students have also made significant
contributions over the years. A list of contributors can be found in [11].
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In the experiments described below, all three life cycle stages are counted every
two weeks, and the cultures returned to their habitats with refreshed medium6. In
some experiments manipulations are performed at this time in order to force certain
values for selected parameters in the model. Many studies, particularly those in
which demographic stochasticity predominate, have shown that the covariances (off
diagonal entries in Σ) are quite small compared to the variances (diagonal entries)
and as a result these covariances are assumed equal to 0 in the stochastic model.
These details, which can change from one experimental protocol to another, reflect
on the number of parameters in the model that need to be estimated.

Details of a preliminary parametrization of the LPA model using historical
data for T. castaneum and an environmental stochastic version of the LPA model
appear in [18]. This initial study used an environmental stochastic model because
population sizes were large and demographic stochasticity is generally less of a
factor in large populations [53]. In subsequent studies and experiments, in which
large oscillations resulted in numbers in individual life cycle stages being small (but
not total population size), it was found that a demographic stochastic version of the
LPA model was a more accurate model [19, 20]. Details of the statistical analyses
that validates the model are found in [18] (also see [11, 20]).

The goal of one study was to demonstrate that a biological population would
traverse a model predicted bifurcation route-to-chaos. A preliminary experiment
tested the predictive capability of the parameterized LPA model for cultures of
T. castaneum on the basis of a relatively simple bifurcation diagram. In that
experiment the bifurcation sequence results by varying the adult death rate µa from
its parameterized value (holding all other parameters fixed). Varying µa between
its allowable limits of 0 and 1, we obtain a bifurcation diagram similar to the that in
Figure 7(a). An experiment placed replicated cultures of T. castaneum at selected
positions in the bifurcation diagram, in order to corroborate that the predicted
bifurcations would indeed occur in the dynamics of beetle cultures. (There were also
unmanipulated and replicated control cultures.) The historical data used to obtain
the preliminary parameter estimates for the LPA model came from a strain of T.
castaneum that was no longer available for experiments. As a result, the preliminary
bifurcation experiment used different strains. The experiment was conducted twice,
once for two T. castaneum strains called SS and RR. For this reason, the data
obtained from the experimental treatments were used to re-parametrize the LPA
model and re-calculate the bifurcation diagram (which, as it turned out, did not
significantly change from the original bifurcation diagram). The result for the SS
strain appears in Figure 14 (taken from [11]).

The arrows in Figure 14 indicate where experimental cultures of T. castaneum
(strain SS) were placed by experimental manipulation of the adult survival fraction
µa. The model predictions for these treatments, for increasing µa, were: an equi-
librium at µa = 0.04, a 2-cycle at both µa = 0.27 and 0.50, another equilibrium at
µa = 0.7, and quasi-periodic fluctuations at µa = 0.96. The state space plots of the
data shown in Figure 15 visually show how these predictions were born out by the
experimental data. Model evaluations using a variety of tests and analyses provide

6R. F. Costantino and R. A. Desharnais carried out the experiments in laboratories at the Uni-
versity of Rhode Island and University of Arizona. Details of the experimental protocols can be
found in [11] and the research papers cited therein.
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Figure 14. The bifurcation diagram for the LPA model (3.11) using
the adult death rate µa as a bifurcation parameter and plotting total
population size L+P+A for the attractor. Other ML parameter values,
obtained from the environmental stochastic LPA model and data for the
SS strain, are b = 7.483, µp = 0, µl = 0.2670, cea = 0.009170, cel =
0.01200, cpa = 0.004139. (Confidence intervals for these parameters and
the estimates for Σ appear in [11, 20].) [Reprinted from [11], with the
permission of Academic Press.]

statistical support for the accuracy of the model predictions [19]. (The experiment
was duplicated with similar results using the RR strain of T. castaneum. See [11].)

It is interesting to note that the bifurcation diagram in Figure 14 makes pre-
dictions that are perhaps counter-intuitive to what one might expect if the adults
in an insect population are subjected to increasing mortality (as part of, say, a pest
control procedure). It is probably not intuitive that increasing adult mortality can
lead to the crash boom outbreaks of a 2-cycle, followed by a re-equilibration, with
very little drop in infestation level, and ultimately at very high mortality rates to
quasi-periodic (and hence difficult to predict) outbreaks.

The success in the predictive capability of the LPA model parameterized for
the flour beetle T. Castaneum in the preliminary bifurcation experiment reported
in Figures 14 and 15 was sufficient to encourage an investment into a longer term
experiment (which ultimately lasted over 8 years or over 100 generations of beetles).
A considerably more complicated LPA model predicted bifurcation diagram – one
that involved a route-to-chaos – formed the basis of a more elaborate experiment
using T. Castaneum. The ML parameter estimates for the RR strain produce the
bifurcation diagram in Figure 16 when two parameters are manipulated. Specif-
ically, the adult death rate is held fixed at µa = 0.96 and the adult-on-pupae
cannibalism rate cpa is varied as a bifurcation parameter7. The arrows in Figure
16 show the locations in the bifurcation diagram where replicated treatments were
placed in the experiment. These locations were chosen in order to determine if the

7See [11, 20] for a description of how cpa was experimentally manipulated.
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μa = 0.04 μa = 0.27 μa = 0.50

μa = 0.73 μa = 0.96

SS Strain

Figure 15. Open circles are experimental data points plotted in m = 3
dimensional (L, P, A) phase space. Transients are removed in order to
emphasize the predicted attractors, which appear as solid points and
lines. These results are for the SS strain of T. Castaneum. A duplicate
experiment, with similar results, was carried out for the RR strain.
[Reprinted from [11], with the permission of Academic Press.]

beetle populations would exhibit the distinctively different attractors predicted by
the LPA model for these parameter values. Figure 17 shows four examples of the
attractors that are possible: equilibria, cycles, quasi-periodic oscillations (invariant
loops), and chaotic strange attractors.

The state space plots of the experimental data displayed in Figures 18 and
19 show how the data bear out the model predictions. Model evaluations using
a variety of tests and analyses provide statistical support for the accuracy of the
model predictions [20]. Also note in Figures 18 and 19 how closely simulations
from the demographic stochastic LPA model resembles the data.

Of particular interest in Figures 18 and 19 is the treatment at cpa = 0.35
which lies in a parameter interval that contains chaotic dynamics. Indeed, for the
point estimates of the parameters in this treatment, the model predicted attractor
is chaotic. (This has not been proved rigorously in a mathematical sense, but
is indicated by computer simulations and the calculation of Liapunov exponents,
which measure sensitivity to initial conditions.) As is typical in models with chaotic
dynamics, non-chaotic dynamics can be found for nearby parameter values lying
within the confidence intervals for the estimated parameters. Nonetheless, for such
parameter values it is typical that transients still exhibit chaotic-like dynamics in
their approach to the attractor. Moreover, the bifurcation diagram in Figure 20
is quite robust throughout the confidence intervals [11, 20]. We could reasonably
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(a)

(b)

Figure 16. Two plots show bifurcation diagrams for the LPA model
(3.11) using the adult-on-pupa cannibalism rate cpa as a bifurcation
parameter and plotting total population size L + P + A for the attrac-
tor. Other ML parameter values for the RR strain (calculated with
the environmental stochastic version of the LPA model) are b = 7.876,
µp = 0, µl = 0.1613, cel = 0.01385, cea = 0.01114, µa = 0.96. (Confi-
dence intervals for these parameters and the estimates for Σ appear in
[11, 20].) In (a) cpa ranges from 0 to 0.15 and in (b) cpa ranges from
0.15 to 1. A post-experiment re-parametrization using the demographic
stochastic LPA model forms the basis of detailed statistical analyses of
the data, which show slightly better validation results. The bifurcation
diagram changes little, however. For a robustness study of the bifurca-
tion diagram see [11, 20]. [Reprinted from [11], with the permission of
Academic Press.]

refer to the data from this treatment as chaotic, even though it is perhaps better to
say that the data (i.e., the beetle population’s dynamics) are “influenced” by the
chaotic dynamics present through the confidence intervals for the parameters.

A study of chaotic dynamics requires a long time series of data and for that
reason the three replicates of the cpa = 0.35 treatment were continued for over
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Figure 17. (a) These plots show the attractors in phase space at four
locations in the bifurcation diagram of Figure 16. At cpa = 0 the at-
tractor is an equilibrium. At cpa = 0.05 the attractor is an invariant
loop. At cpa = 0.25 the attractor is an chaotic strange attractor. At
cpa = 1 the attractor is a 3-cycle. (b) The L stage components of the
attractors in (a) appear plotted against time t. [Reprinted from [11],
with the permission of Academic Press.]

eight years (100 generations). The resulting data provide an opportunity to study
various issues concerning chaos as realized in a biological population. I will briefly
discuss only three such topics: transients, state space lattice effects, and habitat
size.

One way to view the effects of demographic or environmental noise is that such
disturbances continually produce transient dynamics. Even should the trajectory
of a population reach the vicinity of a deterministic attractor such perturbations
will move it away and cause it to follow a transient path back to the attractor. Such
perturbations might even be sufficient to place the population far from an attractor
in which case the influence of other deterministic entities might come into play,
such as the stable and unstable manifolds of non-attracting invariant sets. Such
events are frequently observed in the experimental data shown in Figures 18 and
19.

An example appears in Figure 21 which shows the time series from one replicate
taken from the treatment at cpa = 0.05 in the bifurcation diagram Figure 16. The
deterministic model predicted attractor for this treatment is an invariant loop.
At the sixteenth week of the experiment a random perturbation placed the data
orbit, which until then (for four generations) had been reasonably close to the
predicted invariant loop, near the model predicted equilibrium. After residing near
this unstable equilibrium for two months (two generations) the data orbit moves
away from the equilibrium. This transitory pattern, which lasts 10 weeks until the
data orbit returns to the attractor, has a rotational pattern that is remarkably well
predicted by the linearization of the model at the equilibrium. Details are explained
in the caption of Figure 21.

See [11] for other examples of “saddle flybys” and of random visitations near
other kinds of unstable invariant sets of the LPA model observed in the data from
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Figure 18. The top row of plots shows the experimental data obtained
from cultures placed at the selected values of cpa indicated in the bifur-
cation diagram in Figure 16(a) and from a control culture (which the
model predicts should equilibrate). The bottom row of plots shows simu-
lations from the demographic (square root scale) LPA model. [Reprinted
from [11], with the permission of Academic Press.]

the route-to-chaos experiment. Of course, if the initial condition is not close to
the attractor, and especially if it is near an unstable saddle or its stable manifold,
then the model would predict such a transient saddle flyby. However, as Figure 21
shows, occasionally a data orbit will exhibit a flyby later in an experiment, after
the vicinity of the attractor has been reached. A dramatic case of this is seen
in Figure 22 where a saddle equilibrium flyby is observed in one replicate of the
chaotic cpa = 0.35 treatment during weeks 358 to 380 of the 424 week (106 genera-
tion long) experiment. Moreover, a data orbit will occasionally experience several
flybys during the course of the experiment. Stochastically caused flybys of unstable
invariant sets of other kinds of attractors, such as cycles, are also observed. See
[11] for examples.

Another effect of random perturbations in populations with oscillatory dy-
namics can be a change in the phase of the oscillation. For example, the 3-cycle
attractor in the cpa = 1.0 treatment has three different phases. The three replicates
in the treatment, by the end of the experiment, were all out of phase because each
had suffered a perturbation that adjusted the phase and, as it happened, all three
phases were represented in the three replicates at the end of the experiment. See
Figure 23. Other examples of phase shifts are given in [11]. One way of explaining
these shifts is to view the dynamics in composite phase space, where each point of
a cycle is a different equilibrium, and study the stochastic hops from one basin of
attraction to another. See [32] for several applications of this approach. One take
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Stochastic Simulations

c
pa 

= 0.25

Experimental Treatments

c
pa 

= 0.35 c
pa 

= 0.50 c
pa 

= 1.00

Figure 19. The top row of plots shows the experimental data obtained
from cultures placed at the selected values of cpa indicated in the bifurca-
tion diagram in Figure 16(b). The bottom row of plots shows simulations
from the demographic (square root scale) LPA model. The solid circles
and lines are the model predicted attractors using a re-parametrization
based on the route-to-chaos data itself (rather than the parameter es-
timates used Figure 16 for the a priori bifurcation sequence obtained
from historical data): b = 10.45, µp = 0, µl = 0.2000, cel = 0.01731,
cea = 0.01310, µa = 0.96. [Reprinted from [11], with the permission of
Academic Press.]

home message here is the erroneous view of a population’s dynamics that might
result from the common practice of averaging over replicates. For example, out of
phase cycles, when averaged, will result in a time series that will likely look like an
equilibrium.

A close look at the data from the chaotic treatment cpa = 0.35 reveals several
distinctive cyclic patterns. Figure 24 shows one cyclic pattern, with period 11 (22
weeks, or 5.5 generations). Chaotic attractors typically contain infinitely many
unstable (saddle) cycles and it turns out that a saddle 11-cycle is located on the
chaotic attractor predicted for this treatment. Moreover, this 11-cycle has a strong
influence on the dynamics of the chaotic attractor (as, for example, a spectral
analysis shows) [11]. Thus, the attractor of the deterministic LPA model offers an
explanation of this particular pattern observed in the data.

Another cyclic pattern – a near 6-cycle pattern – also appears prominently in
data from the chaotic treatment cpa = 0.35. Examples appear in Figure 25(a). The
LPA model does not, however, provide an explanation for this period 6 pattern.
Although there is yet no rigorous proof, extensive computer searchers suggest that
a 6-cycle solution (stable or unstable) of the LPA model does not exist for the
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Figure 20. The re-calibrated bifurcation diagram the attractors are:
an invariant loop at cpa = 0.00 (two disjoint loops that appear nearly
as a 2-cycle); chaos at cpa = 0.05; a 26-cycle at cpa = 0.10; an 8-cycle
at cpa = 0.25; chaos at cpa = 0.35; a 3-cycle at cpa = 0.50; a 6-cycle at
cpa = 1.00. [Reprinted from [11], with the permission of Academic

Press.]

parameter values associated with this experimental treatment. We can, however,
find a model explanation for these 6-cycle patterns in an unexpected way.

The census counts of individuals in each life cycle state are, of course, whole
integers. The predictions of the LPA model (3.11), on the other hand, are not whole
integers; the state space for the LPA model is continuous. A simple mathematical
way to get integer predictions from the LPA model is to round the right hand
sides of the three model equations. The “integerized” LPA model obtained in this
manner, namely

L(t + 1) = round
[

bA(t) exp
(

−cel

V
L(t) − cea

V
A(t)

)]

P (t + 1) = round [(1 − µl)L(t)](3.12)

A(t + 1) = round
[

(1 − µp)P (t) exp
(

−cpa

V
A(t)

)]

+ round [(1 − µa)A(t)] ,

predicts the 6-cycle shown in Figure 25(b), when the model parameters and the
initial conditions of the cpa = 0.35 treatment are used8. The 6-cycle in Figure
25(b) is strikingly similar to the cyclic patterns often observed in the data (such
as the examples in Figure 25(a)). Therefore, we can attribute the observed period
6-cycle pattern to the fact that the data reside on a integer lattice in state space,
not the continuous state space of the LPA model (3.11). A comparison of Figures
24 and 25 shows intermittent episodes when the data from a portion of one replicate
were close to the 11-cycle (the chaotic attractor) and the lattice model predicted
6-cycle.

8The same is true if in the third equation the sum is rounded instead of the individual terms.
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Figure 21. [11, 10] (a) The LPA model (3.11) does not predict a flyby
of the saddle equilibrium for the treatment cpa = 0.05 in the bifur-
cation diagram of Figure 16 when the orbit is started at the exper-
imental initial conditions (L(0), P (0), A(0)) = (250, 5, 100). The lag
metric plotted here is the Euclidean distance in m = 3 dimensional
phase space between data points and the model predicted equilibrium
(L, P, A) = (22.41, 4.625, 334.77), as a function of time. (b) Data from
one from of the replicates for the cpa = 0.05 treatment shows a re-
markable visitation near the model predicted equilibrium (which is an
unstable saddle). A random perturbation occurs at week sixteen that
places the population near this equilibrium. (c) The flyby of the sad-
dle equilibrium by the data orbit is strikingly apparent in state space.
Note the star-like rotational motion in state space that occurs dur-
ing weeks twenty-four through thirty-four when the data orbit leaves
the vicinity of the saddle equilibrium. This geometrically distinctive
path is in fact predicted by the deterministic LPA model. The lin-
earization at the equilibrium has a conjugate pair of complex eigen-
values re±iθ of magnitude r ≈ 1.265 > 1 and polar angle θ ≈ 2.576
(and a third real positive eigenvalue λ ≈ 0.3945 < 1). This complex
eigenvalue implies a rotational motion away from the saddle of approx-
imately 2π/θ ≈ 2.439 radians (139.8 degrees) degrees per step, the mo-
tion occurring approximately in a plane parallel to that spanned by the
eigenvectors (L, P, A) ≈ (1,−1.166, 0.4860) and (1,−0.3526,−0.2817).
These characteristics are seen in the orbit data during weeks 24 to 34.
[Reprinted from [10] with the permission of Elsevier]

Lattice effects (i.e., patterns in data, or in stochastic model simulations, at-
tributed to the fact that data lies on a finite lattice in phase space) in the chaotic
treatment cpa = 0.35 are the object of study in [41]. The take home message from
that study is that in order to explain the observed patterns in the dynamics of a bio-
logical population it might be necessary to use both a continuous state space model
and a discrete state space model (based on whole integer numbers or on fractions
as densities obtained from integers divided by an area or volume). What we expect
to observe are episodes of lattice cycle attractors (there are generally more than
one) randomly mixed by stochastic events with transient dynamics that resemble
the continuous state space attractors (and unstable invariant sets, such as saddle
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Figure 22. (a) A comparison of the L-stage components of one repli-
cate of the chaotic cpa = 0.35 treatment to those of the chaotic attractor.
Notice the damped oscillations in the replicate’s L-stage during weeks
358 to 380. The lag metric plots (distance to model predicted equilib-
rium in phase space) shown in (b) indicate that this damping is caused
by a flyby of the equilibrium.

equilibria and cycles). Figure 26 shows an example of lattice effect phenomena in
a stochastic, integerized version of the Ricker model [11, 34, 40].

Henson et al. [35] give one way to provide a unifying point of view for this
conclusion about discrete state space lattice effects and continuous state space at-
tractors. From an probabilistic model that describes the prediction of state vari-
ables on a lattice from time t to time t + 1 as random variables, we can derive a
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Figure 23. The three replicate cultures of the treatment cpa = 0.1
whose predicted attractor is a 3-cycle are all out of phase by the end of
the experiment.
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Figure 24. An unstable (saddle) 11-cycle is located on the chaotic at-
tractor predicted for the treatment cpa = 0.35 in Figure 16(b). This
saddle cycle has a significant influence on the dynamics of orbits on and
near the chaotic attractor [11]. We can view this 11-cycle as a signature
of the chaotic attractor. The lag metric for the 11-cycle is the (average)
distance that 11 consecutive data points are from the 11-cycle. Since
there are 11 phases of the 11-cycle, there are 11 lag metrics associated
with the 11-cycle, as shown in the lower plot for a portion of one replicate
of data. Low lag metric values and an “unbraiding” of the lag metric
plots indicate episodes when the data are near a phase of 11-cycle. Note
that 11 time steps in the LPA model span nearly 3 generations of T.

castaneum.

deterministic prediction in different ways. If the expectation (mean) of the random
variable is taken as the prediction at t + 1, then the resulting deterministic model
has a continuous state space. If instead we take the mode as the prediction at t+1,
the resulting deterministic model still lies on the lattice.
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Figure 25. (a) Sample temporal 6-cycle patterns appearing in the data
from the chaotic treatment cpa = 0.35. (b) The upper plot shows the
lattice 6-cycle predicted by the integerized LPA model (3.12) for the
chaos treatment cpa = 0.35 in Figure 16(b). The lower plot shows the
lag metrics for the phases of this 6-cycle for a portion of one replicate
of data. Low lag metric values and an “unbraiding” of the lag metric
plots indicate episodes when the data are near a phase of the 6-cycle.

For example, consider the following probabilistic model for the dynamics of a
population with three life cycle stages (such as Tribolium) subject to demographic
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Figure 26. Lattice effects are illustrated in these plots using the Ricker

model and its integerized version x(t + 1) = round
h

bx(t)e−cx(t)/V
i

. As

V (habitat volume) increases, the mesh size of the lattice of densities
x/V is refined. The plot (a) shows that continuous state space chaotic
attractor for the Ricker model with b = 17 and c = 1. Plots (b)-(d) show
the (density) lattice attractor of the integerized Ricker model obtained
(in finite time) from the initial condition x(0) = 5V for a sequence of
habitat volumes V . The attractor in each case is a periodic cycle (case
(c) is a 1-cycle or an equilibrium). On the lattice in plot (e) the 117-
cycle lattice cycle resembles the chaotic attractor of the continuous state
space in (a). Plot (f) shows a typical simulation of the environmental
stochastic version of the lattice Ricker model in volume V = 5 when
the lattice attractor is an equilibrium. In that plot we see episodes
that resemble the equilibrium randomly interspersed with episodes that
resemble the chaotic attractor. [From [34]. Reprinted with permission
from AAAS]

stochasticity [20, 35] :

(a) Lt+1 ∼ Poisson
(

bat exp
(

− cel

V lt − cea

V at

))

(b) Pt+1 ∼ binomial (lt, 1 − µl)
(c) At+1 ∼ binomial

(

pt, exp
(

− cpa

V at

))

+ binomial (at, 1 − µa) .
(3.13)

Here “∼” means “is a random variable distributed as”. This model assumes mor-
tality is described by a binomial random variable and fertility is described by a
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Poisson random variable. (The first equation involving larval recruitment involves
both adult fertility and survivorship. The composition of a Poisson and a binomial
random variable is a Poisson random variable.) If we extract a deterministic model
from the Poisson-binomial LPA model (3.13) by choosing the means of each life
cycle stage as the “most likely” observations at time t + 1, then we obtain the
deterministic, continuous state space LPA model (3.11). If instead we choose the
modes as the most likely observations, then we obtain a deterministic, integer state
space model

Lt+1 = floor
[

bAt exp
(

−cea

V
At −

cel

V
Lt

)]

Pt+1 = floor [(1 − µl) (Lt + 1)](3.14)

At+1 = floor
[

(Pt + 1) exp
(

−cpa

V
At

)]

+ floor [(1 − µa) (At + 1)] ,

which we call the mode-LPA model. It turns out that this integerized version of
the LPA model also predicts a 6-cycle for the chaos treatment cpa = 0.35, and
simulations of the Poisson-binomial LPA model (3.13) typically exhibit randomly
interspersed patterns of the chaotic attractor predicted by the continuous state
space LPA model and this discrete state space 6-cycle.

A final point concerning the analysis of the chaotic treatment cpa = 0.35 has
to do with the dependency of the model predictions on the habitat size V . No-
tice first that in the continuous state space LPA model (3.11), V is simply a
scaling factor. That is to say, if (L(t), P (t), A(t)) is an orbit for V = 1, then
(L(t)/V, P (t)/V, A(t)/V ) is an orbit for any V > 0. As a result, orbits and attrac-
tors remain unchanged when plotted in density phase space (L/V, P/V, A/V ). This
fact is not true of the mode-LPA model (3.14) or the Poisson/binomial LPA model
(3.13).

If L, P, and A are integers, then the points (L/V, P/V, A/V ) in density phase
space constitute a finite lattice on which densities orbits of the mode and Pois-
son/binomial LPA models reside. As V increases, the lattice becomes finer. For
each value of V orbits of the mode-LPA model (3.14) attain a periodic cycle in
finite time. As V → ∞ we might expect that these lattice cycles converge to an
attractor of the continuous state space model (3.11). This can be proved true when
the attractor is a hyperbolic cycle. For a chaotic attractor, such as in the treat-
ment cpa = 0.35 of the route-to-chaos experiment, this fact has not been proved
rigorously, although the numerical simulations in Figure 27 suggest it is true for
the LPA model. These simulations suggest that as the habitat size increases lattice
effects become less pronounced and the continuous state space attractor should be-
comes more visible. This suggests that a clearer view of the chaotic attractor in the
cpa = 0.35 treatment would be obtained if the experiment were conducted in larger
volumes of media. (V = 1 corresponds to the experimental conditions in which 20g
of flour media were used.)

There is another phenomena that also implies a clearer view of the chaotic
attractor occurs in larger habitats. Consider the Poisson/binomial model (3.13).
Each stage variable L, P and A are random variables. The coefficient of variation κ
of a random variable measures the amount of variation relative to the mean; namely,
κ = s/m is the ratio of the standard deviation s =

√
v to the mean m. For a Poisson

random variable, the mean and variance are equal and hence κ = 1/
√

m. Consider
the larval stage variable L in the Poisson-binomial LPA model. A comparison of
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                 V = 1

Mode-LPA model 6-cycle
                 V = 3

Mode-LPA model 47-cycle

                 V = 10

Mode-LPA model 14-cycle
                 V = 100

Mode-LPA model 156-cycle

Figure 27. From the experimental initial conditions the orbit of the
mode-LPA model (3.14) tends to different cycles for different habitat
volumes V . Namely, for V = 1 the lattice attractor is a 6-cycle, whose
points are shown in phase space in relation to the continuous state space
chaotic attractor in the upper left plot. For V = 3 the lattice attractor is
a 47-cycle; for V = 10 it is a 14-cycle; and for V = 100 it is a 156-cycle.
Notice how the lattice cycle attractor seems to converge to the chaotic
attractor as V increases.

the coefficient of variation κ1 of the L component at a point (L, P, A) in volume
V = 1 with that κV of the L component of the corresponding point (LV, PV, AV )
in volume V follows from the relationship

V m1 = V bA exp [−celL − ceaA]

= b (AV ) exp
[

−cel

V
(V L) − cea

V
(V A)

]

= mV

between the means m1 and mV and the calculation

κV =
1√
mV

=
1√
V

κ1.

It follows that the coefficient of variation decreases inversely with the square root
of habitat volume. Similar calculations show that the same is true for the binomial
random variables P and A.

Thus, as habitat volume V increases we expect the demographic noise in model
(3.13) to decrease in the sense that the coefficient of variation decreases. This rule
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for demographic stochasticity is a familiar one to ecologists [54]. (It does not
hold for environmental stochasticity.) The rule is usually expressed in terms of
increased population size (carrying capacity) rather than habitat size, but, as we
have observed, for our system population size scales with habitat size V .

For two reasons, namely decreased lattice effects and decreased demographic
noise, the Poisson-binomial LPA model (3.13) predicts clearer deterministic signals
in larger habitat sizes V . In particular, experimental data obtained from larger
habitat volumes should more closely resemble the chaotic attractor in the cpa = 0.35
treatment of the route-to-chaos experiment. See Figure 28. A recently conducted
experiment [21] tested this prediction by repeating the treatment cpa = 0.35 of

V = 1 V = 3

V = 10 V = 100

Figure 28. Sample simulations of the Poisson-binomial LPA model of
length 2,000 show a convergence around the deterministic, continuous
state space chaotic attractor predicted by the LPA model for the cpa =
0.35 treatment as habitat volume V Increases.

the hunt-for-chaos experiment in a habitat of 60g, i.e., V = 3. Figure 29 shows
the data obtained from the experiment in habitat size V = 3 together with that
from habitat size V = 1 and compares both with the LPA model predicted chaotic
attractor. The data from the larger habitat is clearly more tightly clustered around
the chaotic attractor than the data from the smaller habitat. This observation
can be quantified by calculating the mean distance δc of the data points from the
chaotic attractor. This distance decreased from δc = 18.39 in V = 1 to δc = 5.504
in V = 3. We can also quantify the strengthening of the deterministic signal of



66 LECTURE 3. EXPERIMENTAL CASE STUDIES

(a) (b)

Figure 29. (a) The data from one replicate (open circles) of the chaos
treatment cpa = 0.35 is plotted together with the continuous state space
chaotic attractor predicted by the LPA model (in gray). This experiment
was conducted in 20g of medium, i.e., V = 1 in the LPA model. A
follow-up experiment in 60g (V = 3) produced the data shown in (b).

the LPA model in the larger habitat by comparing the variances of the one-step
residuals from both habitats. This variance decreased from 36.64 in V = 1 to 16.45
in V = 3, illustrating that the deterministic LPA model had considerably less error
in its one-step predictions in the larger habitat.

In summary, in this lecture we considered methods that connect population
data with matrix models, and with the theory presented in Lectures 1 and 2, by
making use of stochastic versions of deterministic models. Case studies involving
experimental cultures of flour beetles illustrate how one can use a parameterized
model to design experimental protocols for the study dynamic bifurcations and in
particular a route-to-chaos. That study led to new insights into the analysis of
complex dynamics in a biological population: how deterministic attractors alone
are not sufficient to explain observed dynamic patterns, even in highly controlled
circumstances; how a stochastic mix of transients, attractors and unstable invariant
sets can provide an adequate description of real data; how discrete state space
lattice effects might play a role in observed patterns; and how habitat size plays a
significant role in the expression of deterministic dynamic patterns.

EXERCISES

Exercise 14. Consider the environmental stochastic Ricker model

x(t + 1) = bx(t)e−cx(t)eE(t), b > 0, c > 0

where E(t) is a normal random variable with mean 0 and variance v > 0. Given a set
y(0), y(1), · · · , y(q) of q + 1 observations, find algebraic formulas for the maximum
likelihood estimates of b, c and v.

Exercise 15. In a simple population survivorship model we saw that the vari-
ance in the random number of survivors in one unit of time under demographic
stochasticity was proportional to the population size n, while under environmental
stochasticity it is proportional to n2. For demographic stochasticity the variance
was approximately stabilized by means of the transformation g(n) =

√
n, while
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under environmental stochasticity it was approximately stabilized by the transfor-
mation g(n) = lnn. Suppose we characterize the variability in the presence of both
types of stochasticity as a linear combination of n and n2, i. e., v(n) = k1n+ k2n

2.
Calculate the variance stabilizing transformation g(n). Choose the arbitrary con-
stants involved in the calculation so that in the formula gives lnn when k1 → 0 and√

n when k2 → 0.





LECTURE 4

Periodically Fluctuating Environments

An interesting experiment involving T. castaneum was reported by D. Jillson
in [38]. In this experiment the habitat volume V was not held fixed in time, but
was periodically fluctuated. Jillson used various periodic schedules for V , but one
particular schedule caused an unexpected result. All periodic schedules for V were
designed to have an average equal to the habitat size in standard, non-fluctuating
cultures, namely, the volume occupied by 20g of medium (V = 1 in the LPA model
(3.11)). In those cultures in which Jillson oscillated the medium with period 2
(between 8g and 32g), the beetle populations markedly increased in numbers. This
was not true for schedules involving other periods.

One reason Jillson’s result was surprising is that it contradicted a tenet held
at the time that fluctuations in habitat size should be deleterious to a population.
By this is meant that the population’s average abundance would be less in a fluc-
tuating habitat than in it would be in a habitat held constant at the average of
the fluctuations [54]. This tenet was based on properties of the logistic differential
equation with a non-constant carrying capacity. It is also implied by the discrete
logistic equation, as we can see by the following. Consider the discrete logistic
equation (1.2)

x(t + 1) = b
1

1 + (b − 1) 1
K x(t)

x(t), b > 1.

If the inherent growth rate b is greater than 1, then all solutions with x(0) > 0 tend
to the carrying capacity K > 0. If the carrying capacity fluctuates periodically,
i.e., if K = K(t) is a p-periodic sequence, then

x(t + 1) = b
1

1 + (b − 1) 1
K(t)x(t)

x(t), b > 1, K(t + p) = K(t) > 0.(4.1)

This p-periodically forced, discrete logistic equation still has the trivial (extinction)
equilibrium x = 0, but no longer has a positive equilibrium (carrying capacity).
Instead all solutions with x(0) > 0 tend to a positive p-cycle with an average less
than that of K(t).

To see this for p = 2, notice that the population density y(t) = x(2t) monitored
at even time steps satisfies the equation (obtained from the composition of the right
hand side with itself)

y(t + 1) = b2 1

1 + (b − 1)
(

K(1)+bK(0)
K(0)K(1)

)

y(t)
y(t).

69
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All solutions of this autonomous discrete logistic equation with y(0) = x(0) > 0
tend to the positive equilibrium, i.e.

lim
t→+∞

y(t) = (b + 1)
K(0)K(1)

K(1) + bK(0)
.

A similar argument shows that that the population density w(t) = x(2t+1) sampled
at odd times tends to the positive equilibrium of

w(t + 1) = b2 1

1 + (b − 1)
(

K(0)+bK(1)
K(0)K(1)

)

y(t)
w(t),

that is

lim t→+∞w(t) = (b + 1)
K(0)K(1)

K(0) + bK(1)
.

It follows that all solutions of the 2-periodic logistic (4.1) with x(0) > 0 tend to the
2-cycle solution that oscillates between the two values

x(0) = (b + 1)
K(0)K(1)

K(1) + bK(0)
, x(1) = (b + 1)

K(0)K(1)

K(0) + bK(1)
.

The average of this 2-cycle

1

2
(x(0) + x(1)) = (b + 1)

2 K(0)K(1)

(K(1) + bK(0)) (K(0) + bK(1))

K(0) + K(1)

2

is strictly less than the average of the carrying capacity (K(0) + K(1)) /2 if K(t)
is not constant, i.e., if K(0) 6= K(1), since the inequality

(b + 1)2
K(0)K(1)

(K(1) + bK(0)) (K(0) + bK(1))
< 1

is equivalent to 0 < (K(1) − K(0))
2
. It follows, for a discrete logistically growing

population in a habitat with a period p = 2 fluctuating carrying capacity, that the
average asymptotic population size is less than the average of the carrying capacity.

In fact, it has been proved for all periods p that if b > 1 then all solutions of the
p-periodic logistic (4.1) with x(0) > 0 tend to a positive p-cycle whose average is less
than that of K(t) (if K(t) is not constant) [25, 42]. Such cycles are called attenuant
[30]. Attenuant cycles have been studied in other models as well [6, 30, 43, 44].

It follows that Jillson’s experimental observation cannot be explained by the
periodically forced logistic equation (4.1). However, attenuance is not a universal
property of periodically forced population models. Under some circumstances the
opposite can occur, i.e., the average of an attracting p-cycle can exceed that of the
carrying capacity, a property called resonance [2]. Since Jillson’s experiment was
carried out with populations of T. castaneum in periodically fluctuating volumes of
culture medium, perhaps we can find an explanation using the LPA model (3.11).
To do so, however, would involve letting the model parameter V fluctuate. For
example, for Jillson’s period 2 protocol we have

V = V0

(

1 + α(−1)t
)

where the average and the relative amplitude are V0 = 1 (the volume occupied by
the standard 20g of medium) and α = 3/5. Such a change in the LPA model makes
the model non-autonomous, specifically, periodically forced with period 2.
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The modeling methodology and results in Lectures 1 and 2 involve time au-
tonomous matrix models. The entries in the fertility and transition matrices can
change in time only through a dependence on the state variables and not an explicit
dependence on t. Such autonomous models are not appropriate if, for example, a
vital rate or a environmental parameter does not remain constant in time. This is
the case for the LPA model with V = V0 (1 + α(−1)t).

Before addressing the “Jillson effect”, I give a brief overview of how to generalize
the equilibrium theory for autonomous matrix models in Lectures 1 and 2 to a
theory of periodic cycles for periodically forced matrix models.

It is necessary to begin with some preliminary facts about periodically forced
linear matrix models. Let Z , {0, 1, 2, · · · } denote the non-negative integers. The
set Sm,p of p-periodic sequences in Rm (1 ≤ p ∈ Z) is a Hilbert space under the

inner product 〈x, y〉 , Σp−1
t=0 x∗(t)y(t) for x and y ∈ Sm,p. Let S+

m,p denote the set
of positive p-periodic sequences in Sm,p, i.e., sequences for which x(t) > 0 for all
t ∈ Z.

Consider the linear matrix equation

x(t + 1) = P (t)x(t) + h(t), t ∈ Z(4.2)

where h ∈ Sm,p and P (t) is a p-periodic matrix: P (t + p) = P (t), t ∈ Z. Of
interest is the existence of p-periodic solutions of this equation. Solutions of (4.2)
are provided by the (variation of parameters) formula

x(t) =

{

X(t, 0)x(0) +
∑t−1

i=0X(t, i + 1)h(i) for t = 1, 2, · · ·
x(0) for t = 0

(4.3)

where for s ∈ Z

X(t, s) ,

{

P (t − 1)P (t − 2) · · ·P (s + 1)P (s) for t = s + 1, s + 2, · · ·
I for t = s

is the fundamental solution matrix [24]. It is straightforward to see that a solution
is p-periodic if and only if x(0) = x(p), i.e., if and only if x(0) solves the equation

(I − X(p, 0))x(0) =
∑p−1

i=0 X(t, i + 1)h(i).(4.4)

If the associated homogeneous system

(I − X(p, 0))x(0) = 0

has no nontrivial solution, that is to say if the homogeneous matrix equation

x(t + 1) = P (t)x(t)(4.5)

has no nontrivial p-periodic solution, then there is a unique solution

x(0) = (I − X(p, 0))
−1∑p−1

i=0 X(t, i + 1)h(i)

of the periodicity condition (4.4) and therefore a unique p-periodic solution of (4.2).
This solution is given by the formula

x(t) = X(t, 0) (I − X(p, 0))−1∑p−1
i=0 X(t, i + 1)h(i) +

∑t−1
i=0X(t, i + 1)h(i).(4.6)

The assumption that the homogeneous equation (4.5) has no nontrivial p-periodic
solution is equivalent to the nonsingularity of the matrix I−X(p, 0), i.e., that λ = 1
is not an eigenvalue of X(p, 0).
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If, on the other hand, the homogeneous equation (4.5) has nontrivial p-periodic
solutions, i.e., if 1 is an eigenvalue of X(p, 0), then equation (4.4) has a solution if
and only if the right hand side is orthogonal to the kernel of the transpose, that is,

l
∑p−1

i=0 X(t, i + 1)h(i) = 0(4.7)

for all left eigenvectors l of X(p, 0) associated with eigenvalue 1.
If 1 is not an eigenvalue of X(p, 0), then we can rewrite the formula for the

unique p-periodic solution (4.6) as

x(t) =
∑p−1

i=0 G(t, i)h(i)

where

G(t, i) =

{

(I − X(p, 0))−1 X(p, i + 1) + X(t, i + 1) for 0 ≤ i < t

(I − X(p, 0))
−1

X(p, i + 1) for 0 ≤ t ≤ i ≤ p − i

is a Green’s function. This formula defines a solution operator

G : Sm,p → Sm,p

which is linear and bounded (and therefore compact, since Sm,p is finite dimen-
sional). For h ∈ Sm,p, x = Gh is the unique p-periodic solution of the nonhomoge-
neous, linear matrix equation (4.2).

The first goal is to establish generalizations of the bifurcation Theorems 2.1
and 2.3 that apply to periodically forced matrix equations. Consider a periodically
forced version of the nonlinear matrix equation (2.7)

x(t + 1) = (A(t) + µB(t) + H(t, µ, x(t))) x(t)(4.8)

where µ is a real parameter. Here A(t) and B(t) are p-periodic matrices and the
components hij of the matrix H(t, µ, x) = (hij(t, µ, x)) are p-periodic in t, are k
times differentiable, and are higher order in x near x = 0, that is1

hij ∈ Ck
(

Z × R1 × Rm → R1
)

for some k ∈ Z

|hij(t, µ, x)| = O (|x|) near x = 0(4.9)

hij(t + p, ·, ·) = hij(t, ·, ·).
Consider the linear equation (the linearization of (4.8) at x = 0):

x(t + 1) = (A(t) + µB(t)) x(t).(4.10)

A real number µc is a characteristic value if (4.10), with µ = µc, has a nontrivial p-
periodic solution x ∈ Sm,p. Let Xµ(t, x) denote the fundamental matrix of (4.10). A
characteristic value is simple if dim ker (I − Xµc

(p, 0)) = 1, i.e., 1 is an eigenvalue of
Xµc

(p, 0) with (geometric) multiplicity 1. This means there is only one independent
nontrivial p-periodic solution.

Suppose µ = 0 is not a characteristic value of (4.10) and let G be the Green’s
function of x(t + 1) = A(t)x(t). Solving the periodically forced, nonlinear matrix
equation (4.8) for a p-periodic solution x ∈ Sm,p is equivalent to solving the equation

x = µLx + g(µ, x)(4.11)

where L , GB is a linear operator and g : R1 × Sm,p → Sm,p, defined by g(µ, x) ,

GH(t, µ, x)x, is O
(

|x|2
)

near x = 0 in Sm,p.

1|x| , 〈x, x〉1/2.
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Define S to be the set of all nontrivial p-periodic solution pairs (µ, x) ∈ R×Sm,p,
x 6= 0, of (4.11) (equivalently (4.8)). If (µc, 0) ∈ S̄ (the closure of S), then (µc, 0)
is a bifurcation point. A solution pair (µ, x) is positive if x(t) for all t (i.e., if
x ∈ S+

m,p).
A necessary condition that (µc, 0) is a bifurcation point is that µc be a charac-

teristic value of L (a reciprocal of a nonzero eigenvalue), that is to say, x = µcLx
for some 0 6= x ∈ Sm,p. By definition, a characteristic value of the linear operator
L is a characteristic value of (4.10). If µc is a characteristic value of L, a charac-
teristic solution x is a nontrivial p-periodic solution of the linear equation (4.10),
namely, x = Xµc

(t, 0)v0 where v0 is a right eigenvector of Xµc
(p, 0) associated with

eigenvalue 1.
The following theorem results from the well-known global bifurcation theorems

of Rabinowitz applied to the operator equation (4.11) [39, 61].

Theorem 4.1. In the matrix equation (4.8) assume A and B are p-periodic ma-
trices and H = (hij) satisfies (4.9). Suppose

(1) µ = 0 is not a characteristic value of the linearization (4.10);
(2) µc is a simple characteristic value of (4.10) for which there is an associated

positive characteristic p-periodic solution2.
Then there exists a continuum C+ in S̄ that contains the bifurcation point (µc, 0)

and satisfies one of the following alternatives:
(a) C+/ {(µc, 0)} contains only positive p-periodic solution pairs (µ, x) for which

µ > 0 and C+ is unbounded (in R × S+
m,p);

(b) C+/ {(µc, 0)} contains a nontrivial, non-negative p-periodic solution pair
(µ∗, x∗) for which x∗(t) ≥ 0 has a 0 component at some time t;3

(c) C+/ {(µc, 0)} contains a point (µ∗
c , 0) where µ∗

c 6= µc is a characteristic
value of (4.10) associated with a non-negative characteristic p-periodic solution.4

Alternative (b) says that the continuum of nontrivial equilibria bifurcating from
(µc, 0) leaves the positive cone. Often in applications one can rule this alternative
out by showing that no nontrivial p-periodic solution can lie on the boundary of
the positive cone; that is to say, in many applications one can show that

if x(t) ≥ 0 solves (4.8) then either x ≡ 0 or x(t) > 0 for all t.(4.12)

Alternative (c) says that the continuum of nontrivial equilibria bifurcating at
the characteristic value µc also bifurcates from another characteristic value µ∗

c 6= µc

of (4.10) that is associated with a non-negative characteristic vector. This alter-
native is ruled out, of course, if no other characteristic value of L is associated
with a non-negative characteristic vector (as is the case, for example, when the
Perron-Frobenius Theorem applies).

Theorem 4.2. [7]In the matrix equation (4.8) assume A and B are p-periodic
matrices and H = (hij) satisfies (4.9). Assume

(1) µ = 0 is not a characteristic value of the linearization (4.10);
(2) µc is a simple characteristic value of (4.10) for which there is an associated

positive characteristic p-periodic solution;

2That is, Xµc(p, 0) has eigenvalue 1 and an associated positive eigenvector v0 > 0.
3That is to say, x∗ lies on the boundary of the positive cone S+

m,p.
4That is to say, Xµ∗

c
(p, 0) has eigenvalue 1 and an associated non-negative eigenvector v∗0 ≥ 0.
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(3) (4.10) has no other characteristic value with a non-negative p-periodic so-
lution;

(4) condition (4.12) holds.
Then there exists an unbounded continuum C+ in S̄ such that C+/ {(µc, 0)}

contains only positive p-periodic solution pairs (µ, x) with µ > 0. Moreover, C+ is
unbounded (in R × S+

m,p).

That C+ is unbounded means that either the set of positive p-cycles associated
with C+ is unbounded or the spectrum σ (C+) , {µ : (µ, x) ∈ C+} is unbounded (or
both).

Stability properties of cycles of p-periodic matrix models are defined in terms of
the stability properties of fixed points of the (p−1 fold) composite of the equation.
A solution x(t) of a p-periodic equation x(t+1) = f(t, x(t)) (i.e., f(t, x) = f(t+p, x)
for all t and x) is a p-cycle if and only if x(0) = x(p), that is to say, if and only

if x(0) is an equilibrium (fixed) point of the composite map f (p−1)(x) , f(p −
1, f(p−2, . . . , f(1, f(0, x)))). A p-cycle xp(t) is stable if xp(0) is a stable equilibrium

of the autonomous (composite) equation y(t + 1) = f (p−1)(y(t)). Similarly, a p-
cycle is an attractor if xp(0) is an attractor of the composite equation, and a
p-cycle is asymptotically stable if xp(0) is an asymptotically stable equilibrium of
the composite equation.

The fundamental solution matrix X(t, s) of the linearization (4.10) at x = 0
of the nonlinear, periodically forced matrix model (4.8) depends on µ. A subscript
indicates this dependence:

Xµ(p, 0) =
∏p

i=1 (A(p − i) + µB(p − i)) .(4.13)

A stability analysis of the equilibrium x = 0 of (4.8) is possible by means of the
linearization principle [24]. Define

δ , l0
d

dµ
Xµ (p, 0)|µ=µc

v0(4.14)

where l0 and v0 are the left and right eigenvalues of Xµc
(p, 0) normalized so that

l0v0 = 1. The following theorem gives conditions under which the trivial (extinc-
tion) equilibrium x = 0 of the nonlinear, periodically forced equation (4.8) loses
stability at the bifurcation point in Theorem 4.1.

Theorem 4.3. [29]In the matrix equation (4.8) assume A and B are p-periodic
matrices and H = (hij) satisfies (4.9) with k ≥ 1. Suppose µc is a simple charac-
teristic value of (4.10) with the property that 1 is a strictly dominant eigenvalue of
Xµc

(p, 0) and let l0 and v0 denote left and right eigenvectors of Xµc
(p, 0) normalized

so that l0v0 = 1. Further, suppose 0 is not an eigenvalue of Xµc
(p, 0).

If δ > 0 then the trivial solution x = 0 of the nonlinear, periodically forced
equation (4.8) loses stability as µ increases through µcr.

If δ < 0 then x = 0 gains stability as µ increases through µcr.

An analysis of the properties of the positive p-cycles near the bifurcation point
(µc, 0) guaranteed by Theorem 4.1 is possible by means of a parametrization of the
bifurcating branch. To do this we represent the bifurcating positive, p-cycle pairs
(µ, x(t)) as functions of a branch parameter ε and calculate the lowest order terms
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in the expansions

x(t) = x1(t)ε + O
(

ε2
)

(4.15)

µ = µc + µ1ε + O
(

ε2
)

(under the assumption that k ≥ 2 in (4.9)). These expansions provide approxi-
mations to the positive p-cycles near the bifurcation point and allow us to make
approximations to the Jacobian of the composite and its dominant eigenvalue

λ = 1 + ελ1 + O
(

ε2
)

,

which determines the stability of the cycles. Here x1(t) is the positive p-cycle
solution of the linearization (4.10) with µ = µcr, namely

x1(t) = Xµc
(t, 0)v0

and the positive p-cycles on the branch correspond to ε > 0.
To calculate the coefficients in (4.15) we substitute these expansions into the

nonlinear equation (4.8) and equate coefficients of like powers of ε from both sides
of the resulting expressions. This leads to linear matrix equations from which, with
the aid of the orthogonality condition (4.7), we can calculate formulas for µ1 and
λ1.The results are as follows [29].

Define γij(t) to be the gradient of hij with respect to x evaluated at (µ, x) =
(µc, 0) :

γij(t) , ∇xhij(t, µ, x)|(µ,x)=(µc,0)

and define the scalars

dij(t) , γ∗
ij(t)x1(t).

Form the matrix D(t) = (dij(t)) and define

κ , −l0
∑p−1

t=0 Xµc
(p, t + 1)D(t)Xµc

(t, 0)v0.

Then it turns out

µ1 =
1

2

κ

δ
, λ1 = −1

2
κ(4.16)

where δ is given by (4.14). Note that the bifurcation is supercritical if µ1 > 0 and
subcritical if µ1 < 0. The dominant eigenvalue λ is less than 1 (for ε > 0 small) if
µ1 > 0 and greater than 1 if µ1 < 0.

The bifurcation at µ = µc described in Theorem 4.1 is called stable if the
p-periodic solutions from the positive solutions pairs near the bifurcation point
(µ, x) = (µc, 0) are (locally asymptotically) stable. If these positive periodic solu-
tions are unstable, then the bifurcation is unstable.

Theorem 4.4. [29] In addition to the assumptions in Theorem 4.3 assume H =
(hij) satisfies (4.9) with k ≥ 2 and that κ 6= 0.

Suppose δ > 0, i.e., the trivial (extinction) equilibrium x = 0 loses stability as µ
increases through µc. Then for µ sufficiently close to µc the bifurcation of positive
p-cycles is supercritical and stable if κ > 0 and is subcritical and unstable if κ < 0.

Suppose δ < 0, i.e., the trivial (extinction) equilibrium x = 0 loses stability as µ
decreases through µc. Then for µ sufficiently close to µc the bifurcation of positive
p-cycles is supercritical and stable if κ < 0 and is subcritical and unstable if κ > 0.
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Theorems 4.1, 4.3 and 4.4 are generalizations to periodically forced equations
of Theorems 2.1, 1.7, and 2.3 for autonomous equations. They provide some gen-
eral conditions under which a periodic matrix equation has a positive p-cycle and
conditions under which it is stable or unstable. The expansions (4.15) also provide
a way to study the properties of the p-cycles (averages, amplitudes, phases, etc.),
at least near the bifurcation point. If need be we can also calculate (by the same
procedure described above) the expansion of the p-cycle to higher order in ε :

x(t) = x1(t)ε + x2(t)ε
2 + O

(

ε3
)

.

Example 4.5. The matrix model
(

J(t + 1)
A(t + 1)

)

=

(

0 b 1
1+A(t)

τ21 τ22

)(

J(t)
A(t)

)

is a variant of the discrete logistic model in which a juvenile stage J is included.
With constant coefficients b (inherent juvenile recruitment rate per adult), τ21 (ju-
venile survivorship) and τ22 (adult survivorship), the model is autonomous and
a (global) continuum of positive equilibria bifurcates from the critical value bc =
(1− τ22)/τ21 (or equivalently at the critical value 1 of the inherent net reproductive
number n = bτ21/(1 − τ22)).

Suppose instead that the recruitment rate b oscillates periodically with period
2. Suppose this oscillation has mean µ and amplitude α so that

b = µ
(

1 + α (−1)t
)

, 0 ≤ α < 1.

The model takes the form (4.8) with

A(t) =

(

0 0
τ21 τ22

)

, B(t) =

(

0 1 + α(−1)t)
0 0

)

H =

(

0 −µ(1 + α(−1)t) A
1+A

0 0

)

.

From (4.13) we find

Xµ(2, 0) =

(

0 µ(1 + α)
τ21 τ22

)(

0 µ(1 − α)
τ21 τ22

)

=

(

τ21µ (1 + α) τ22µ (1 + α)
τ22τ21 τ2

22 + τ21µ (1 − α)

)

is a positive matrix. Perron’s Theorem implies that Xµ(2, 0) has a positive, strictly
dominant simple eigenvalue λ with positive right and left eigenvectors v0 > 0 and
l0 > 0 and that no other eigenvalue has a non-negative eigenvector [26, 37]. Specif-
ically, the positive eigenvalue is

λ = τ21µ +
1

2
τ2
22 +

1

2

√

τ4
22 + 4τ2

22τ21µ + 4τ2
21µ

2α2.

This eigenvalue equals 1 when the mean birth rate µ equals the critical value

µc ,
1 −

√

(1 − α2) τ2
22 + α2

τ21 (1 − α2)
.

From (4.14) we calculate

δ = l0
d

dµ
Xµ(2, 0)|µ=µc

vo = l0

(

τ21 (1 + α) τ22 (1 + α)
0 τ21 (1 − α)

)

v0 > 0.
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Theorem 4.3 implies that the extinction equilibrium J = A = 0 loses stability
as the average recruitment rate increases through the critical value µc. Theorem
4.2 implies the existence of an unbounded continuum of positive 2-cycles with a
spectrum (interval) of positive average recruitment rates µ > 0 that bifurcates from
the extinction equilibrium at the critical value µc. Further calculations show

D(0) =

(

0 −µc(1 + α)
0 0

)

, D(1) =

(

0 −µc(1 − α) (τ21 + τ22)
0 0

)

and

κ = −l0 [(A(1) + µcB(1))D(0) + D(1) (A(0) + µcB(0))] v0

=
2

3
τ21µc (1 + α) +

1

3
µc (τ22 + τ21)

2
(1 − α) .

Since κ > 0, Theorem 4.4 implies the bifurcation at µc is supercritical and stable.
As a numerical example, take τ21 = τ22 = 1/2 and α = 1/10. Then

µc =
10

99

(

20 −
√

103
)

≈ 0.9951

and

Xµc
(2, 0) =

(

1
2

1
2

1
4

3
4

)

has a dominant eigenvalue 1 with positive eigenvectors

v0 =

(

1
1

)

, l0 =
(

1
3

2
3

)

that satisfy l0v0 = 1. Then δ = 2/3 and κ = 20
(

20 −
√

103
)

/297 ≈ 0.6634.
It is interesting to note that the bifurcation point µc is a decreasing function

of the amplitude α. This means that a lower average recruitment rate µ is needed
for population survival in the periodically fluctuating habitat than in the constant
habitat. In this sense, an oscillatory habitat is advantageous to the population.
Although the decrease in µc in the numerical example above is not large (from 1 to
0.9951) if the amplitude is changed to α = 9/10 the decrease is over 20%, namely
from 1 to 0.7788. See Figure 30.

In [31] Theorems 4.1, 4.3 and 4.4 are applied to the LPA model with a 2-
periodic habitat volume V with average V0 = 1 and amplitude α (0 < α < 1):

L(t + 1) = bA(t) exp

(

− cel

1 + α(−1)t
L(t) − cea

1 + α(−1)t
A(t)

)

P (t + 1) = (1 − µl)L(t)(4.17)

A(t + 1) = P (t) exp

(

− cpa

1 + α(−1)t
A(t)

)

+ (1 − µa)A(t).

With µ = b, this model has the form (4.8) and satisfies the hypotheses of Theorem
4.3 (for any integer k) with

Xb(p, 0) =





0 b b (1 − µa)
0 0 b (1 − µl)

1 − µl 1 − µa (1 − µa)
2




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(a) (b)

Figure 30. The plots show bifurcation diagrams for the 2-periodic,
juvenile-adult logistic model in Example 4.5 with τ21 = τ22 = 1/2. The
adult component A of the stable, positive 2-cycle is plotted against the
average recruitment rate µ. (a) The thin lines are the maximum and
minimum of the bifurcating 2-cycles when α = 1/10. The thick line is
the branch of bifurcating equilibria when α = 0. (b) When α = 9/10 the
bifurcation point µc for the 2-cycles is less than it is for the equilibrium
case α = 0.

and

bc =
µa

1 − µl
.

(Equivalently we could use n = b(1 − µl)/µa as the bifurcation parameter µ, in
keeping with the general equilibrium theory in Lectures 1 and 2, in which case
µc = 1, but we follow the analysis in [31].) The matrix

Xbc
(2, 0) =





0 µa

1−µl

µa

1−µl
(1 − µa)

0 0 µa

1−µl
(1 − µl)

1 − µl 1 − µa (1 − µa)2





has two complex eigenvalues µa (µa − 2) /2±iµa

√

µa (4 − µa)/2 of magnitude µa <
1 and a dominant eigenvalue 1 with eigenvectors

l0 =
(

1−µl

1+2µa

1
1+2µa

1
1+2µa

)

, v0 =





bc

µa

1



 .

A calculation shows

δ = l0
d

db
Xb(2, 0)|b=bc

v0 =
2 (1 − µl)

1 + 2µa
> 0

and hence Theorem 4.3 implies the extinction equilibrium x = col(L, P, A) =
col(0, 0, 0) loses stability as b increases through the critical value bc. In fact it
is shown in [31] that the extinction equilibrium x = 0 is a global attractor for
b < bc and the periodic LPA model (4.17) is uniformly persistent for b > bc.

It is straightforward to show that if a component of a 2-cycle solution of (4.17)
equals 0 at some time t, then all three components equal 0 for all time t, i.e., such
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a 2-cycle must in fact be the extinction equilibrium x = 0. As a result condition
(4.12) holds and Theorem 4.2 implies the existence of an unbounded continuum
of positive 2-cycles that bifurcates from x = 0 at b = bc. Since x = 0 is a global
attractor for b < bc it follows that the bifurcation is supercritical. This, and the
stability of the bifurcating branch of positive 2-cycles near bc, also follows from
Theorem 4.4 provided κ 6= 0. In fact a calculation shows

κ =
4µa

(1 − α2) (1 + 2µa)
> 0

which proves the bifurcation is supercritical and stable.
The expansions (4.15) permit some analysis of the bifurcating 2-cycles and, in

particular, imply they are attenuant. A calculation of the expansions for both the
bifurcating 2-cycles (Lα(t), Pα(t), Aα(t)) and the bifurcating equilibria (L0, P0, A0)
(Corollary 2.1 and Theorem 2.3) shows this. Let εα and ε0 denote the expansion
parameters for the branches respectively. Then [31]

Lα(t) = bcεα + O
(

ε2
α

)

(t)

Pα(t) = µaεα + O
(

ε2
α

)

(t)

Aα(t) = εα + O
(

ε2
α

)

(t)

b = bc +

(

bc (cea + bccel + cpa)

1 − α2

)

εα + O
(

ε2
α

)

for εα > 0 small and

L0 = bcε0 + O
(

ε2
0

)

P0 = µaε0 + O
(

ε2
0

)

A0 = ε0 + O
(

ε2
0

)

b = bc + bc (cea + bccel + cpa) ε0 + O
(

ε2
0

)

for ε0 > 0 small. A comparison of the averages of the 2-cycle with the equilibrium
at the same value of b, to first order, requires εα = (1 − α2)ε0. Then

L0 − 〈Lα(t)〉 = α2bcε0 + O
(

ε2
0

)

> 0

P0 − 〈Pα(t)〉 = α2µaε0 + O
(

ε2
0

)

> 0

A0 − 〈Aα(t)〉 = α2ε0 + O
(

ε2
0

)

> 0

for ε0 > 0 small. Here 〈Lα(t)〉 , (Lα(0) + Lα(1)) /2 denotes the average of the
L-stage component of the 2-cycles, etc.

Note that all three life cycle stages are attenuant and, as a consequence, the
total population size L(t) + P (t) + A(t) is also attenuant. It follows that near
the bifurcation point bc the bifurcating 2-cycles cannot explain the Jillson effect
observed in the T. castaneum experiment. If resonance is to occur in the periodic
LPA model, it must occur for larger values of b.

One approach that has been used to study periodic solutions of periodically
forced difference equations utilizes perturbation theory. This approach views a pe-
riodic solution as a function of a small parameter appearing in the model equations,
which are known to have a solution of a particular type (e.g., an equilibrium or a
cycle) when the parameter equals 0. The periodic solutions when the parameter is
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small (but not equal to 0) are considered perturbations of this known solution. Tay-
lor expansions with respect to the small parameter lead to useful approximations
of the perturbed solutions.

For example, consider the relative amplitude α as a small parameter in the
periodic LPA model (4.17). When α = 0 the model is autonomous and has (for
b > bc) a positive equilibrium. We expect this equilibrium to perturb to a 2-cycle
for α > 0. Relevant mathematical questions are: does such a perturbed 2-cycle
exist? when is it stable? is it resonant or attenuant?

A study of these questions for a general class of difference equations with pe-
riodic coefficients appears in [30]. Consider the equation x(t + 1) = F (c, x(t)) in
which a coefficient c has been selected to oscillate periodically with an amplitude α
around an average which can be taken, without loss in generality, to be 1. Consider
the periodically forced equation

x(t + 1) = F (1 + αβ(t), x(t))(4.18)

where β is a p-periodic sequence with mean 〈β〉 = 0. Assume

F : R × Rm → Rm is k ≥ 2 times continuously differentiable.(4.19)

p-periodic solutions of (4.18) satisfy the operator equation

K(α, x) = 0(4.20)

where the operator K : R × Sm,p → Sm,p is defined by

K(α, x) , {x(t + 1) − F (1 + αβ(t), x(t))}t∈Z ∈ Sm,p.

The Implicit Function Theorem applies to equation (4.20) and yields a solution
(α, x(α)), x(α) ∈ Sm,p, in the neighborhood of a known solution (0, x(0)) provided
the derivative of K with respect to x at this point is nonsingular. Specifically,
suppose the autonomous equation (4.18) when α = 0 has an equilibrium x0 =
F (1, x0). Let Fx(α, x) denote the Jacobian of F with respect to x evaluated at
(α, x). Then the Implicit Function Theorem applies to (4.18) at (α, x) = (0, x0)
provided I − Fx(1, x0) is invertible.

Theorem 4.6. Consider the p-periodically forced difference equation (4.18) in
which β is a p-periodic sequence with mean 〈β〉 = 0 and for which (4.19) holds.
Assume the equation has an equilibrium when α = 0 and that 1 is not an eigen-
value of Fx(1, x0). Then for each α of sufficiently small magnitude there exists
a p-periodic solution xα(t) of (4.18). The p-cycle xα(t) is k times continuously
differentiable in α and satisfies limα→0 xα(t) = x0.

Assume Fx(1, x0) has no eigenvalue of magnitude equal to 1 (x0 is hyperbolic).
If the equilibrium x0 is locally asymptotically stable (or unstable), then the p-cycle
xα(t) is locally asymptotically stable (unstable) for |α| sufficiently small.

The assertion about stability in Theorem 4.6 follows from the continuity of the
Jacobian of the composites of F and its eigenvalues as functions of α.

If k ≥ 3 we can write

xα(t) = x0 + y(t)α + z(t)α2 + O
(

α3
)

(t)

and calculate the p-periodic coefficients y, z by a substitution of this expansion into
equation (4.18). From coefficients of like powers of α we obtain linear difference
equations whose solution is in principle straightforward, but in practice is often
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tedious (if not intractable), particularly for the coefficients of terms of order two or
higher.

Theorem 4.6 applies to the 2-periodic LPA model (4.17), which has a positive
equilibrium (L0, P0, A0) when α = 0. The α-expansions

Lα(t) = L0 + L1(t)α + L2(t)α
2 + O

(

α3
)

(t)

Pα(t) = P0 + P1(t)α + P2(t)α
2 + O

(

α3
)

(t)

Aα(t) = A0 + A1(t)α + A2(t)α
2 + O

(

α3
)

(t)

of the perturbing 2-cycle (Lα(t), Pα(t), Aα(t)) are calculated and studied in [31].
The results show that the averages of the first order coefficients equal zero and
hence

〈Lα(t)〉 − L0 = 〈L2(t)〉α2 + O
(

α3
)

〈Pα(t)〉 − P0 = 〈P2(t)〉α2 + O
(

α3
)

〈Aα(t)〉 − A0 = 〈A2(t)〉α2 + O
(

α3
)

.

The second order coefficients in these α-expansions determine the resonance or
attenuance of each stage of the 2-cycle. The calculations necessary to obtain closed
form formulas for these coefficients and their averages are intractable. However,
conditions are derived in [31] sufficient to show that resonance can occur in the
periodic LPA model (4.17) in individual life cycle stages and in total population
size Tα(t) = Lα(t)+Pα(t)+Aα(t), for sufficiently large b > 0 and sufficiently small
amplitudes α > 0. See Table 1.

For b > 0 large and α > 0 small

Aα(t) is resonant

Both Lα(t) and Pα(t) are resonant if
µ2

a

1 − µa
> 2

cea

cpa

Both Lα(t) and Pα(t) are attenuant if
µ2

a

1 − µa
< 2

cea

cpa

Total population size Tα(t) is resonant if
µ2

a

1 − µa
> 2

cea

cpa
−
(

2

2 − µl

)

cel

cpa

Total population size Tα(t) is attenuant if
µ2

a

1 − µa
< 2

cea

cpa
−
(

2

2 − µl

)

cel

cpa

Table 1.

Maximum likelihood parameter estimates for the 2-periodic LPA model (4.17)
obtained from Jillson’s data are [2]:

b = 4.445, µl = 4.794× 10−1, µa = 1.524 × 10−1(4.21)

cea = 5.785 × 10−3, cel = 5.841× 10−2, cpa = 1.053 × 10−2.

and the positive equilibrium of the resulting model is




L0

P0

A0



 =





30.5914
15.9259
57.2116



 .(4.22)
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The inequality for a resonant total population size in Table 1 is satisfied (as is the
inequality for L and P stage attenuance). However, several points keep this result
from providing a satisfactory explanation of Jillson’s resonance effect: neither the
amplitude α = 3/5 used by Jillson is particularly small nor is b = 4.445 particularly
large. Moreover, the equilibrium is unstable and, as a result, in the application to
Jillson’s data the 2-cycle perturbing from the equilibrium is unstable.

The equilibrium (4.22) is unstable because one of the eigenvalues (−1.7639,
0.8047, and −0.0718) of the Jacobian at the equilibrium is greater than 1 in magni-
tude. The stable equilibria bifurcating at b = bc ≈ 0.29 destabilize and give rise to
a 2-cycle bifurcation at approximately b = 1.6. At the estimated parameter value
b = 4.445 for Jillson’s experiment the autonomous (α = 0) LPA model (4.17) has a
stable 2-cycle that oscillates between the stage vectors





L(0)
P (0)
A(0)



 =





5.037× 10−5

138.3
119.0



 ,





L(1)
P (1)
A(1)



 =





265.7
2.622× 10−5

140.4



 .(4.23)

What becomes of this 2-cycle when α > 0?
Theorem 4.6 is a special case of a more general theorem proved by Henson [30]

in which it assumed that the equation (4.18) has, when α = 0, a periodic solution
x0(t) of period p. Each phase shift of x0(t) is also a p-cycle. Denote these phases
by

xi
0(t) = x0(t + i), i = 0, 1, · · · , p − 1.

We anticipate that each phase perturbs to a p-cycle solution of (4.18) when α 6= 0.
Implicit function theorem methods yield the following theorem.

Theorem 4.7. [30] Consider the p-periodically forced difference equation (4.18)
in which β is a p-periodic sequence with mean 〈β〉 = 0 and for which (4.19) holds.
Assume the equation has a p-periodic solution x0(t) when α = 0 and that 1 is
not an eigenvalue of Π0

t=p−1Fx(1, x0
0(t)). Then for each phase xi

0(t) and each α of

sufficiently small magnitude there exists a p-periodic solution xi
α(t) of (4.18). Each

p-cycle xi
α(t) is k times continuously differentiable in α and satisfies limα→0 xi

α(t) =
xi

0(t).
Assume Π0

t=p−1Fx(1, x0
0(t)) has no eigenvalue of magnitude equal to 1 (x0(t)

is hyperbolic). If the p-periodic solution x0(t) is locally asymptotically stable (or
unstable), then all the p-periodic solutions xi

α(t) are locally asymptotically stable
(unstable) for |α| sufficiently small.

The p-cycles xi
α are not necessarily phase shifts of one another when α 6= 0

(although in some cases this is a possibility). Theorem 4.7 does not require that p
be the minimal period of either x0(t) or β(t). If the minimal period of x0(t) is q and
the minimal period of β is r, then Theorem 4.7 can be applied with the common
period p = lcm(q, r). The following theorem addresses the relationships among the
phases of the perturbed p-periodic solutions.

Theorem 4.8. [30] In addition to the assumptions of Theorem 4.7 assume

F
(

η1, x
i
α(t)

)

= F
(

η2, x
i
α(t)

)

=⇒ η1 = η2(4.24)

for all t, all i = 0, 1, · · · , p − 1, and all sufficiently small |α|. Then for |α| small
the perturbed p-cycles xi

α(t) have minimal period p = lcm(q, r). Moreover, modulo
phase shifts, gcd(q, r) of these perturbed cycles are distinct.
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An example given in [30] shows (4.24) cannot be dropped from this theorem.
An interesting consequence of Theorem 4.8 is that periodically forcing an equa-

tion that has a (non-equilibrium) cycle in general leads to multiple (cyclic) attrac-
tors.

With regard to the p-periodic LPA model and Jillson’s experiment, Theorems
4.7 and 4.8 with p = 2 imply the existence and stability of two distinct 2-cycle
solutions that perturb from the two phase shifts of the 2-cycle (4.23). Are either of
the perturbed 2-cycles resonant?

In general, the periodic coefficients yi(t) in the expansions

xi
α(t) = xi

0(t) + yi(t)α + O
(

α2
)

(4.25)

of the perturbed p-cycles from Theorem 4.7 determine, to lowest order in the ampli-
tude α, the relationship among the properties of the unperturbed cycle xi

α (such as
cycle average) and those of the perturbed cycle xi

0. Let ⌈x⌉ denote the sum of the
m components of x ∈ Rm. In the population model context in which x is a distribu-
tion vector of stage classes ⌈x⌉ is the total population size. The perturbed cycle xi

α

is resonant (or attenuant) at α = 0 if there exists δ > 0 such that
〈⌈

xi
α

⌉〉

>
〈⌈

xi
0

⌉〉

(

or
〈⌈

xi
α

⌉〉

<
〈⌈

xi
0

⌉〉)

for all 0 < α < δ. In [30] Henson shows that Σp−1
i=0

⌈

yi
⌉

= 0.

Therefore, if
⌈

yi
⌉

6= 0 for at least i = 0, 1, · · · p− 1, it follows that there must be at

least one
⌈

yi
⌉

> 0 and one
⌈

yi
⌉

< 0.

Theorem 4.9. [30] Under the assumptions of Theorem 4.7, if there exists at least
one i = 0, 1, · · ·p − 1 such that

⌈

yi
⌉

=

⌈

d

dα
xi

α

∣

∣

∣

∣

α=0

⌉

6= 0

then at least one of the perturbed cycles xi
α is resonant at α = 0 and at least one is

attenuant at α = 0.

It is tedious to calculate the expansion (4.25) for the 2-periodic LPA model with
parameter values (4.21). However, with the help of an algebraic computer program
to carry out the calculations, we find that one of the 2-cycles that perturbs from
the 2-cycle (4.23) is resonant while the 2-cycle that perturbs from its phase shift is
attenuant. Since both 2-cycles are stable, a population tends to one or the other
depending on its initial condition.

This analysis is valid, however, only for small amplitudes α. Are there two
stable 2-cycles in Jillson’s experiment when α = 3/5? Figure 31 shows a numeri-
cally calculated bifurcation diagram for the 2-periodic LPA model with parameters
(4.21). This diagram shows that the attenuant 2-cycle disappears for α > 0.45.
This is because the attenuant 2-cycle collides with the unstable 2-cycle that per-
turbs from the unstable equilibrium in a saddle-node bifurcation at α = 0.45. For
larger values of α, including α = 3/5 that Jillson used, this bifurcation leaves only
the stable resonant 2-cycle.

Theorem 4.9 indicates that, in general, the result of periodically forcing an os-
cillating population is a multiple attractor situation (as in Figure 31(b)). Multiple
attractors for the dynamics of a biological population are intriguing. For Tribolium
the possibility is especially intriguing because there is no reported evidence of mul-
tiple attractors in single species cultures, despite over a half century of research
utilizing these insects. Moreover, one of the 2-cycles predicted by the 2-periodic
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Figure 31. (a) A bifurcation diagram for the 2-periodic LPA model
with ML parameters (4.21) is shown using b as the bifurcation param-
eter. The solid line is for the autonomous case when the amplitude
α = 0. Notice the period doubling bifurcation at b ≈ 1.6. The dashed
lines are the maxima and minima of 2-cycles for the case α = 3/5 used
in Jillson’s experiment. A close look near the bifurcation point bc ≈ 0.29
shows that the bifurcating 2-cycles are attenuant for b near bc. As b in-
creases they become resonant. The ML estimated value of b for Jillson’s
experiment is 4.445 where resonance clearly occurs. (b) The solid lines
are the maxima and minima of the resonant, perturbed 2-cycles for the
2-periodic LPA model with ML parameters (4.21) as a function of the
relative amplitude α of the habitat oscillation. The dashed lines are the
maxima and minima of the attenuant, perturbed 2-cycles. These dashed
lines disappear at approximately α = 0.45 due to a (reverse) saddle-node
bifurcation with the 2-cycles that perturb from the unstable equilibrium
(not shown). [Reprinted from [33], with permission from Springer.]

LPA model (namely the attenuant cycle in Figure 31(b)) has dynamic characteris-
tics that do not seem biologically feasible with regard to the synchronization of the
life cycle oscillations with those of the habitat. Will beetle cultures really exhibit
multiple attractor dynamics with small amplitude oscillations in habitat volume?
Or is this prediction just a spurious prediction of an overly simplified mathematical
model?

In [33] there appears a report and analysis of an experiment carried out to
test the multiple attractor prediction implied by Figure 31(b). The highlights of
that analysis are as follows. Replicated cultures of T. castaneum were grown in
2-periodic fluctuating habitats with α = 0.4 and 0.6 as well as the constant habitat
case α = 0 (as a control). For the (model predicted) multiple attractor case at
α = 0.4, one set of cultures (with replicates) initiated in the predicted basin of
attraction of the resonant 2-cycle and another set (with replicates) initiated in the
predicted basin of the attenuant 2-cycle5.

Beside resonance and attenuance, notable characteristics of the predicted 2-
cycles include larva oscillations that, in the resonance case, are large and out-
of-phase with the oscillations in the habitat volume V . In the attenuant case, the
oscillations in larvae numbers are suppressed and in-phase with the habitat volume.

5The proper phase space in which to view the dynamics is that of the composite map. Fixed points
of the composite correspond to 2-cycles and their basins of attraction are those of the 2-cycles.
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See Figure 32(a) for the model predicted dynamics of the larval stages. Figure 32(b)
shows plots of the larval data from selected experimental replicates for each basin at
attraction. These plots exhibit these predicted characteristics of the two different
2-cycle attractors.
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Figure 32. (a) The plots show the L-stage of two model orbits that
approach the two stable 2-cycles predicted by the 2-periodic LPA model
(4.17) in the experiment reported in [33]. In that experiment the
model parameter values were b = 6.598, µl = 0.2055, µa = 0.1000,
cea = 0.01000, cel = 0.1000, cpa = 0.004700 and α = 0.4000. The graph
on the left is for the initial condition (L(0), P (0), A(0)) = (150, 0, 150),
which lies in the basin of attraction of the attenuate 2-cycle. For this
2-cycle the L-stage oscillates in-phase with the oscillations in habi-
tat volume V . The graph on the right is for the initial condition
(L(0), P (0), A(0)) = (150, 200, 150), which lies in the basin of attraction
of the resonant 2-cycle. For this 2-cycle the L-stage oscillates out-of-
phase with the oscillations in habitat volume V . (b) The plots of the
L-stages of one experimental replicate for each initial conditions show
the predicted oscillatory characteristics of the two different attractors in

(a).

The multi-attractor experiment lasted longer than the 64 weeks shown in Figure
32. Figure 33(a) shows the L-stage of the attenuate 2-cycle data for the 140 weeks
of the experiment. There is an startling occurrence: at week 66 the culture “jumps”
to the resonant -cycle! A stochastic event apparently caused the population to hop
into the basin of attraction of the resonant 2-cycle. This in fact occurred in all
replicates started in the basin of attraction of the attenuant 2-cycle. Moreover,
the reverse switch from the resonant cycle basin to the attenuant cycle basin never
occurred.

It is interesting that a (environmental) stochastic version of the 2-periodic LPA
model predicts this “basin jumping” phenomenon; see [33]. Thus, although the de-
terministic model predicts a multiple attractor dynamic, the stochastic version of
the model predicts, in effect, a single “attractor”. In 50,000 simulations of the sto-
chastic version of the 2-periodic LPA model, with ML parameter estimates obtained
from the experiment, all orbits starting from the experimental initial condition
(L(0), P (0), A(0)) = (150, 0, 150) lying in the attenuant 2-cycle basin of attraction
had moved to the resonant 2-cycle’s basin of attraction within 100 times steps. A
histogram of the basin jump times appears in Figure 33(b). The mean basin jump
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Figure 33. (a) The time series data shown in Figure 32(b) for 64 weeks
is shown here for 140 weeks. The data appearing in the graph on the
left abandons the dynamic pattern of the attenuant 2-cycle at week 66
and takes on that of the resonant 2-cycle. (b) The histogram shows
the results of calculating the time at which each of 50,000 simulated
orbits of the stochastic 2-periodic LPA model (with ML parameter esti-
mates obtained from the experiment), starting from the initial condition
(L, P, A) = (150, 0, 150) lying in the attenuant 2-cycle basin of attrac-
tion, jumped into the basin of attraction of the resonant 2-cycles.

time in these simulations was 18.55 time steps. In the experiment, the replicate
shown in Figures 31 and 32 is an unusual one in this regard. The other two repli-
cates both jumped basins at week 22, which is quite close to the model predicted
mean jump time.

A more detailed experimental study of attractor basin jumping, as well as the
role of the unstable saddle 2-cycle that lies on the basin boundary, appears in [33].
In that study characteristics of the saddle 2-cycle, and its stable manifold, are also
observed in the experimental data.

Thus, we have another example of the importance of stochastic events in data
(even those collected from highly controlled experiments). To explain the observed
patterns, it is not sufficient to consider deterministic model attractors alone, but
transients and unstable invariant sets mixed together by stochasticity. For more on
these issues see [36].

In summary, this lecture generalized the equilibrium theory presented in Lec-
ture 2 to periodically forced matrix models. The results of an experiment conducted
by Jillson [38], which exhibited a resonance effect, motivated this generalization.
The theory and methods, when applied to a periodically forced version of the LPA
model, provided an explanation for Jillson’s observation. Furthermore, the study
of this experimental result led to further theoretical insights into the effects that
periodically fluctuating habitats can have on the dynamics of a population. These
insights stimulated new experiments that corroborated some non-intuitive predic-
tions concerning multiple attractors predicted by theoretical models.
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EXERCISES

Exercise 16. Using the average recruitment rate µ as the bifurcation parameter,
analyze the juvenile-adult model in Example 2.2

J(t + 1) = cbA(t)e−A(t)J(t) + be−A(t)A(t)

A(t + 1) = τ21J(t) + τ22A(t)

when the recruitment rate b = µ
(

1 + α (−1)
t
)

is 2-periodic. How does the bifur-

cation point µc depend on the amplitude α?

Exercise 17. Derive the variation of constants formula 4.3.

Exercise 18. (a) Find a formula for the initial condition x(0) of the 2-cycle solu-
tions of the discrete logistic

x(t + 1) = b(t)
1

1 + x(t)
x(t)

when b(t) is a positive 2-periodic sequence. (b) Repeat (a) when b(t) is 3-periodic.
(c) By induction, repeat (a) when b(t) is p-periodic.

Exercise 19. (a) By definition, a stable p-cycle xp(t) of a p-periodic equation
x(t + 1) = f(t, x(t)), xp(0) is a stable fixed point of the autonomous composite

equation y(t + 1) = f (p−1)(y(t)) , f(p − 1, f(p − 2, . . . , f(1, f(0, x)))). Show that
this implies for each ε > 0 there exists a δ > 0 such that |x(0) − xc(0)| < δ implies

Σt+p−1
i=t |x(i) − xc(i)| < ε for all t ≥ 0. (b) By definition, a p-cycle xp(t) is an attrac-

tor if xp(0) is an attractor of the composite equation. Show that this implies there

exists a δ > 0 such that |x(0) − xc(0)| < δ implies limt→+∞Σt+p−1
i=t |x(i) − xc(i)| =

0.

Exercise 20. Consider the scalar (m = 1) linear equation x(t + 1) = bx(t) + τx(t)
where the per capita birth rate b > 0 and the survivorship rate satisfies 0 ≤ τ < 1.
The extinction equation x = 0 is stable if b > 1 − τ and unstable if b < 1 − τ. The
critical bifurcation value of the birth rate is bcr = 1 − τ . Suppose the birth rate
oscillates with period 2, relative amplitude α (0 ≤ α < 1) and mean b > 0 and

replace b in the equation by b
(

1 + α (−1)
t
)

. Find the critical bifurcation value bc

of the mean birth rate b. Treating bc = bc(α) as a function of the amplitude α show
bc(α) > bc(0) = 1 − τ . Interpret this result biologically.

Exercise 21. The extinction equation of the linear, juvenile-adult, semelparous
model

(

J(t + 1)
A(t + 1)

)

=

(

0 b
τ 0

)(

J(t)
A(t)

)

is stable if b < 1/τ and is unstable if b > 1/τ . Thus, the critical bifurcation
value is bc = 1/τ . Suppose the birth rate oscillates with period 2 and replace

b by b
(

1 + α (−1)t
)

where b is now the mean birth rate and α is the amplitude

(0 < α < 1). Find the critical bifurcation value bc of the mean birth rate b. Treating
bc = bc(α) as a function of the amplitude α show bc(α) < bc(0) = 1/τ. Interpret
this result biologically.





LECTURE 5

Competitive Interactions

The general theory of structured population dynamics presented in Lectures 1,
2, and 4, and the case studies in Lecture 3 deal with populations of a single species.
Matrix models of the form (1.7) can also describe interactions of two or more
structured species when the projection matrix P = T + F of each species depends
on the state variables of the other species [4]. Classical classifications of ecological
interactions, which historically are based on models without structuring, are limited
to a small number of basic types: mainly, competition, predation, and mutualism
(symbiosis). Structured models, on the other hand, allow for more complicated
interactions that take into account changes in the relationships and interactions
among species as individuals pass through life cycle stages. For example, two
species might compete as juveniles, but as adults one species might become a prey
of the other. See [66] for biological examples of mixed interactions of these kinds.
Matrix models for mixed ecological interactions remain largely unexplored.

Laboratory experiments by G. F. Gause (using paramecia) and T. Park (using
flour beetles) helped establish the competitive exclusion principle, which during
the first half of the twentieth century was hotly debated. The fundamental con-
cept underlying this principle is that in order to coexist two species must find a
way to decrease their competition for resources. Competition can take many forms,
ranging from direct confrontations and conflicts among individuals to more indirect
struggles for access to resources of limited availability. This principle finds expres-
sion in the notions of ecological niche and limiting similarity among species. The
principles of competitive exclusion and ecological niche are so dogmatic today that
they often are not explicitly stated in ecological studies and are instead implicitly
assumed in force. It is well-known that the famous Lotka-Volterra differential equa-
tions played a significant role in the historical development of competition theory
and in the formulation of the competitive exclusion principle. It is less well known
that discrete time models also played an important role.

In his experimental studies of the competitive exclusion principle, T. Park
collaborated with P. H. Leslie and J. C. Gower in formulating a mathematical
model for two competing species. To interpret and explain Park’s experimental
data they used the system of difference equations

x(t + 1) = b1
1

1 + c11x(t) + c12y(t)
x(t)(5.1)

y(t + 1) = b2
1

1 + c21x(t) + c22y(t)
y(t)

to account for the dynamics of two competing species. In their application of this
Leslie-Gower competition model to Park’s experimental data, x and y are densities
of adults from two different species of Tribolium. This model is an extension of

89
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the discrete logistic model and is naturally regarded as the discrete analog of the
Lotka-Volterra differential equation model.

The competition model (5.1) has been thoroughly analyzed mathematically (it
defines what is called a monotone flow [64]) and it turns out that its dynamic
possibilities are exactly the same as those of the Lotka-Volterra differential model
[64, 12]. Only four phase portraits are possible, as shown in Figure 34. The
asymptotic dynamics are only equilibrium dynamics. Both species survive (i.e.,
the positive equilibrium is attracting) if and only if c12c21 < c11c22, that is to
say, if competition between the species, as measured by the product c12c21 of the
interspecific competition coefficients, is small (relative to intraspecific competition
as measured by the product c11c22).

(a)

(c) (d)

(b)

y

y

x x

Figure 34. The discrete Leslie-Gower competition model (5.1) has the
same dynamic possibilities as the classic Lotka-Volterra competition sys-
tem of differential equations. (a) If interspecific competition is weak then
there is a globally attracting positive (coexistence) equilibrium. If one
interspecific competition coefficient is sufficiently large, then an exclu-
sion equilibrium on a coordinate axis is globally attracting, as shown
in (b) and (d). If both interspecific competition coefficients are suf-
ficiently large, then as shown in (c) competitive exclusion occurs and
which species wins depends on initial conditions (except for the stable
manifold of the saddle equilibrium). It is this saddle case that played a
prominent role in Park’s Tribolium experiments.

The Leslie-Gower model does not model structured species, despite the fact
that it was derived and utilized in the analysis of experiments with insects that
have significant life cycle stages (flour beetles). What happens to the competition
theory based on the Lotka-Volterra phase portraits in Figure 34 when one or both
species are given, say, juvenile stages in the model equations? It is still true that
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strong competitive interactions as measured by large competition coefficients will
lead to the exclusion of one of the species?

For a study of the Leslie-Gower model when one species of the two species
has a juvenile stage in the model see [12, 13]. Since (as pointed out by Darwin)
competition is most likely strongest among similar species, of more interest would
be a Leslie-Gower model extended so as to include juvenile stages for both species:

J(t + 1) = bA
1

1 + A(t) + cjj(t)
A(t)

A(t + 1) = (1 − µJ )J(t) + (1 − µA)A(t)

(5.2)

j(t + 1) = ba
1

1 + a(t) + cJJ(t)
a(t)

a(t + 1) = (1 − µj)j(t) + (1 − µa)a(t).

In this model the competition between the (upper case and the lower case dis-
tinguished) species occurs between the juvenile classes J and j and results in a
reduction in juvenile recruitment. The intensity of the interspecific competition is
measured by the magnitude of the competition coefficients cj , cJ ≥ 0.

In the absences of one species the dynamics of the other species are governed
by the juvenile-adult version

x1(t + 1) = b
1

1 + x2(t)
x2(t)(5.3)

x2(t + 1) = (1 − µ1)x1(t) + (1 − µ2)x2(t)

of the discrete logistic equation. This equation has a locally asymptotically stable
positive equilibrium

(

x1

x2

)

,

(

(1−µ1)b−µ2

1−µ1

(1−µ1)b−µ2

µ2

)

provided the inherent net reproductive number exceeds 1: that is,

b(1 − µ1)

µ2
> 1.

Therefore, both species of the competition model (5.2) have, in the absence of the
other species, stable positive equilibria

(

J0
e

A0
e

)

,

( µA

1−µJ

(

n0
J − 1

)

n0
J − 1

)

,

(

j0
e

a0
e

)

,

( µa

1−µj

(

n0
j − 1

)

n0
j − 1

)

provided

n0
J , bA

1 − µJ

µA
> 1, n0

j , ba
1 − µj

µa
> 1.(5.4)

We assume these two inequalities hold. The quantities n0
J and n0

j are the inherent
net reproductive numbers of the two species in the absence of competition. These
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equilibria give rise to the exclusion equilibria








J0
e

A0
e

0
0









,









µA

1−µJ

(

n0
J − 1

)

n0
J − 1
0
0









(5.5)









0
0
j0
e

a0
e









,









0
0

µa

1−µj

(

n0
j − 1

)

n0
j − 1









(5.6)

of the competition model (5.2). If the first of these equilibria is locally asymptoti-
cally stable, then the (j, a) species cannot survive (invade the (J, A) species) when
starting from small initial numbers. Similarly, if the second of these equilibria is
locally asymptotically stable, then the (J, A) species cannot survive (invade the
(j, a) species) when starting from small initial numbers.

Conditions for the local stability of the exclusion equilibria (5.5) and (5.6)
derive from an investigation of the eigenvalues of the Jacobian of the system (5.2)
evaluated at these equilibria. These Jacobians are 4 × 4 matrices and the analysis
seems daunting until we notice that these matrices are block diagonal. For example,
the Jacobian at the exclusion equilibrium (5.5) has the form

(

B1 B2

0 B3

)

and therefore its eigenvalues are those of the two 2×2 matrices B1 and B3. It turns
out that B1 is the Jacobian of the juvenile-adult, logistic (5.3) that governs the
dynamics of the (J, A) species in the absence of the (j, a) species. By assumption
(5.4) this matrix has eigenvalues of magnitude less than 1. Therefore, the stability of
the exclusion equilibrium of the competitive system is determined by the eigenvalues
of the matrix

B3 =

(

0 ba
1

1+cJJ0
e

1 − µj 1 − µa

)

.

The eigenvalues of this matrix have magnitude less than 1 if (and only if)

nj ⊜ ba
1 − µj

µa

1

1 + cJJ0
e

< 1.

The number nj is the inherent net reproductive number of species (j, a) when
species (J, A) is at its inherent equilibrium (J0

e , A0
e). If nj > 1 the exclusion equi-

librium is unstable, which suggests that the species (j, a) will not go extinct and
can successfully invade the species (J, A).

The loss of stability of the exclusion equilibrium is consistent with a transcritical
bifurcation at nj = 1 from the exclusion equilibrium (5.5). In this example, we can
verify this bifurcation by algebraically solving the equilibrium equations

J = bA
1

1+A+cjj A

A = (1 − µJ)J + (1 − µA)A
j = ba

1
1+a+cJJ a

a = (1 − µj)j + (1 − µa)a
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for









Je

Ae

je

ae









=

















(

(

n0
J − 1

) 1−µj

µa
−
(

n0
j − 1

)

cj

)

∆−1

1−µJ

µA

(

(

n0
J − 1

) 1−µj

µa
−
(

n0
j − 1

)

cj

)

∆−1

(nj − 1)
n0

j

nj

1−µJ

µA
∆−1

(nj − 1)
n0

j

nj

1−µj

µa

1−µJ

µA
∆−1

















(5.7)

where

∆ ,
1 − µJ

µA

1 − µj

µa
− cjcJ .

The je and ae components of this equilibrium vanish when nj = 1, at which point a
calculation shows Je = J0

e and Ae = A0
e. In other words, this equilibrium bifurcates

from the exclusion equilibrium (5.5) at nj = 1. For nj near 1, the components Je

and Ae remain positive while the sign of the je and ae components is the same
as the sign of (nj − 1) /∆. Thus, a supercritical bifurcation of positive equilibria
(coexistence equilibria) occurs if ∆ > 0 and a subcritical bifurcation occurs if
∆ < 0. The inequality ∆ > 0 means that competition is weak in the sense that the
competition coefficients are small enough; ∆ < 0 means competition is strong.

The exclusion equilibrium (5.5) loses stability as nj increases through 1. It
follows by the exchange of stability property of transcritical bifurcations (see [4])
that the coexistence equilibria are stable when they bifurcate supercritically (∆ >
0) and unstable when they bifurcate subcritically (∆ < 0). Thus, at low population
levels the species (j, a) can successfully invade species (J, A) if the competition
between the species is not strong and if the inherent net reproductive number of
(j, a) at the equilibrium level of (J, A) exceeds 1.

The model scenario is symmetric and analogous conclusions hold for the inva-
sion of (j, a) by (J, A).

The analysis of the juvenile-adult, Leslie-Gower model (5.2) illustrates general
theorems that guarantee the bifurcation of a coexistence equilibria from the equi-
librium of a resident as an appropriate parameter varies. For example, consider two
matrix models of the form

x(t + 1) = (F1(x(t), y(t)) + T1(x(t), y(t))) y(t)

(5.8)

y(t + 1) = (F2(x(t), y(t)) + T2(x(t), y(t))) y(t)

in which Fi and Ti are the fertility and transition matrices of two species x and
y. The two species do not necessarily have the same number of classes (i.e., x is
an m1-dimensional vector, y is an m2-dimensional vector and it is allowed that
m1 6= m2). Consider y as the resident species in a habitat and assume it has a
stable equilibrium ye > 0 in the absence of species x. For notational convenience
define

P (x, y) , F2(x, y) + T2(x, y)

Then the equilibrium ye satisfies the equation

y = P (0, y)y.
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The equilibrium equations for the interacting system (5.8) are

x = (F1(x, y) + T1(x, y)) y

y = P (x, y)y.

Under sufficient smoothness assumptions (say, P is k ≥ 1 times continuously differ-
entiable in x and y) the Implicit Function Theorem applies to the second equilibrium
equation and results in a solution y = ξ(x), ξ(0) = ye, provided I − Py(0, ye) is
nonsingular (here Py is the Jacobian of P with respect to y). This solution ξ(x)
is defined for x in a neighborhood of 0 ∈ Rm1 and is k times continuously differ-
entiable in x. A substitution of ξ(x) into the first equilibrium equation yields the
algebraic matrix equation

x = (F (x) + T (x))x

for x where F (x) , F1(x, ξ(x)) and T (x) , T1(x, ξ(x)) are smooth functions in
a neighborhood of x = 0. We can apply the bifurcation methods of Lectures 1
and 2 to this equation. To do this write F (x) = nΦ(x) where n is the inherent
net reproductive of species x when species y is at equilibrium ye. Provided the
necessary assumptions on F and T hold, the methods and results of Lectures 1
and 2 imply the bifurcation of a branch of positive equilibria (x, y(x)) near (0, ye)
at n = 1. With this approach there is a proviso, however. The implicit function
theorem provides only a local solution y(x), i.e., a solution for x near 0, and as
a result we obtain only a local bifurcation at n = 1 (a bifurcating branch whose
existence is guaranteed only near the bifurcation points (0, ye)). For details relating
the direction of bifurcation and stability properties of the bifurcating branch for
multi-species matrix models see [4].

This equilibrium bifurcation result applies to the general two species matrix
model (5.8). In specific applications, one often has in mind a model of a specific
type of interaction based on classical classifications: for example, a competition or
predator-prey model. However, the general bifurcation result applies to models that
describe any kinds of interaction, including mixed types such as those mentioned
above.

On the other hand, for one important class of matrix models it is possible to
devise a classification scheme, based on the classical types of interactions, in terms
of each species’ net reproductive number. Suppose that the dependencies of the
fertility and transition matrices for both models depend on two weighted population
sizes

p1(t) =

m1
∑

i=1

ωixi(t), p2(t) =

m2
∑

i=1

χiyi(t)

(ωi, χi ≥ 0, Σiωi 6= 0), so that (5.8) becomes

x(t + 1) = (F1(p1(t), p2(t)) + T1(p1(t), p2(t))) x(t)

(5.9)

y(t + 1) = (F2(p1(t), p2(t)) + T2(p1(t), p2(t))) y(t).

Under assumptions (2.2) the species have net reproductive numbers n1 = n1(p1, p2)
and n2 = n2(p1, p2) that depend on p1 and p2. Both reproductive numbers equal 1



J. M. CUSHING, MATRIX MODELS AND POPULATION DYNAMICS 95

at an equilibrium

n1(p1, p2) = 1

n2(p1, p2) = 1

where p1 and p2 are the weighted population sizes at equilibrium.
Let n be the inherent net reproductive number of species y at the extinction

equilibrium p1 = pe
1 > 0, p2 = 0 and write n2(p1, p2) = nν2(p1, p2) where ν (pe

1, 0) =
1. Then along the branch of equilibria bifurcating from this extinction equilibrium
we have the identities

n1(p1, p2) = 1

nν2(p1, p2) = 1.

From these invariants along the bifurcating continuum of positive equilibria, we
can calculate conditions that determine the direction of bifurcation (i.e., whether
n > 1 or n < 1 near the bifurcation point). When the Implicit Function Theorem
is applied to the first equation, we obtain p1 = p1(p2), p1(0) = pe

1, provided the
partial derivative ∂n1/∂p2 evaluated at (p1, p2) = (pe

1, 0) is nonzero. Denote this
derivative by ∂2n

0
1 6= 0. Then the second invariant near bifurcation becomes

nν2(p1(p2), p2) = 1.(5.10)

The bifurcation will be supercritical if ν2(p1(p2), p2) is decreasing in p2 at p2 = 0
and will be subcritical if it is increasing. For example, the bifurcation is supercritical
(stable) if

∂1ν
0
1p′1(0) + ∂2ν

0
2 < 0

which, since p′1(0) = −∂2n
0
1/∂1n

0
1 (by implicit differentiation of (5.10)), is the same

as

detM > 0, M
.
=

[

∂1n
0
1 ∂2n

0
1

∂1n
0
2 ∂2n

0
2

]

.

If detM < 0, then the bifurcation is subcritical (unstable).
Using the net reproductive numbers for the model (5.9) we can define compe-

tition and predator-prey interactions according to the inequalities:

predator-prey: ∂2n1(p1, p2) > 0, ∂1n2(p1, p2) < 0
competition: ∂2n1(p1, p2) < 0, ∂1n2(p1, p2) < 0

If each population has self density regulation, then

∂1n1(p1, p2) < 0, ∂2n2(p1, p2) < 0.

Under this assumption, detM > 0 for a predator-prey interaction and the bifur-
cation is supercritical (stable). For a competitive interaction the bifurcation is
supercritical (species y can invade the resident x) if

detM = ∂1n
0
1∂2n

0
2 − ∂2n

0
1∂1n

0
2 > 0

i.e., interspecific competition is weaker that intraspecific competition as measured
by the products ∂2n

0
1∂1n

0
2 and ∂1n

0
1∂2n

0
2 respectively. The bifurcation is subcriti-

cal (species y cannot invade the resident x) if the reverse inequality holds, i.e., if
interspecific competition is strong.
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While this analysis provides a nice classification scheme for models of the type
(5.9), not all two species matrix models are of this type. The competition model
(5.2), for example, is not.

Historically competition theory is almost exclusively an equilibrium theory.
For structured populations, however, the possibility of non-equilibrium dynamics
is high and we are led to wonder in what way and to what extent the competitive
exclusion principle (founded on equilibrium dynamics) holds true in non-equilibrium
scenarios.

As a tractable example, consider the juvenile-adult competition model (5.2)
when adult survivorships are equal to 0 :

J(t + 1) = bA
1

1 + A(t) + cjj(t)
A(t)

A(t + 1) = (1 − µJ )J(t)

(5.11)

j(t + 1) = ba
1

1 + a(t) + cJJ(t)
a(t)

a(t + 1) = (1 − µj)j(t).

Biologically this model concerns two competing semelparous populations (both pop-
ulations in model (5.2) are iteroparous when µA and µa < 1). It was shown above
that the exclusion equilibrium (5.5) is locally stable if nj < 1. This inequality is
equivalent to

cJ > (1 − µJ)
n0

j − 1

n0
J − 1

.

Thus, if the interspecific competition coefficient cJ is sufficiently large, then species
(j, a) cannot invade species (J, A) when starting at low population density. By a
symmetric analysis the exclusion equilibrium (5.6) is locally stable if

cj > (1 − µj)
n0

J − 1

n0
j − 1

.

If the interspecific competition coefficient cj is sufficiently large, then species (J, A)
cannot invade species (j, a) when starting at low population density.

It follows that if both competition coefficients are large, then both exclusion
equilibrium are locally stable. Moreover, in this case the coexistence equilibrium
(5.7) is positive. These facts are commensurate with the saddle case in the Leslie-
Gower (Lotka-Volterra) competition scheme shown in Figure 34(c). It is proved in
[14] that the coexistence equilibrium (5.7) is a saddle in this case.

Unlike the Leslie-Gower model (and the Lotka-Volterra differential model),
however, equilibrium dynamics are not the whole story for the juvenile-adult com-
petition model (5.11).

The single species, semelparous juvenile-adult model

x1(t + 1) = b
1

1 + x2(t)
x2(t)(5.12)

x2(t + 1) = (1 − µ1)x1(t)
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has a non-negative 2-cycle

(

x1(0)
x2(0)

)

=

(

0
b(1 − µ1) − 1

)

,

(

x1(0)
x2(0)

)

=

(

b(1−µ1)−1
1−µ1

0

)

when the inherent net reproductive number b(1−µ1) exceeds 1. This cycle is called
synchronous because the juvenile and adult stages are synchronized so as to never
appear together (the generations are non-overlapping) [8, 9]. This cycle gives rise
to two exclusion 2-cycles of the competition model (5.11)









J(0)
A(0)
j(0)
a(0)









=









0
n0

J − 1
0
0









,









J(1)
A(1)
j(1)
a(1)









=









n0

J−1
1−µJ

0
0
0









(5.13)








J(0)
A(0)
j(0)
a(0)









=









0
0
0

n0
j − 1









,









J(1)
A(1)
j(1)
a(1)









=











0
0

n0

j−1

1−µj

0











when

n0
J = bA (1 − µJ ) > 1, n0

j = ba (1 − µj) > 1.

There are also two coexistence 2-cycles









J(0)
A(0)
j(0)
a(0)









=









0
n0

J − 1
0

n0
j − 1









,









J(1)
A(1)
j(1)
a(1)









=











n0

J−1
1−µJ

0
n0

j−1

1−µj

0




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
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(5.14)
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j(0)
a(0)


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



=













0
(n0

J−1)cJ−cj(n
0

j−1)(1−µJ )

cJ−cj(1−µj)(1−µJ )

(1 − µj)
(n0

J−1)cJ−cj(n
0

j−1)(1−µJ )

cJ−cj(1−µj)(1−µJ )

0


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(5.15)
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=
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









1
1−µJ

(n0

J−1)cJ−cj(n
0

j−1)(1−µJ )

cJ−cj(1−µj)(1−µJ )

0
0

(1 − µJ) (1 − µj)
(n0

J−1)cJ−cj(n
0

j−1)(1−µJ )

cJ−cj(1−µj)(1−µJ )













.

By the linearization principle we can study the stability of a 2-cycle by examining
the eigenvalues of the Jacobian of the composite map (which turns out to equal the
product of the Jacobians of the map evaluated at t = 0 and t = 1). A computer
algebra program makes tractable such a stability analysis of the 2-cycles (5.13),
(5.14) and (5.15). The results imply that all 2-cycles are unstable, except the
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coexistence 2-cycle (5.14) which is stable if the competition coefficients cJ and cj are
sufficiently large, specifically if the competition coefficients satisfy the inequalities

cJ > (1 − µJ)
n0

j − 1

n0
J − 1

, cj > (1 − µj)
n0

J − 1

n0
j − 1

.(5.16)

Note that these are precisely the inequalities that imply both exclusion equilibria
are stable. If one of the inequalities is reversed the 2-cycle is unstable.

Thus, in model (5.11) coexistence is possible in a non-equilibrium (2-cycle)
way when interspecific competition is strong enough. When inequalities (5.16)
hold there are three locally stable attractors, the two exclusion equilibria and a
coexistence 2-cycle. See Figure 35.
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Figure 35. (a) The total population sizes of three orbits of the semel-
parous juvenile-adult, Leslie-Gower model (5.11) with different initial
conditions that lead to three different asymptotic outcomes. The model
parameters are cj = cJ = 2, µJ = 0.3, µj = 0.2, nJ = 11, nj = 10
(bA = 110/7 ≈ 15.71, b = 100/8 ≈ 12.50). Initial conditions (i)
(J, A, j, a) = (4, 2, 2, 2) and (ii) (J,A, j, a) = (2, 2, 4, 2) lead to com-
petitive exclusion, with species (J, A) winning in the first case and (j, a)
winning in the second case. Initial condition (iii) (J, A, j, a) = (2, 2, 2, 2)
leads to coexistence in a 2-cycle. (b) The coexistence 2-cycle is synchro-
nous in that the juvenile and adult stages do not overlap.

In this model the fact that increased competition intensity can lead to coex-
istence seemingly goes against the competitive exclusion principle, which asserts
interspecific competition must be avoided if two species are to coexist. In the case
of the competition model (5.11) there is a reconciliation, however. Note that when
oscillating according to the coexistence 2-cycle (5.14) the two species actually avoid
competition altogether because of the synchrony of the oscillations in the life cycle
stages. In this way the two species coexist even when the intensity of (potential)
competition is high.

Another interesting observation concerning the competition model (5.11) is that
the avoidance 2-cycle is available for all parameter values, including those for which
there is a stable coexistence equilibrium. This fact does not support a competition
principle that asserts species strive (or are selected) to avoid competition. In this
case, the species “choose” to compete at equilibrium rather than avoid competition
altogether in a 2-cycle.
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The competition model (5.11) is only a “toy” model. However, one bit of evi-
dence for non-equilibrium coexistence under increased competitive intensity occurs
in Tribolium species. In T. Park’s famous competition experiments, one example of
two species coexistence unexpectedly occurred and a speculative explanation based
on a competition version of the LPA model (3.11) is given by Edmunds et al. [23].
Their explanation is based on the existence of robust coexistence 2-cycles when real-
istic parameter values are used and interspecific cannibalistic coefficients sufficiently
large. It is suggestive that Park in fact reported increased cannibalistic voracity
in his experiments. The competition LPA model is a m = 6 dimensional system
for which extensive analysis is intractable (although a basic theory, particularly of
the exclusion equilibria, is worked out in [22]). Numerical studies show, however,
that the model can exhibit very exotic dynamics and coexistence non-equilibrium
attractors (even multiple coexistence attractors).

Although derived in application to a specific experimental system, the LPA
model is a rather generic, three life cycle stage model, not uncommon in biologi-
cal species (especially insects). A competition theory based on that model is far
richer than that derived from the limited equilibrium dynamic possibilities of Lotka-
Volterra type models. To what extent these complicated dynamics necessitates a
modification of classical competition tenets, or to what extent they can be recon-
ciled with classical theory, remains an open question.

EXERCISES

Exercise 22. The system

J(t + 1) = b1
1

1 + A(t) + c1y(t)
A(t)

A(t + 1) = τJ(t)

y(t + 1) = b2
1

1 + y(t) + c2J(t)
y(t)

b1, b2, c1, c2 > 0, 0 < τ < 1

is a version of the Leslie-Gower competition model in which one of the species has
a juvenile stage. (a) Show the (J, A) species goes extinct if n , τb1 < 1 and that
the y species goes extinct if b2 < 1. (b) Assume b1, b2 > 1. Find formulas for the
two exclusion equilibria and determine conditions on the competition coefficients
c1 and c2 under which each is locally asymptotically stable and conditions when
each is unstable. Interpret your answers biologically. (c) Find a formula for a
synchronous exclusion 2-cycle and determine a conditions on c2 under which it is
locally asymptotically stable and conditions when it is unstable.

Exercise 23. Find all equilibrium of the Leslie-Gower competition model (5.1)

x(t + 1) = b1
1

1 + c11x(t) + c12y(t)
x(t)

y(t + 1) = b2
1

1 + c21x(t) + c22y(t)
y(t).

Show the extinction equilibrium (x, y) = (0, , 0) is globally asymptotically stable
if b1 < 1 and b2 < 1. Do a linearization stability analysis of the competitive
exclusion equilibria (x, 0) and (0, y) and determine conditions on the competition
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coefficients cij under which they are stable and conditions under which they are
unstable. Under what conditions is there a positive (competitive coexistence) equi-
librium (x, y) > 0? Under those conditions do a linearization stability analysis on
the equilibrium and determine conditions on the competition coefficients cij under
which they are stable and conditions under which they are unstable (difficult).
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