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ABSTRACT. The net reproductive value n is defined
for a general discrete linear population model with a non-
negative projection matrix. This number is shown to have the
biological interpretation of the expected number of offspring
per individual over its life time. The main result relates n to
the population's growth rate (i.e. the dominant eigenvalue >.
of the projection matrix) and shows that the stability of the
extinction state (the trivial equilibrium) can be determined by
whether n is less than or greater than 1. Examples are given to
show that explicit algebraic formulas for n are often derivable,
and hence available for both numerical and parameter studies
of stability, when no such formulas for>. are available.

1. Introduction. Fertility rates are among the most important
vital parameters in population studies. Different measures of fertility,
such as age-specific fertility rates or the total fertility rate (e.g. see
Newell [1988]), have been used in demography and mathematics to
describe the influence of births on a population's dynamics. In applied
mathematical demography and in age-structured population dynamics
the net reproductive value (often called the net reproductive rate or
number) plays an important central role. It combines together the
age-specific fertility rates and the age-specific survival (or mortality)
rates and gives the expected number of offsprings per individual over
its life time. It has been introduced and widely used in age-structured
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population models for more than one hundred years Caswell [1989],
Keyfitz [1985], and Smith and Keyfitz [1977]. It has been used to
characterize the stability of the trivial equilibrium and as a bifurcation
parameter in the study of positive equilibrium for linear and nonlinear
models (Cushing [1988, 1993, 1994] and Jian and Jingyuan [1988]).

In this paper we show mathematically how to define the net repro-
ductive value n for a very general class of matrix population models.
Our goal is to show that this quantity is both biologically meaningful
and analytically useful. The general definition is given in Section 2.
Theorem 3 gives a relationship between n and the population growth
rate>. (Le. the dominant eigenvalue of the projection matrix, or the
so-called Perron root). The exact relationship between n and the dy-
namic stability of linear models is given in Corollary 4. This stability
result is a generalization of that for linear, Leslie age-structured popu-
lation models. In Section 3 several examples are given to show how to
apply the net reproductive value to determine stability. These appli-
cations concentrate on the calculation of n and show some advantages
over the calculation >.. For example, under certain assumptions an al-
gebraic formula for the net reproductive value n is derived for general
Letkovitch [1965]models. This includes a formula for any demographic
model in which all newborns lie in a single class, such as the Leslie and
Usher models. Although the net reproductive value is defined for linear
structured population models, we show in Section 4 how it can also be
used in the study of some nonlinear structured population models by
means of linearization techniques.

2. The net reproductive value and stability. The asymptotic
dynamics of a linear population model are determined, under minimal
conditions, by the dominant eigenvalue>. > 0 of the projection matrix.
If this number is less than 1 then the population dies out asymptotically
or, in other words, the zero state equilibrium is globally stable. On
the other hand, if >. is greater than 1 then the population will grow
exponentially and the zero equilibrium will be unstable. For age-
structured matrix models with Leslie projection matrices these facts
are well known. However, they remain valid (by the famous Perron-
Frobenius theory) for general non-negative projection matrices under
some restrictive, but still quite general assumptions.

For Leslie models another parameter can also be used to determine
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the stability properties of the population, namely the net reproductive
value n. This number and its relationship to the dynamics of the
population are discussed in the following Section 2.1. One advantage
of the number n is that a simple algebraic formula is available for it
in terms of the entries in the Leslie matrix (see (2) and (14) below).
This formula permits studies to be carried out on the relationship
between model parameters (age specific birth rates, death rates, etc.)
and the long term dynamics of the population. Also, it allows for the
easy numerical calculation of n when model parameters are assigned
numerical values. There is no such algebraic formula for the dominant
eigenvalue )..

In Section 2.2 we give a mathematical definition of the "net reproduc-
tive value" n for a general class of matrix population models and show
that it equal to the expected number of offspring per individual over
its lifetime. In Section 2.3 our main results relating n to the dominant
eigenvalue). and hence to the asymptotic dynamics of the population
are given in Theorem 3 and its Corollary 4. Formulas for n are given for
some general models, including those with a single reproductive class
(such as Leslie and Usher models).

2.1. Age-structured population models. Matrix models have
been used by many authors to study age-structured populations; e.g.
see Caswell [1989], Impagliazzo [1985], Lewis [1942], Leslie [1948] and
Newell [1988]. Let Xi(t), i = 1,2,..., m, denote the number (or
density) of individuals in the ith age class at time t, and suppose
that the time unit is taken, without loss in generality, to be 1. Let
Pi+!,i E (0,1) be the fraction of individuals in age class i that survives
to age class i + 1 after one time unit. Let lli, i = 1,2,... , m, be
the number of offsprings produced by an individual in age class i that
survives to age 1. Then the discrete age-structured population model
is

(1)

m

Xl(t + 1) = ~!IjXj(t)
j=l

Xi+l(t + 1) = Pi+l,iXi(t), i = 1,2, . .. ,m - 1

for
t = to, to + 1, to + 2, . .. .
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Given an initial population distribution Xi(to) = x? ;::: 0, i =
1,2, . .. , m, then the dynamics of the population are uniquely deter-
mined by these formulas for all t > to.

In this model the net reproductive value is defined as
m i-I

n = L/li IIpHl,j
i=1 j=O

where, for notational convenience only, we denote PlO= 1. The number
defined by (2) has a straightforward biological meaning. The product

It:~PHl,j is the probability that an individual lives to age i and the

product lli It:~ PHl,j is the number of its offspring. Consequently, n
is the expected number of offspring per individual over its life time.

Let

(2)

(

Xl(t)

)

X2 (t)
x(t) = .

xm(t)
denote the age-distribution vector at time t. We have followinglemma
(Cushing [1988]).

LEMMA 1. For any initial distribution x(to) = xO ;:::0 (# 0)

(i) n < 1 implies limHoo Xi(t) = 0 for all i = 1,2,... ,m
(ii) n> 1 implies limHoo Xi(t) = +00 for all i = 1,2,... ,m.

If n = 1 then there exist positive equilibrium solutions x = cv of the
model equations (1) where c is an arbitrary positive constant and

1

O<v=

P21

P21P32
P21P32P43

P21P32 . . .Pm,m-l

Lemma 1 illustrates the role of the net reproductive value n in
determining the asymptotic dynamics of the population. The trivial
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solution x = 0 of equations (1) is asymptotically stable if n < 1 and is
unstable if n > 1. If n = 1, nontrivial equilibria exist. The critical value
n = 1 is a bifurcation value in the sense that when n passes through
1 the stability of the trivial solution changes. At n = 1 a continuum
of positive equilibrium solutions of equations (1) bifurcates from the
trivial equilibrium. Biologically, n < 1 means that an individual cannot
fully replace itself during its life span and therefore the population
decreases. In the case n > 1, the situation is the opposite. When
n = 1 an individual produces exactly one offspring to replace itself over
its lifetime and, as a result, the whole population maintains itself at a
constant level.

2.2. General structured models. Structured population models
designate classifications or cohorts of individuals and follow these
cohorts in time. The classes or stages are defined according to what
properties of an individual are most important so far as its vital rates
are concerned. The most common classifications are chronological
age, body size, etc. One of the major goals of structured population
dynamics is to bridge the gap between the level of the individual
organism and the level of the population as a whole. This will allow
the mathematical models to take better into account the vast amount
of knowledge and data that biologists have amassed about individual
biological organisms and to make them more accurate and predictive.

In Leslie age-structured population models offspring are born into the
first age class only and individuals in age-class i at time t can only move
to age class i + 1 at time t + 1. In generalized structured population
models these two restrictions are relaxed. Offspring may be born into
any class and individuals in class i at time t can transfer to any class j
at time t + 1 (Caswell [1989], Cushing [1988, 1993], Letkovitch [1965]).

We will consider here only linear. autonomous structured models for
populations closed to immigration and emigration. Suppose that the
individuals of a population are categorized into m classes. The number
(or density) Xi(t) in class i at time t is placed in a class distribution
vector x(t). Let Pij E [0,1] be the fraction of individuals in class j
expected to transfer to class i during one unit time. It is clear that
o ::; E~l Pij ::; 1. Let T denote the m x m "transition" matrix
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consisting of these transition probabilities, Le.

Pij E [0,1]

(3)
m

o :::;L Pij :::;1,
i=l

j = 1,2,... ,m.

The individuals in the population at time t, distributed according to
the vector x(t), who survive to time t + 1 will then be redistributed
according to the vector Tx(t).

Let fij denote the expected number of i-class newborns per j-class
individual alive at time t + 1 due to births during the time interval
(t, t + 1). Let F be the m x m "production" (or "fertility") matrix

(4)
m

L /;j ¥' O.
i,j=l

The distribution vector of newborns at time t + 1 due to births from
individuals of the class distribution vector x(t) at time t is Fx(t). With
these notations the distribution x(t + 1) at time t + 1 is given by the
matrix difference equation system

(5)
x(t + 1) = Ax(t), x(to) ~ 0

t = to, to+ 1, to+ 2,. . .

where the coefficientmatrix A, usually referred to as the "projection
matrix ," is given by

(6) A = F + T ~ O.

It is obvious that x(t) is uniquely determined for all t > to by recursive
formula (5) once the initial distribution vector x(to) is given.

We assume that

(7) the matrix A given by (6), (4), and (3) has a positive, simple,
strictly dominant eigenvalue A whose associated (right) eigenvector
v > 0 is strictly positive.
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Sufficient for this assumption is that A is reducible and primitive (which
is equivalent to an integer power An > 0 of A being strictly positive)
(Gantmacher [1959]).

The first step in understanding the dynamics of a model population
described by the equation (5) is to determine the equilibrium (Le.
constant) solutions and the stability of the equilibrium. It is clear
that x = 0 is an equilibrium. Is the trivial equilibrium 0 stable? Are
there any positive equilibria? It is natural to ask if it is possible to
define, as was done for the Leslie age-structured population model (1), a
"net reproductive value" n for the general structured population model
(5) which determines the stability of the trivial equilibrium 0 and the
bifurcation of positive equilibrium. We will now show how to define
such a number under two assumptions on the matrices F and T.

First, we assume that the inverse

(8) exists.

A necessary condition for this is that at least one of the column sums
L:~l Pij of T be strictly less than 1. A sufficient condition is that all
of the column sums of T be strictly less than 1 (Le. that there is some
loss to each class over each time interval)

(9)

m

0:::;LPij < 1,
i=l

j = 1,2,. .. ,m.

The entry eij is the expected amount of time that will be spent in class
i by an individual starting in class j over the course of its life time. The
entry rij in the matrix (I - T)-l F = (rij) gives the expected number
of i class offspring that an individual born into class j will produce over
its life time. Our second assumption is that

(10) (1 - T)-l F has a positive, simple, strictly dominant eigenvalue
n whose right eigenvector y > 0 is strictly positive.

Sufficient for this assumption is that (I - T)-l F is non-negative,
irreducible and primitive or, equivalently, that some integer power of
(I - T)-l F :2: 0 is strictly positive. (This is not necessary, however,



304 J.M. CUSHING AND Z. YICANG

since we do not require that the left eigenvalue be strictly positive;
see the application in Section 4.2 below.) Assumption (9) implies that
(1 - T)-l = L:~=oTk and hence that (1 - T)-l ;:::o.

DEFINITION 2. Assume that F and T satisfy (8) and (10). Then n
is called the net reproductive value for the model equation (5}-(6).

This definition of net reproductive value is, of course, purely mathe-
matical. A natural question to ask is whether in fact it has the correct
biological interpretation. That is to say, is n equal to the expected
number of offspring produced by an individual over its life time? In
age-structured population (Leslie) models the newborns are always in
the first age class and after each time unit surviving individuals advance
into the next age class. Therefore, it is easy to trace a newborn cohort
in time and to record its reproductive activity. In this case, the formula
(2) for n in terms of the age specific fertility and survival rates can be
straightforwardly obtained and the fact that n is the expected num-
ber of offspring per individual over its life time is clear. In the general
structured model (5) newborns can lie in any of the classes and individ-
uals in one class can transfer to any other class in one unit of time. In
this case it is not as easy to trace an individual's progression through
the different classes. Here we will consider one case only. Let us follow
one cohort in time and calculate the average number of offspring over
the expected life time of the cohort. Specifically, consider the newborn
cohort produced by an adult population whose distribution is y > 0,
the positive eigenvector corresponding to n. For simplicity assume (9).
From

(I - T)-l Fy = ny

or

Fy = n(I - T)y

we see that from the parent distribution y the distribution z = Fy of
the newborn cohort is

z = n(I - T)y.

After k time steps the distribution of this cohort z is Tkz, k =
0,1,2,..., and the offspring produced by this cohort is FTkz, k =
0,1,2, . ... The distribution of the total expected number of the
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offspring produced by the cohort z is

00

L FTkz = F(I - T)-IZ =nz.
k=O

Therefore, the expected number of offspring per individual over its life
time is equal to

That is to say, the expected number of offspring per individual over its
life time is the same, by our definition, as the net reproductive value.

As an example, for two-dimensional structured population models
defined by

F = (lu
121

T = (Pu P12 )P21 P22

the net reproductive value is given by the formula

- ~ 1 - 2 1/2n-
2(1 )(1 )

(a+,8+((a,8) +41'0) )- Pu - P22 - P12P21

a = P12hl + (1 - P22)lu, ,8= P2d12+ (1 - Pu)h2

l' =P12h2+ (1 - P22)!12, 0=P2du + (1- Pu)h2.

As another example, the net reproductive value is given by the formula
(2) for age-structured Leslie models (1). Formulas for other types of
projection matrices are given below.

2.3. The net reproductive value and stability. The linear
autonomous structured population 'model (5) has the unique solution

(11) t = 0,1,2,... .

It is obviousthat x = 0, the trivial solution, is an equilibrium of model
(5). By using the Jordan canonical form it is easy to see that the
stability of x = 0 depends upon the eigenvalues of the non-negative
matrix A. Stability and bifurcation of the equilibria for model (5) are
then determined by the dominant eigenvalue A (Caswell [1989]).
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In age-structured population models the net reproductive value n de-
termines the stability of the trivial equilibrium. For generalized struc-
tured population models the net reproductive value is a generalization
of that for age structured population models. Therefore, it is natural to
conjecture that the net reproductive value determines the stability of
the trivial equilibrium in the general model as well (Cushing [1993]). As
the following theorem shows this conjecture is true under assumptions
(7), (8) and (10).

THEOREM3. Assume that A satisfies (7) and that F and T satisfy
(8) and (10). Then>. > 1 (respectively>. < 1 or >.= 1) if and only if
n > 1 (respectively n < 1 or n = 1).

This theorem can be proved for two-dimensional matrices A or for ar-
bitrary age-structured population matrices by a straightforward analy-
sis of the dominant eigenvalue and the formulas for the net reproductive
value given above. A proof for the general case is given in the Appendix.

From Theorem 3 we have following stability result.

COROLLARY 4. Under the conditions of Theorem 3, the trivial
equilibrium x = 0 of model (5) is asymptotically stable (respectively
unstable) if and only if n < 1 (respectively n > 1). If n = 1 then
there exist a family of positive equilibria x = cv where c is an arbitrary
positive constant.

3. Applications to linear models In this section the net repro-
ductive value n will be examined for several linear matrix population
models. They will demonstrate the usefulness of using n in studying
the asymptotic dynamics of the population. We will derive an alge-
braic formula that can be used to calculate n from the entries of the
projection matrix A = F + T in the case when all newborns lie in a
single class (see (19)). This includes, of course, Leslie and Usher mod-
els. No such formula is available for>. and this quantity can only be
calculated, by some numerical eigenvalue procedure, when numerical
values are assigned to the entries in A.

We point out that in the case considered here, when all newborns lie
in a single class, the "mean generation time" / is given by the formula
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'Y = Inn/In>. (Caswell [1989]).

3.1. Leslie models. Consider the model equation (5)-(6) in which

(12)

o < Pi+1,1< 1, 0 ~ Pmm< 1.

Under these conditions, the transition matrix T satisfies the condition
(9) and hence (8) holds. By direct calculation

where

O<y=

1

P21
P21P32

pnP32 . . .Pm-1,m-2
(1 )

-l nm-1
- Pmm k=OPk+!,k

Here, for notational convenience, we have set PlO = 1. Because all of
its columns are proportional to y the matrix (I - T)-l F has 0 as an
eigenvalue of multiplicity m - 1. The remaining eigenvalueis

(14)
m-1 j-1

n - " f II P21P32 . . .Pm,m-1
f- L 1j Pk+1,k+ 1 - 1m > O.

j=l k=O Pmm

0 0 0 .. . 0 0 0
P21 0 0 . .. 0 0 0
0 P32 0 . .. 0 0 0

(13) T=I
0

0 0 0 .. .
Pm-1,m-2 0 0

0 0 0 .. . 0 Pm,m-1 Pmm

with
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The positive vector y is a (right) eigenvector of (I - T)-l F associated
with n. Because n is positive and strictly dominant this shows that
the Leslie model satisfies (10) and that Theorem 3 and its Corollary 4
apply. Thus, the trivial equilibrium x = 0 is stable (unstable) if and
only if n < 1 (n > 1).

As an specific numerical example, consider the case when

which was studied by Usher as a model for blue whale populations (the
time interval being two years) (Usher [1972]). From equation (14) we
calculate n ~ 1.9494 > 1. Corollary 4 implies that x = 0 is unstable
and hence that the population is growing exponentially.

From Corollary 7 of the Appendix we know that 1 < A < n ~ 1.9494.
In fact, the dominant eigenvalue A of the projection matrix A can be
approximated numerically (as a root of the sixth degree characteristic
polynomial or by other eigenvalue methods) to be A ~ 1.0986. This is
the exponential growth rate of the population. The mean length of a
generation is then 'Y= In n/ In A ~ 7.0985 time units, or 14.197 years.

3.2. Usher models. Usher matrices are a slightly more general kind
of projection matrices than Leslie matrices. They have found applica-
tion in models based upon size structuring as opposed to chronological
age (Caswell [1989], Usher [1966, 1969, 1972]). In an Usher model the
projection matrix A = F + T has the same fertility matrix F as that
in a Leslie matrix, namely (12), and a transition matrix that is a Leslie
matrix (13) with added transition probabilities Pii E [0,1], down the

0 0 0.19 0.44 0.5 0.5 0.45
0.87 0 0 0 0 0 0

0 0.87 0 0 0 0 0

A=I 0 0 0.87 0 0 0 0
0 0 0 0.87 0 0 0
0 0 0 0 0.87 0 0
0 0 0 0 0 0.87 0.80
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Usher used this projection matrix to model forest dynamics where Pii
is the probability that a tree in the iit size class will remain in that size
class after a time unit, Pi+Ii is the probability that a tree in the ith size
class will grow into the (i + lyh size class after a time unit, and IIi is
the rate of the regeneration from the ith class. The conditions Usher
assumed are

(16)
o ~ Pii < 1 and IIi 2: 0 for i = 1,2,. .. ,m
o < Pi+I,i and Pii+ Pi+I,i~ 1 for i = 1,2,... ,m - 1

Note that the dissipation condition (9) may not hold. Nonetheless,
the conditions (8) and (10) required for Theorem 3 and Corollary 4 are
fulfilled, as we will now show. A straightforward calculation shows that
(1 - T)-I exists and that

where

y= > O.

.IT:':, ~k,k-l

n:::" (I-Pkk)

As in the Leslie matrix case, (1 - T)-I F has 0 as an eigenvalue of
multiplicity m - 1. The remaining, positive and strictly dominant,
eigenvalue is

(17) m i Pk,k-I

n = L IIi II 1 - Pkk.i=1 k=1

main diagonal, Le.

PH 0 0 .. . 0 0 0
P2I P22 0 .. . 0 0 0
0 P32 P33 .. . 0 0 0

(15) T=I
0

0 0 0 .. . Pm-l,m-2 Pm-I,m-I 0
0 0 0 .. . 0 Pm,m-I Pmm
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The positive vector y is a (right) eigenvector of (I - T)-1 F associated
with n.

We have an algebraic formula for the net reproductive value which,
by Theorem 3 and Corollary 4, can be used to determine the stability
of the trivial equilibrium and hence the growth and survival or the
decay and ultimate extinction of the population. Thus, it is a simple
matter in numerical applications to calculate n. This is in contrast to
the calculation of the dominant eigenvalue>. of the projection matrix.

Here is a numerical example. The matrix

(18) A=

0.72 0 0
0.28 0.69 0

o 0.31 0.75
o 0 0.25
000
000

0.74 1.04 9.03
000
000

0.77 0 0
0.23 0.63 0

o 0.37 0

was used by Usher [1966] to model a Scots pine forest. A unit of time
is five years. Notice that Usher has assumed that there is no loss to the
population during a unit of time from any of the first five size classes
so that in this application the equalities

Pii + Pi+l,i =1 for i = 1,2,. .. ,m - 1

hold. For such models, the formula (17) simplifies to

m hi
n =L 1 - Pii .i=1

For the matrix (18) we get from this formula the approximate value
n ~ 15.058. Since n > 1 we conclude that the forest population is
growing exponentially.

From Corollary 7 of the Appendix we know that 1 < >.< n ~ 15.058.
In fact, the dominant eigenvalue>. of the projection matrix A can be
approximated numerically (as a root of the sixth degree characteristic
polynomial or by other eigenvalue methods) to be >.~ 1.2044. This is
the exponential growth rate of the population. The mean length of a
generation is then 'Y= In n/ In >.~ 14.582 time units, or 72.91 years.
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3.3. Models with a single newborn class. In this section we
consider a general population model under the assumption that all
newborns lie in the same class, namely class i = 1 (without loss in
generality). Thus in (5) the fertility matrix has the form (12) as in a
Leslie matrix. The transition matrix T = (Pij), Pij E [0,1], however,is
arbitrary subject to the condition (3) and assumptions (8) and (10).

The entries in the inverse (I - T)-1 = (eij) are
Cji

eij = det(I - T)

where Cji is the cofactor of the entry jith entry in 1- T. Then from
(12) we have

(

cu/u cu/I2 . . . CU/Im

-1 - 1 CI2fU C12/I2 . . . C12/Im
(I - T) F - d (I T) . .et - : : D

clm/u Clm/I2 . . . clm/Im

Since each row is a scalar multiple of the first row in F, it followsthat
a is an eigenvalueof multiplicity m - 1. The remaining eigenvalueand
associated eigenvectorof this matrix are

1 m
n = - .- -. L /IkClk

k=1

)

(19)

and

(20)

(

Cu

)

Cl2

y= :

Clm

which, if positive, implies that n is the net reproductive value.

As a numerical exampleconsider the fertility and transition matrices
a a a a a a 431
a a a a a a a
a a a a a a a
o a a a a a a
a a a a a a a
a a a a a a a
a a 0 0 000

F=



312 J .M. CUSHING AND Z. YICANG

T=

o 0
0.748 0

o 0.966
0.008 0.013
0.070 0.007
0.002 0.008

o 0

000
000
000

0.010 0.125 0
o 0.125 0.238
o 0.038 0.245
o 0 0.023

o 0
o 0
o 0
o 0
o 0

0.167 0
0.750 0

considered by Werner and Caswell [1977] in a study of the dynamics of
the perennial plant (Dipsacus sylvestrix Huds.). In this application
the plants are placed into seven life cycle stages, namely, seeds, 1
year dormant seeds, 2 year dormant seeds, small rosettes, medium
rosettes, large rosettes, and flowering plants. The matrix T satisfies the
dissipative condition (9). The net reproductive value can be calculated
by the formula (19). Thus,

1
n = - .- -./17c17

where 117 = 431, det(I - T) ~ 0.5554and

-0.748
o

-0.008
C17= det I -0.070

-0.002
o

= 1.8525X 10-2.

o
o

0.875
-0.125
-0.038

o

1 0
-0.966 1
-0.013 -0.01
-0.007 0
-0.008 0

o 0

o 0
o 0
o 0

0.762 0
-0.245 0.833
-0.023 -0.75

This yields n ~ 14.376. Moreover, from (20) we find that

O<y~

29.981
22.426
21.663
0.8549
3.1003
1.2382

1

is indeed positive. Since n > 1 this population is growing exponentially.
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From Corollary 7 of the Appendix we know that 1 < >.< n ~ 14.376.
In fact, the dominant eigenvalue>. of the projection matrix A can be
approximated numerically (as a root of the seventh degree characteristic
polynomial or by other eigenvalue methods) to be >.~ 1.8842. This is
the exponential growth rate of the population. The mean length of a
generation is then / = In n/ In >. ~ 4.2076 years.

3.4. A remark about general matrix models. Although the
definition and results above concerning the net reproductive value n
were developed for non-negative projection matrices A that have an
additive decomposition A = F + T into a fertility matrix F 2: 0 and
a transition matrix T 2: 0, the results remain valid for any additive
decomposition of a projection matrix A = F + T for which F and T
satisfy the assumption needed for Theorem 3.

For example, a model of the form (5) can be formulated using a non-
negative projection matrix without reference to the fertility and transi-
tion matrices utilized above. The entries in A might be numerical val-
ues statistically approximated from data (Lefkovitch [1965], Woodward
[1982]) or a model of the form (5) might arise from the linearization
of a nonlinear model at an equilibrium. If an additive decomposition
of such an A is made in a suitable manner so that Theorem 3 and
Corollary 4 can be applied, then one obtains a stability criterion for
the trivial equilibrium based upon the value of n defined as above. This
value of n will not necessarily have the biological interpretation of a net
reproductive value, however (because F and T may no longer have the
interpretations of a fertility and transition matrix). With an appropri-
ate decomposition of A it might be possible to compute the value of n
and hence determine the stability properties of the trivial equilibrium
by means of one of the formulas for n given above.

For example, suppose a non-neg!l-tive irreducible projection matrix
that satisfies (7)

(

all

a2I

A= :

amI

aI2

a22

aIm

)

a2m

amm
o



We require that the inverse

exists and is non-negative. The entries of E are given by the formula

Cji

eij = det(1 - T)

where Cji is the cofactor of the jith entry of I - T. An easy calculation
shows that

(

cuau

(I - 1')-1P = 1 C12aU..J_L I T m\ .

C1maU

Cu a12

C12a12

CUa1m

)

c12a1m
. ,

C1ma1m

o

a matrix which is necessarily non-negative. If this matrix has a
dominant eigenvalue then Theorem 3 and its Corollary 4 remain valid
with n taken as this dominant eigenvalue. Because each column (row)
is a multiple of the same column (row) it follows that this matrix has
o as an eigenvalue of multiplicity m - 1. The remaining eigenvalue is
given by the formula

1 m

det(I - 1')
L: alkC1k.
k=1

(The column vector y = col(C1j) is an eigenvector.) Thus, if this
quantity is nonzero and thereby the dominant eigenvalue of (I -1')-1 P,
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is additively decomposed as A =F+ T, F 2:0, T 2:0 where

C"

a12 .. .

T)

0 0 . ..
F-- .

0
0 0 .. .

(a'

0 .. .

m)
a22 .. .

T= .
0

am1 am2 .. . amm
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then the trivial equilibrium is stable if this quantity is less than 1 in
magnitude and unstable if it is greater than 1 in magnitude.

A similar decomposition using the lth row of A for F instead of the
first leads, under similar assumptions, to the quantity

1 m
- L alkclk

k=l

by means of which stability can be determined. Of course, this
dominant eigenvalue may not have the biological interpretation of the
expected number of offspring per individual per life time and hence
not be the net reproductive value, depending on how A is additively
decomposed.

(21)

4. Application to nonlinear models. When the projection
matrix A is constant the model equation (5) is linear. In so-called
density dependent models, however, the fertility and transition rates are
dependent upon population density and the projection matrix becomes
a function of x(t). The resulting matrix equation

x(t + 1) = A(x(t))x(t), x(to):2:0

A(x(t)) = F(x(t)) + T(x(t)) :2: 0
t = to, to + 1, to + 2, . . .

is nonlinear. The stability properties of the trivial equilibrium x = 0
are of obvious importance because of their implications for the survival
of the population. Local stability of the trivial equilibrium determines
not only the long term survivability of populations at low density, but
is related to the existence of nontrivial equilibria (Cushing [1988, 1993,
1994]).

(22)

The local stability properties of the trivial equilibrium x = 0 can be
studied by means of the linearization of equation (22). The linearized
equation

x(t + 1) = A(O)x(t)

t = to, to + 1, to + 2, . . .

has a constant projection matrix and is of the form of equation (5).
Therefore, Theorem 3 and its Corollary, as well as the formulas above

(23)
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for the net reproductive value associated with the linearized projection
matrix A(O), can be used to investigate the local stability of the trivial
equilibrium. In this context, the net reproductive value of A(O) will
be called the inherent net reproductive value. The word "inherent"
refers to the fact that this number is the expected number of offspring
of an individual over its life time when the population density is low
(technically, zero).

The nonlinear matrix equation (22) can also have positive equilib-
ria. The local stability of a positive equilibrium x = xe > 0 can be
determined from that of the linearization of (22), provided it is hyper-
bolic, i.e., no eigenvalue of the linearization has magnitude equal to 1.
The linearization of (22) at xe is a linear matrix equation of the form
(23) in which the coefficient matrix A(O) is replaced by the Jacobian
J of A(x)x evaluated at x = xe. Although this linear equation may
or may not have the properties of a demographic model equation, the
remarks of Section 3.4 might nonetheless be applicable with regard to
determining its stability properties.

4.1. A model for flour beetle dynamics.
equations

The nonlinear

Xl(t + 1) = bX3(t)e-CeIX2(t)-CeaX3(t)

X2(t + 1) = (1 - JlI)Xl(t)

X3(t + 1) = x2(t)e-CpQX3(t)+ (1 - f.la)X3(t)

constitute the deterministic model for the dynamics of flour beetles
of the genus Tribolium introduced in Dennis, et al. [1995] and Con-
stantino, et al. [1995]. The model distinguishes three classes, namely
larva Xl(t), pupa X2(t), and aQults X3(t). The exponential nonlineari-
ties account for inter-class cannibalism. We will consider the simplified
case when larval cannibalism on eggs is ignored so that Cel= O. This
case is also studied in Dennis, et al. [1995]. The resulting equations

(24)
Xl(t + 1) = bX3(t)e-CeQX3(t)

X2(t + 1) = (1 - f.l1)Xl(t)

X3(t + 1) = x2(t)e-CpQX3(t)+ (1- f.la)X3(t)
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have the a nonlinear Leslie matrix form with

(

0 0 be-C."X3

)
F(x) = 0 0 0 ,

000

(

0 0 0

)
T(x) = 1 - /.LI 0 0 .

o e-C""X3 1 - /.La

The exponentials account for losses due to cannibalism, with the non-
negative coefficients Ceaand cpa (not both equal to 0) corresponding to
egg and pupa cannibalism by adults respectively. The parameter b > 0
is the per adult larva production rate and /.LI,/.LaE (0,1) are the larval
and adult mortality rates. The unit of time is the maturation period.

The linearized equation at the trivial equilibrium x = (Xl>X2,X3) =
(0,0,0) = 0 has coefficient matrix A(O) = F(O) + T(O) where

(

0 0 b

)
F(O) = 0 0 0 ,

000

(

0 0 0

)
T(O) = 1 - /.LI 0 0 .

1 1- /.La

From formula (19) we find that the inherent net reproductive value is

1- /.LIbn=
/.La

and that

Theorem 3 and its Corollary 4 (together with the linearization princi-
pie) imply that the trivial equilibrium x = 0 is locally asymptotically
stable if n = (1 - /.LI)b//.La< 1 and unstable if n = (1 - /.LI)b//.La> 1.

According to the general theory in Cushing [1988, 1993] there exists a
global continuum of positive equilibria that bifurcates from the trivial
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equilibrium at n = (1 - /.Ll)b//.La = 1. In this example these equilibria
can be found analytically; they exist for n > 1 and are given by the
formulas

(25)

Moreover, it is known from the general theory that because the bi-
furcation is "supercritical" these equilibria are locally asymptotically
stable at least for n > 1 near 1. A more precise local stability re-
sult can be obtained from the linearized equations at the equilibrium
xe = (x~,x~,x~). This results in a linear matrix equation (5) with pro-
jection matrix given by the Jacobian of the right hand sides of equations
(24) evaluated at xe, namely

xH -Cea+ l/x~)

)
o .

1 - /.La(1 + Cpax~)

This matrix is nonnegative, irreducible, and primitive (the fourth power
is positive) provided the first and third entries in the third column are
positive, i.e., provided the inequalities

o < xe < .
{

Ill - /.L

}
3 mm -,-~

Cea Cpa /.La

hold. These inequalities hold if and only the inherent net reproductive
value n satisfies the inequalities

(26)

where r is the ratio of the cannibalism coefficients

. cpa >0r=- .
Cea
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Thus, J satisfies the conditions in (7).

The matrix J can can be additively decomposed into the sum J =
F +T of nonnegative matrices

~

(

0 0 xH-cea+1/X~)

)
F= 0 0 0

o 0 0

(

00 0

)
T = 1 - ILl 0 0

o ILaX~/X2 1 - ILa(1+ cpax~)

The inverse

exists. Thus, J satisfies (8) under condition (26).

The formula (21) leads, after some algebra, to the formulas

1 - ceax~
e'1 + Cpax3 (

1

)
y = 1 - ILl

(XUX2(1- ILI)/(1 + CpaX3))

for the dominant eigenvalue of (1 - T)-l F and its associated right
eigenvector. Under condition (26) y > 0 and this positive dominant
eigenvalue is clearly less than 1. This means J satisfies (10).

It follows from Theorem 3 and Corollary 4 that the trivial equilibrium
of the linearization is stable. We conclude, by the linearization princi-
ple, that the positive equilibria (25) are locally asymptotically stable
when the inherent net reproductive value n satisfies the inequalities
(26).

4.2. A juvenile vs. adult competition model. Consider a
population consisting of one juvenile and two adult size classes, one
consisting of smaller and less fertile adults and the other of larger and
more fertile adults. The adult size attained at maturation is determined
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by the amount of competition for resources experienced during the
juvenile phase. In Cushing and Li [1992]the effects of this intra-specific
competition was studied by means of a model of the following form

X1(t + 1) = I1x2(t) + hX3(t)

X2(t + 1) = <I>(W(t))X1(t)

X3(t + 1) = (1- <I>(W(t)))X1(t).

Here Xl>X2, and X3 are the densities of the juvenile, smaller adults, and
larger adults, respectively, and 0 < 11 < 12 are the per capita fertilities
of the smaller and larger adults, respectively. The increasing function
<I>: [0,+00) -+ [0,1],0 < '1'(0)< 1, givesthe fractionofjuvenilesthat
mature as smaller adults as a function of the weighted total population
size W = Xl +W1X2+W2X3. The coefficients Wi measure the competitive

pressure from adults on juvenile growth relative to that from juveniles
themselves.

The linearization of this model at the trivial equilibrium is

X1(t + 1) = I1X2(t)+ hX3(t)

X2(t + 1) = <I>(0)X1(t)

X3(t + 1) = (1- <I>(0))X1(t)

whose projection matrix A(O) = F(O)+ T(O) is given by

(

0 11 h

)
F(O)= 0 0 0

o 0 0

(

0 0 0

)
T(O) = <1>(0) 0 0 .

1 - <1>(0) 0 0

It is easy to calculate that

(

1 0 0

)
(I - T(O))-l = <1>(0) 1 0

1 - <1>(0) 0 1

exists and

(

0 11 h

)
(I - T(O))-l F(O)= 0 11<1>(0) 12<1>(0) .

o 11(1- <1>(0))12(1- <1>(0))
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This matrix (1 -T)-I F has 0 as a double eigenvalue and the eigenvalue

n = 11</;(0)+ 12 (1 - </;(0)) > 0

which defines the inherent net reproductive value. The right and left
eigenvectors are

y =
(

<p~0)

)
> 0,

1- <p(0)
w = (0, 11(1- <p(0)),12(1 - <p(0))) 2::O.

Thus, by the linearization principle together with Theorem 3 and
Corollary 4, the trivial equilibrium is locally asymptotically stable if
this number n < 1 and unstable if n > 1.

4.3. A host parasite model. Our final application deals with a
model of multi-species interactions. We chose it in order to show how to
use the results and techniques above in more complicated situations (in
this case, a multi-species interaction). It deals with a hostjparasitoid
interaction and details concerning the model and its analysis can be
found in (Barclay [1986], Crowe and Cushing [1994]).

Let

x = (~)
where

(

hI

) (

PI

)
h= : , p= :

h~+1 P~

denote the vector h of m + 1 age class densities hI"" , hm+1 of a host
population and the vector p of w adult age classes densities PI, . . . ,Pw
of a parasitoid. Here hi is the non-parasitized larva of age iSm and
hm+1 is the number of the adult hosts.

In the absence of the parasitoid the dynamics of the host population
is governed by the (m + 1) x (m + 1) nonlinear Leslie matrix equation
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(22) with A(h) = F(h) + T where

(

0 0 ... fe-9hm

)

o 0... 0
F(h) = . . .,: : 0 :

o 0... 0

(

0 0 ... 0 0

)

pO... 0 0

T= ~ ~ ... ~ ~
: : 0 : :
o 0 ... p 0

whose linearization (23) at the trivial equilibrium h = 0 is a classical
Leslie matrix whose net reproductive value is n = fpm. Thus, in the
absence of the parasitoid the host population survives if fpm > 1 and
goes extinct if f pm < 1.

The model of the host-parasitoid interaction takes the form of (22)

(27) x(t + 1) = A(x(t))x(t)

where the (m + 1+ w) x (m + 1+ w) projection matrix, in block form,
is given by

A(x) = F(x) + T(x)
-

(F(h) 0 )F(x) = 0 C(x)'

T(x) = (T~) ~)
where the (m+1) x (m+1) host transition matrix T has been modified
to account for parasitization at the ath larval stage as follows

0 0 .. . 0 .. . 0 0
p 0 .. . 0 .. . 0 0
0 p .. . 0 .. . 0 0

T(p) = I : 0 0
0 0 .. . pe-q1f(p) .. . 0

I+-( a + 1)st row
0 0

0 0 .. . 0 .. . p 0
t

ath column
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and the w x w fertility and transition matrices, C and D, for the
parasitoid population are given by

(

1 1
1 - e-q1T(p) 0 0 .. .

C(x) = uno-kpkha . .
7I"(p) : : 0

o 0 ...

(

0 0 ... 0 0

)

sO... 0 0
D= .. ...

: : 0 : :
o 0 ... s 0

!)

The various coefficients appearing in these matrices are: a is the age
of parasitized larva, p is the survivability of non-parasitized hosts, f
is adult host fertility, 9 is the density coefficient for adult hosts, q is
the constant related to search efficiency, s is the survivability of adult
parasites, no is the development time for parasites, k is the time after
which parasitized affect host mortality (~ no), u is the survivability
of parasitized hosts after k time units and 7I"(p) = Ei=lPi is the total
adults parasite numbers.

First we consider the stability of the trivial solutiClnx = 0 in which
both populations are absent. Although the interpretation of an inherent
net reproductive value is not appropriate for this two species model, the
dominant eigenvalue of (1 -T(O))-lP(O) can still be used to determine
the stability properties of the trivial solution. Since

it follows that this dominant eigenvalue is in fact the inherent net
reproductive value n = fpm of the isolated host.

Thus, the trivial solution of the host-parasitoid interaction is stable
(and both species go extinct) if the trivial solution of the isolated host
population is stable, Le., n < 1. It makes sense, of course, that both
the host and the parasitoid should go extinct if the host population
cannot survive in absence of the parasitoid.

In order to make a last point concerning the methods developed
above for determining stability we consider the case when there exists
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nontrivial, non-negative equilibria. If the host is viable in the absence
of the parasitoid, Le., n > 1, such an equilibrium will exist and the
species will not both go extinct. If n > 1 then there are nontrivial
equilibria

where

h' ~ pl~m In(n) U) .

The linearization of (27) at xe is

(h(t+l) )= (B+T(O) 0 )(h(t) )p(t+l) 0 D p(t)

where B is the (m + 1) x (m + 1) matrix

(

0 ...
o ...

B= : 0
o ... o

One entry in the matrix B is negative and therefore B (and hence
the linearized projection matrix) are not non-negative. This means
that Theorem 3 and Corollary 4 cannot be applied to determine
(local) stability of the nontrivial equilibrium. However, except for this
nonnegativity, the linearization has a Leslie matrix model form and a
direct calculation yields the dominant eigenvalue

A = (l-ln(n)//(m+l).

We also obtain from (14) the dominant eigenvalue

17=I-ln(n)

of (I -T)-l F(xe). Hence, IAI< 1 if and only if 1171< 1. The equilibrium
(xe, 0) is stable if 1171< 1 and unstable if 1171> 1.
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This last result demonstrates the dominant eigenvalue of the matrix
(I - T)-l F can be used to determine the stability even when the
conditions of the Theorem 3 and its Corollary do not hold.

5. Concluding remarks. In this paper we have given a math-
ematical definition of the net reproductive value n for a very general
class of linear matrix population dynamical models. This number has
the biological interpretation of the expected number of offspring pro-
duced by an individual over the course of its life. Our mathematical
definition provides a generalization of the familiar formula for the net
reproductive value in a Leslie age-structured population model. It is
biologically intuitive that the exponential growth of a population is
possible if and only if n > 1 and that the population dies out exponen-
tially if and only if n < 1. These stability properties of the zero state
equilibrium are well known for Leslie matrices. For general structured
models it is not mathematically obvious, however, that these facts are
valid for general linear matrix models. The main result of this paper
(contained in Theorem 1 and Corollary 4) is that these facts are indeed
valid for a very general class of linear matrix models.

Under suitable assumptions on the projection matrix, a population
described by a linear matrix model will exponentially die out, expo-
nentially grow, or remain in equilibrium if the dominant eigenvalue >.
is less than, greater than, or equal to 1 respectively. Theorem 1 proves
that the same is true if the net reproductive value n is less than, greater
than, or equal to 1 respectively. Thus, the asymptotic dynamics of such
a population can be determined by a single quantity, either>. or n. All
parameters in a matrix model (of which there can be a large number)
contribute to the dynamics of the population in that they contribute to
the calculation of >.or n. Determining exactly how a model parameter
contributes to the calculation of>' and n can be a complicated algebraic
problem, however.

In general there is no algebraic formula for the dominant eigenvalue >.
in terms of the entries in the projection matrix (it is the dominant root
of a high degree characteristic polynomial). On the other hand, we have
shown above that it is often the case that an explicit formula relating
n to the entries of the projection matrix can be found. This not only
permits the convenient numerical calculation of the net reproductive
value n directly from numerical entries in the projection matrix, but
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it allows general parameter studies to be made on the effects that
individual entries have on n and hence the long term asymptotic
dynamics of the population. Without such explicit formulas, this is
more difficult to do for the dominant eigenvalue A. An example of the
importance of such studies can be found in the sensitivity analysis of
Caswell [1989]. This analysis relates changes in model parameters to
changes in the dominant eigenvalue A and uses the results to study
problems in adaptation and evolutionary demography. It would be
interesting to perform such investigations using n in place of the
dominant eigenvalue A. Indeed, given that the net reproductive value
n is a "fitness" measure of an individual it might be more meaningful
to use it in such studies rather than the total population growth rate
A (Caswell, personal communication).

We have shown that both A and n can be used to determine the
asymptotic dynamics of linear matrix models (and, in our examples, in
some nonlinear models as well). Moreover, we have pointed out some
of the advantages of using n for this purpose. It must be kept in mind,
however, that while both parameters can be used to determine asymp-
totic dynamics, they measure different properties of the population's
dynamics. In particular, the net reproductive value n does not measure
the growth rate of the total population. To determine this growth rate
the dominant eigenvalue A must be calculated. Although our analysis
resulted in some inequalities relating A and n, we have no formula that
directly relates these two quantities.

The net reproductive value has also been useful, as a bifurcation
parameter, in the study of general nonlinear matrix models (Cushing
[1988, 1993, 1994]). We saw something of this in the examples above,
and see the potential for its use in future studies.

ApPENDIX

LEMMA 5. Let A satisfy (7). If (TY)i = 2:,j=l PijYj, where Y is the
positive unit eigenvector of (1 - T)-l F corresponding to n, then

. (TY)i < 1m~n- ,
t Yi

max (TY)i < 1.
i Yi -
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PROOF. From
(I - T)-l Fy = ny

follows
1

Ty =y- -Fyn

and
(TY)i = 1 - .!.(FY)i

Yi n Yi

from which we get that

min (TY)i = 1 - max.!.(FY)i
i Yi i n Yi

max (TY)i = 1 - min .!.(FY)i .
i Yi i n Yi

Because F 2: 0, but F =1= 0, and because y > 0, we have that

1 (Fy).max - 1 > 0 and
i n Yi

1 (FY)i > 0min--
y . -i n 1

from which the desired inequalities follow. o

PROOF OF THEOREM 3. We begin with a proof of Theorem 3 when
both A and R == (1 - T)-l F are irreducible. Note that

(28)
A = (I - T)R + T,
R = (I - T)-l(A - T).

The positive unit eigenvalues and their eigenvectors satisfy

Av = .xv, Ry = ny

and the eigenvalues have the characterizations

\ . (AX)i. (AX)iA=max mm -=mm max-
x~O i,Xi#O Xi x ~O i, Xi#O Xi

. (RX )i. (RX )i
n=max mln - = mm max -

x~o i,Xi#O Xi x ~O i, Xi#O Xi
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where (Ax)i = ~j=laijXj, etc., (Gantmacher [1959]).
From (28) we have

Ay=ny+(l-n)Ty

Rv = AV+(A- 1)(1- T)-lTv

and hence

(AY)i = n + (1 - n) (TY)i
Yi Yi

(RV)i = A + (A - 1) ((I - T)-lTv)i.
Vi Vi

These equalities, together with the min-max and max-min characteri-
zations above, imply the inequalities

for A and

A 2:n + m~n(l - n) (TY)i, Yi

A ~ n + m~x(l - n) (TY)i, Yi

((I - T)-lTv ) .
n 2: A + m~n(A- 1) ,, Vi

((I - T)-lTv ) .
n~A+m~x(A-1) ,, Vi

for n. These inequalities imply the following facts:

(29)

(30)

n < 1 :::}n ~ A ~ n + (1 - n) m~x (TY)i, Yi

(Ty).
n> 1 :::}n + (1 - n) m~ --.: ~ A ~ n,, Yi

n=l :::}A=1.

In a similar fashion we get

(31)

(32)

A < 1 :::}n ~ A + (A - 1) min ((I - T)-lTv)i
i Vi

A> I:::} A + (A - 1)min ((I - T)-lTv)ii V' ~ n
A=l:::}n=l '



MATRIX POPULATION MODELS 329

First, it is clear from these facts that n = 1 if and only if .x = 1.

Suppose that n > 1. Then.x =1= 1. From (30) and Lemma 5 follows
.x 2: 1 and hence .x > 1. Conversely,suppose that .x> 1. Then n =1= 1.
From (32) follows n 2: 1 and hence n > 1. This shows that n > 1 if
and only if .x > 1.

From (29), (31), and Lemma 5 it follows immediately that n < 1 if
and only if .x < 1.

The general case when not both A and R are irreducible can be proved
using the fact that an arbitrary nonnegative matrix is always the limit
of a sequence of irreducible, positive matrices (Gantmacher [1959]) and
Lemma 6 below. These details will be omitted. 0

LEMMA 6. If C 2: 0 is a nonnegative matrix and r 2: 0 is a
nonnegative dominant eigenvalue, then

. (CX)i . (CX)ir=max mm -=mmmax-
x~O i,Xi;CO Xi x~O i,Xi;CO Xi

PROOF. For k = 1,2,3,... define the matrices Ok) = (c~;)) where

Ck)-
{

Cij if Cij > 0
Cij - 1 }

'
f C" - 0k 'J - .

It is obvious that limk-+ooCCk)= C.

Since CCk) > 0 is strictly positive it follows that it is reducible and
hence from Frobenius' theorem it has a strictly dominant, positive,
simple eigenvalue rk > 0 which is associated with a positive unit

eigenvector yCk) = (w~k)). Moreover, rk can be characterized in two
ways as follows (Gantmacher [1959, p. 65]):

(CCk)x) .
rk = max min '

x ~O i, Xi;CO Xi
(33)

and

(34)
(CCk)x).

rk = min max ' .
x ~Oi, Xi;CO Xi
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Let u 2: 0 be the nonnegative unit eigenvector associated with the
dominant eigenvalue r of the matrix C. From Cu = ru follows

(CU)i
r=~ for all i for which Ui 1: 0

and

(35) r= min
i,Wi#O

(CU)i =
Ui

(CU)imax-
i,Wi#O Ui

which in turns implies that

. (CX )i
r<max mm-.

- x2:Oi,Xi;CO Xi
(36)

Suppose now, for the purpose of contradiction, that

(37)
. (CX)ir < max mm -.

x2:0 i,Xi#O Xi

Then there would exist a xO2: 0, such that

. (CXO )ir < mm -.
i,x?#O x?

Define

Since limk-tCXJCCk) = C and limk-tCXJrk = r, there exists an integer
Ko > 0 such that

I

. (CXO)i . (CCk)xO)i

I

e
mm--mm <-

i,x?#O x? i,x?#O x? 4

and
c

Ir - rkl < -4
for k > Ko. From these inequalities follow,for k > Ko,

. (C(k)xO)i . (CXO)i Cmm >mm---
i,x?#O x? i,x?#O x? 4

C
rk < r + -

4
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and hence

or

This final inequality contradicts (33) and thus implies that the strict
inequality (37) cannot be true. From (36) we obtain the desired first
equality of the Lemma. The second equality can be proved in a similar
fashion by using (34) and (35). 0

COROLLARY 7. Let A satisfy (7). Then

n<l =>n:::;A:::;l
n > 1 =>1 :::;A :::;n.

As a final note we would point out that the irreducibility of the matrix
A does not in general imply the irreducibility of the matrix R. This
can be seen from a simple two-dimensional example. Let

F = (Ill 0 )121 0 '
T = (Pll P12 )P21 P22

with III > 0, 121 > 0, and Pij > O.Then

A = (Ill + Pll P12)121 + P21 P22

is irreducible, but

R - 1 ((1 - P22)/ll + P12/21 0)- (1 - Pll)(l - P22) - P12P21 P21/11+ (1 - Pll)!21 0

is reducible.
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