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Abstract. As exemplified by classic Lotka–Volterra theory, there
are several canonical outcomes possible to a two species (interference)
competitive interaction: coexistence, initial condition-dependent competitive
exclusion of one species, or the global exclusion of one species. Evolutionary
versions of Lotka–Volterra dynamics have been investigated in order to see
the role that evolutionary adaptation can play in influencing the competitive
outcome. For the most part, however, these investigations have been car-
ried out by numerical simulations. In this paper, we provide some rigorous
mathematical criteria concerning the outcome of a competition between two
species x1 and x2 when evolution is taken into account. Motivated by two
classic experiments in which the outcome of two competing beetle species
was observed to change due to phenotypic or genetic changes in one species,
we consider the case when only the species x2 can evolutionarily adapt. Us-
ing methods from persistence theory, we obtain criteria under which x2 will
persist and criteria under which x1 will persist.
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1. Introduction. The (discrete-time) Leslie–Gower model for two competing
species

x1(t + 1) = x1(t)
er

1 + c11x1 + c12x2
(1a)

x2(t + 1) = x2(t)
er

1 + c21x1 + c22x2
(1b)
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with r > 0, cij ≥ 0, and cii > 0 has the same (global) asymptotic dynamic alterna-
tives as the classic (continuous time) Lotka–Volterra competition model. Namely,
the (open) positive cone R

+
2 of the (x1 , x2)-plane is forward invariant and all

solutions (x1(t), x2(t)) in R
+
2 satisfy one of the following alternatives (Smith [1998];

Cushing et al. [2004]; Kulenović and Merino [2006]).

(I) limt→+∞(x1(t), x2(t)) = (K1 , 0) or (0,K2) except for the stable manifold of
the saddle equilibrium (x̄1 , x̄2) ∈ R+

2 ;
(II) limt→+∞(x1(t), x2(t)) = (K1 , 0) where K1 = (er − 1)/c11 ;

(III) limt→+∞(x1(t), x2(t)) = (x̄1 , x̄2) ∈ R+
2 , a stable equilibrium;

(IV) limt→+∞(x1(t), x2(t)) = (0,K2) where K2 = (er − 1)/c22 .

Alternatives II and IV imply global competitive exclusion in the sense that one
or the other species survives while the other goes extinct. The same is true (generi-
cally) of alternative I except that which species is competitively eliminated is initial
condition dependent. Alternative III implies competitive coexistence. Which com-
petitive outcome occurs depends on the coefficients cij . Specifically, conditions for
each alternative to occur are

(I) c12 − c22 > 0, c21 − c11 > 0;
(II) c12 − c22 < 0, c21 − c11 > 0;

(III) c12 − c22 < 0, c21 − c11 < 0;
(IV) c12 − c22 > 0, c21 − c11 < 0.

These alternatives can be conveniently summarized by the location of the point
P with coordinates (c12 − c22 , c21 − c11) in the Cartesian plane R

2 shown in
Figure 1. We refer to this plane as the competitive outcome plane. If the com-
petitive coefficients cij are fixed in time, then one can determine the competitive
outcome predicted by (1) from the quadrant in which P lies. If the coefficients are
altered, then the competitive outcome will be altered according to the new location
of the point P in the competitive outcome plane. In this way, one can determine if a
change in competitive outcome might occur because of changes in the competitive
coefficients cij and hence the location of P .

There are many reasons why the coefficients cij might change (stochasticity, sea-
sonal periodicity, environmental perturbations, etc.). One way is through evolu-
tionary adaptations due to Darwinian principles. This latter case was considered in
Rael et al. [2011] by means of an evolutionary game theoretic version of (1). That
study was motivated by the results of two exceptional experiments, both of histor-
ical importance with regard to the development of competition theory, conducted
with species of the insects Tribolium (flour beetles). In those experiments, expected
competitive outcomes (based on extensive past experiments) changed in cultures
in which genetically controlled behavioral changes were also noted. In one of these
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FIGURE 1. The outcomes of the Leslie–Gower competition model (1) are determined by the
location of the point P in this competitive outcome plane, as seen represented by phase plane
portraits.

experiments, the change in competitive outcome corresponded to a move of the
point P from quadrant II to IV (a competitive reversal) (Dawson [1967, 1969]). In
the other experiments, the change in competitive outcome corresponded to a move
from quadrant I to IV (from exclusion to coexistence) (Park et al. [1964]; Leslie
et al. [1968]). While some equilibrium and local stability analysis was performed in
Rael et al. [2011], most of the study was based on extensive numerical simulations
of the evolutionary model.

In this paper, we consider the same evolutionary version of the model (1) studied
in Rael et al. [2011] and give rigorous mathematical proofs of some of the obser-
vations and conclusions made in that paper. We focus solely on the first of the
experimental backdrops studied in Rael et al. [2011], namely the case when only
one of the two species, namely, x2 is subject to evolutionary adaptations. We will
study two scenarios. In the first scenario, we establish conditions under which x2
will no longer go extinct if it is allowed to evolutionarily adapt (Theorems 1 and
2). In the second scenario, we shift our attention to species x1 and establish condi-
tions under which it will not be forced to extinction by an evolutionarily adapting
competitor x2 (Theorem 3). Formal proofs of the theorems appear in the Appendix.

2. A Leslie–Gower evolutionary competition model. For i = 1, 2, we let
xi denote the density of species i and ui denote the mean of the phenotypic traits
of species i. Here ui ∈ R, the set of evolutionarily feasible traits. Let σ2

i denote
the variance in traits present in species xi about the mean trait ui (Vincent and
Brown [2005]). We consider the following evolutionary game theoretic version of the
Leslie–Gower competition model (1) studied in Rael et al. [2011] (also see Vincent
and Brown [2005]):

x1(t + 1) = x1(t) G(v, u1(t), u2(t), x1(t), x2(t))|v=u1 (t)(2a)
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x2(t + 1) = x2(t) G(v, u1(t), u2(t), x1(t), x2(t))|v=u2 (t)(2b)

u1(t + 1) = u1(t) + σ2
1

∂ ln G(v, u1(t), u2(t), x1(t), x2(t))
∂v

∣∣∣∣
v=u1 (t)

(2c)

u2(t + 1) = u2(t) + σ2
2

∂ ln G(v, u1(t), u2(t), x1(t), x2(t))
∂v

∣∣∣∣
v=u2 (t)

(2d)

where

G(v, u1 , u2 , x1 , x2) :=
er

1 + c(v, u1)x1 + c(v, u2)x2
(3)

is the fitness-generating function (see Vincent and Brown [2005]; Rael et al. [2011]).
Here we let

c(v, uj ) = (er − 1)
α(v − uj )

K(v)
(4)

with

α(v − uj ) = exp
(
− (v − uj )2

2σ2
α

)
(5a)

K(v) = Km exp
(
− v2

2σ2
K

)
.(5b)

Note that α(ui, ui) = 1 and hence K(ui) is the equilibrium level of species i in the
absence of species j, and α(ui, uj ) measures the competitive effects that individuals
of species j �= i using strategy uj have on the fitness of individuals of species i using
strategy ui (for more details on the interpretation of these parameters, we refer the
reader to Rael et al. [2011]). Clearly, since ui(t) may vary with t, the competition
coefficients c(ui(t), uj (t)) may also vary with t.

Observe that R
2
+ × R

2 is invariant under the map (2a). We are interested in
the possibility that the outcome of the competitive interaction will change due to
evolutionary adaptation. Geometrically, does the evolutionary path of the (time-
dependent) point

P (t) = (c(u1(t), u2(t)) − c(u2(t), u2(t)), c(u2(t), u1(t)) − c(u1(t), u1(t)))
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move from its initial location

P (0) = (c(u1(0), u2(0)) − c(u2(0), u2(0)), c(u2(0), u1(0)) − c(u1(0), u1(0)))

in the competitive outcome plane to a different quadrant? In this paper, we will
consider only the case when one species evolutionarily adapts, which we choose
without loss in generality to be species x2 . Thus, we assume

σ2
1 = 0.(6)

Under the assumption (6), the mean trait

u1(t) ≡ u1 ∈ R for all t.

In this case the equations (2) reduce to the three-dimensional system

x1(t + 1) = x1(t)G(u1 , u1 , u2 (t) , x1 (t) , x2 (t))(7a)

x2(t + 1) = x2(t) G(v, u1 , u2 (t) , x1 (t) , x2 (t))|v=u2 (t)(7b)

u2(t + 1) = u2(t) + σ2
2

∂ ln G(v, u1 , u2 (t) , x1 (t) , x2 (t))
∂v

∣∣∣∣
v=u2 (t)

(7c)

for the triple (x1(t), x2(t), u2(t)) of dynamic state variables.

We will address two questions in this paper. First, under what conditions will
x2 persist? Of particular interest, in this case, is the scenario in which x2 would
be competitively eliminated by x1 in the absence of evolutionary adaptation. We
will establish criteria under which x2 will not go extinct when able to adapt. A
second question concerns the fate of x1 . When will it persist when confronted by
an adaptive species x2?

Our first theorem takes up the first question and provides conditions sufficient
for x2 to avoid extinction. (Proofs of all theorems appear in the Appendix.)

Theorem 1. Assume σ2
α > σ2

K . If either

(i) σ2
2 ≤ 2

σ2
ασ2

K

σ2
α − σ2

K
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or

(ii) σ2
2 > 2

σ2
ασ2

K

σ2
α − σ2

K

er

er − 1

then

lim inf
t→+∞ x2(t) > 0

for every forward bounded solution (x1(t), x2(t), u2(t)) of (7) with initial conditions
(x1(0), x2(0), u2(0)) satisfying x1(0) ≥ 0 and x2(0) > 0.

In Theorem 1 the sustainable level of species x2(t), that is, lim inf t→∞ x2(t), will
in general depend on the initial condition of the solution and, in particular, on the
initial mean trait u2(0) of the species. A stronger assertion is that there is a uniform
lower bound for x2(t) valid for all initial conditions. Our next theorem does this by
providing conditions sufficient for uniform persistence.

Theorem 2. Assume σ2
α > σ2

K and σ2
2 < 2σ2

K . There exists a compact set
that attracts all solutions (x1(t), x2(t), u2(t)) of (7) with initial conditions
(x1(0), x2(0), u2(0)) satisfying x1(0) ≥ 0 and x2(0) ≥ 0. Furthermore, there exists
an ε > 0 such that

lim inf
t→∞ x2(t) > ε

for every solution (x1(t), x2(t), u2(t)) of (7) with initial conditions (x1(0),
x2(0), u2(0)) satisfying x1(0) ≥ 0 and x2(0) > 0.

The following theorem takes up the second question above: under what conditions
can x1 avoid being competitively excluded by an evolutionary adaptive species x2?

Theorem 3. Assume σ2
α < σ2

K , and σ2
2 < 2σ2

K . Then lim inf t→∞ x1(t) > 0 for ev-
ery bounded solution (x1(t), x2(t), u2(t)) of (7) with x1(0) > 0.

Theorems 1 and 2 concerning the persistence of x2 both require σ2
α > σ2

K . This
means the effects of intraspecies competition, as measured by K(v), are narrowly
distributed with respect to the trait v (in comparison with distribution of interspe-
cific competition effects) around the species means. In this sense the criteria given
in Theorems 1 and 2, sufficient to guarantee an evolutionary reversal for species x2
from competitive exclusion to survival, require a sufficient amount of interspecific
competition between x2 and x1 (in comparison to intraspecific competition). In
addition to this requirement, Theorems 1(i) and 2 concerning the persistence of x2
require the speed of evolution σ2

2 be sufficiently slow. This is in contrast to Theorem
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1(ii), which requires that the speed of evolution be sufficiently fast. We conjecture
that Theorem 1 remains valid when both constraints (i) and (ii) on the speed of
evolution are dropped, although we were unable to prove this.

Theorem 3 makes the opposite assumption concerning competition between the
species. The inequality σ2

α < σ2
K means that the effects of intraspecific competi-

tion are more broadly trait distributed throughout the species than the effects of
interspecific competition. Under this assumption, together with the speed of evo-
lution being not too fast, Theorem 3 implies species x1 will not be competitively
eliminated by the evolving species x2 .

3. Concluding remarks. Theorems 1, 2, and 3 provide criteria under which
one of species modeled by the evolutionary game theoretic version of the classic
Leslie–Gower (discrete Lotka–Volterra) competition model asymptotically persists
under the assumption that only one species is subject to evolutionary adaptation.
These theorems provide mathematically rigorous justification for some of the re-
sults obtained in Rael et al. [2011] through numerical simulations. Although that
study also included investigations in which both species were subject to evolutionary
adaptation, in one of the two motivating experimental outcomes, in which compet-
itive outcomes were reversed by an adaptive event, only one species underwent a
genetic change (Dawson [1969]). Our results here address that case, but one might
conjecture that they remain valid if the other species (in this case x1) were subject
to a relatively slow rate of evolution (i.e., for σ2

1 � 0). It would be of interest to
obtain persistence results when both species are subject to evolution.

Another open problem is to obtain criteria for the persistence of both species. All
our theorems deal with the persistence of only one of the two species. Moreover,
when combined, the criteria are exclusive and hence the set of theorems combined
do not provide criteria for the persistence of both species. New theorems that give
criteria for the evolution to coexistence and ecological diversity would be of interest.
Other changes in the competitive outcome, not considered here, are also possible
(as represented by evolutionary paths of the point P between different quadrants
in the outcome plane in Figure 1). These also provide open questions concerning
the evolutionary model (2).

Finally, we point out that evolutionary suicide, an evolutionary process where a
viable species adapts in such a way that it can no longer persist, has been extensively
studied in the literature (e.g., Matsuda and Abrams [1994a], Matsuda and Abrams
[1994b]; Gyllenberg and Parvinen [2001]; Parvinen et al. [2007]). In Gyllenberg
et al. [2002], the authors showed that evolutionary suicide is possible in a structured
metapopulation model. This motivated the question of whether it is necessary to
have a structured model to observe suicide. In Gyllenberg and Parvinen [2001],
they showed that this is not the case and that in an asymmetric competition model
with an Allee effect, suicide can indeed occur. Furthermore, a structured model



ON THE DYNAMICS OF EVOLUTIONARY 387

does not guarantee the possibility of evolutionary suicide as they also proved in
that paper that in age-structured models of Gurtin–MacCamy type suicide cannot
occur. Our results in Theorems 1 and 2 supplement these investigations as they
provide conditions that guarantee that no evolutionary suicide can occur for the
adapting species x2 in the model (7).

Acknowledgments. A. S. Ackleh was partially supported by NSF grant DMS-
1312963, J. M. Cushing was partially supported by NSF grant DMS-0917435 and
P.L. Salceanu was partially supported by the Louisiana Board of Regents grant
LEQSF(2012-15)-RD-A-29.

Appendix A: Preliminaries

In this section, we provide some preliminaries needed to prove the theorems. To
understand when lim inf t→∞ x2(t) > 0, as it is customary in persistence theory we
need to understand the boundary dynamics (i.e., the dynamics on the invariant set
where one species is not present). In particular, to understand if x2 persists we need
to set x2 = 0 and study the boundary dynamics of the invariant set {(x1 , x2 , u1 , u2) |
x2 = 0} ) on which species x2 is absent. The mathematical effect of (6) is to make
feasible the analysis of these boundary dynamics.

To this end, by letting x2(t) = 0 for all t ≥ 0 in (7) we obtain the following system:

x1(t + 1) = x1(t)
er

1 + c(u1 , u1)x1(t)
(A1a)

u2(t + 1) = u2(t) − σ2
2

cv (u2(t), u1)x1(t)
1 + c(u2(t), u1)x1(t)

,(A1b)

where cv (v, u) denotes the partial derivative of c(v, u) with respect to v. From these
equations it is clear that

lim
t→+∞x1(t) = K1 :=

er − 1
c(u1 , u1)

.

To understand the boundary dynamics and to prove persistence of x2 , it is useful to
first understand the behavior (A1a) on the invariant set {(x1 , u2)|x1 = K1}. Note
that on this invariant set the component u2 of any solution of (A1a) satisfies

u2(t + 1) = u2(t) − σ2
2

cv (u2(t), u1)K1

1 + c(u2(t), u1)K1
.(A2)
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Let

β(u) :=
1
2

(
u2

σ2
K

− (u − u1)2

σ2
α

)
.

Let ′ denote differentiation with respect to u. Since cv ( u2 , u1) = β′(u2)eβ (u2 ) , the
unique equilibrium point of (A2) is

ū = −u1
σ2

K

σ2
α − σ2

K

.(A3)

Let

cm :=
Km

er − 1

and denote the map given by the right-hand side in (A2) by g(u) . With this
notation, we have

g(u) := u − σ2
2K1

β′(u)
cm e−β (u) + K1

.(A4)

First, we perform analysis to understand the dynamics of equation (A2). To this
end define

σ :=
1

σ2
K

− 1
σ2

α

.

For the rest of this section we assume that σ > 0.

Note that

g′(u) = 1 − σ2
2K1

(
σ

cm e−β (u) + K1
+ cm

(β′ (u))2 e−β (u)

(cm e−β (u) + K1)2

)
,(A5)

g′′(u) = −σ2
2K1cm e−β (u)β′(u)
(cm e−β (u) + K1)2

(
3σ + (β′ (u))2 cm e−β (u) − K1

cm e−β (u) + K1

)
.(A6)

Let

p(u) :=
cm e−β (u) − K1

cm e−β (u) + K1
.
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A calculation shows

d

du
[(β′ (u))2

p(u)] = β′(u)
(

2σp(u) − (β′ (u))2 2K1cm e−β (u)

(cm e−β (u) + K1)2

)
.(A7)

Note that

(i) (β′(u))2p(ū) = 0 and limu→±∞(β′(u))2p(u) = −∞.
(ii) If (β′(u))2p(u) < 0 and u < ū then from (A7) it follows that d

du ((β′(u))2p(u)) >
0. Thus, for u < ū and as long as (β′(u))2p(u) < 0, then (β′(u))2p(u) is increas-
ing.

(iii) If (β′(u))2p(u) < 0 and u > ū then from (A7) it follows that d
du ((β′(u))2p(u)) <

0. Thus, for u > ū and as long as (β′(u))2p(u) < 0, then (β′(u))2p(u) is decreas-
ing.

From (i) and (ii) it follows that there exists a ξ ≤ ū such that (β′(ξ))2p(ξ) = 0
and (β′(u))2p(u) < 0 for u ∈ (−∞, ξ). Similarly, from (i) and (iii) it follows that
there exists a η ≥ ū such that (β′(η))2p(η) = 0 and (β′(u))2p(u) < 0 for u ∈ (η,∞).
If ξ < ū then it is easily argued that (β′(u))2p(u) ≥ 0 on (ξ, ū). Similarly, if η > ū
then it is easily seen that (β′(u))2p(u) ≥ 0 on (ū, η). Thus, considering (A6), it is
clear that solving g′′(u) = 0 is equivalent to solving

β′(u) = 0 or (β′ (u))2
p(u) = −3σ.(A8)

The first equation has a unique solution at u = ū and from the above discussion, we
see there exist two values v and w, v < ū < w such that the second equation in (A8)
holds. Therefore, g′′(v) = g′′(w) = g′′(ū) = 0 and g is concave down in (−∞, v) ∪
(ū, w), and concave up in (v, ū) ∪ (w,∞).

We will need the following lemma. It eliminates the possibility that (A2) has
periodic solutions, under certain conditions. Note that

σ−1 =
σ2

ασ2
K

σ2
α − σ2

K

and σ > 0 is equivalent to σ2
α > σ2

K (cf. with conditions (i) and (ii) of Theorem 1
in Section 2).

Lemma A1. Assume σ > 0. If σ2
2 ≤ 2σ−1 , or if σ2

2 > 2σ−1 and

u2
1 ≤ 2

σ2
α

ln
[
(er − 1)

(
σ2

2σ

2
− 1
)]

σ2
K (σ2

α − σ2
K ),(A9)
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then equation (A2) does not have nontrivial period-two solutions. On the other
hand, if σ2

2 > 2σ−1 and

u2
1 >

2
σ2

α

ln
[
(er − 1)

(
σ2

2σ

2
− 1
)]

σ2
K (σ2

α − σ2
K ),(A10)

then equation (A2) has a unique nontrivial period-two solution and, consequently,
(7) has a unique nontrivial period-two solution in {(x1 , x2 , u2) | x2 = 0} whose sta-
ble manifold is also contained in this set.

Proof. Suppose (A2) has a period-two solution. Then there exists û ∈ R such
that g(g(û)) = û. Straightforward calculation shows that β′(2ū − u) = −β′(u), and
β(2ū − u) = β(u). Then, using (A3) and (A4), we rewrite g(g(û)) = û equivalently
as

β′(g(û))
cm e−β (g(û)) + K1

= − β′(û)
cm e−β (û) + K1

,

or

β′(g(û))
cm e−β (g(û)) + K1

=
β′(2ū − û)

cm e−β (2ū−û) + K1
.

The function β′(u)/(cm e−β (u) + K1) is increasing in u. Hence, this equation is equiv-
alent to g(û) = 2ū − û, that is,

e−β (û)(û − ū) =
K1

cm

(
σ2

2σ

2
− 1
)

(û − ū).(A11)

In order for this equation to have a solution û �= ū, it must be true that σ2
2 > 2σ−1 .

Thus, if σ2
2 ≤ 2σ−1 , then this equation does not have any solutions û, which means

that (A2) does not have nontrivial period-two solutions.

Now assume σ2
2 > 2σ−1 . Then (A11) has a real solution û �= ū if and only if

β(û) = − ln
K1

cm

(
σ2

2σ

2
− 1
)

.(A12)

Since β(u) attains its minimum at u = ū, (A12) has solutions different from ū if
and only if

β(ū) < − ln
K1

cm

(
σ2

2σ

2
− 1
)

.(A13)
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Using (A3), one can show that this inequality is equivalent to the inequality (A10).
Thus, if (A9) holds, then (A12) has no solutions, which means that (A2) has no
nontrivial period-two solutions. On the other hand, if (A10) holds, then (A12) has
exactly two solutions, which means that (A2) has exactly one nontrivial period-
two solution. Denote this solution by {v̄, w̄}. Hence γ := {(K1 , 0, v̄), (K1 , 0, w̄)} is
a nontrivial, period-two solution of (7). This implies

er

1 + c(v̄, u1)K1

er

1 + c(w̄, u1)K1
> 1.(A14)

There exists a neighborhood V of γ such that (x1(t), x2(t), u2(t)) ∈ V and x2(t) >
0 imply x2(t + 1) > x2(t). This shows that no solution (x1(t), x2(t), u2(t)) with
x2(0) > 0 converges to γ, which concludes the proof.

Appendix B: Proof of Theorem 1

Let (x1(t), x2(t), u2(t)) denote a forward bounded solution of (7) with x1(0) ≥ 0
and x2(0) > 0. Let ω denote its forward limit set, which is a compact. Our goal is
to prove that ω contains no point of the form (x1 , 0, u2).

For purposes of contradiction, assume there is a point (x1 , 0, u2) ∈ ω. Consider
the solution (x1(t), 0, u2(t)) of (7) with initial condition (x1 , 0, u2). Then x1(t) and
u2(t) satisfy (A1a)-(A1b) and

lim inf
t→+∞x1 (t) =

{
0 if x1 = 0

K1 if x1 > 0 .

Thus, either (0, 0, u2) or (K1 , 0, u2) lie in ω. We complete the proof in two steps by
showing:

Step (1). ω contains no point of the form (0, 0, u2).
Step (2). ω contains no point of the form (K1 , 0, u2).

Step (1). We write the system formed by the two equations (7a) and (7b) in the
form

(
x1(t + 1)
x2(t + 1)

)
= A(t, x1(t), x2(t))

(
x1(t)
x2(t)

)
,(B1)

where

A(t, x1(t), x2(t)) :=(
G(u1 , u1 , u2 (t) , x1 (t) , x2 (t)) 0

0 G(v, u1 , u2 (t) , x1 (t) , x2 (t))|v=u2 (t)

)
.



392 A. S. ACKLEH, J. M. CUSHING, AND P. L. SALCEANU

Note that A(t, 0, 0) = er I where I denotes the 2 × 2 identity matrix. Since u2(t)
is bounded, there exist ξ > 1 and δ > 0 such that for all (x1 , x2) satisfying 0 <
x1 + x2 < δ we have |A(t, x1 , x2)η| > ξ where η is a nonnegative unit vector. Note
that

0 ≤ xi(t + 1) ≤ xi(t)
er

1 + c(0, 0)xi(t)
, i = 1, 2.

Thus, xi(t) → [0,Km ], i = 1, 2 and there exists ε ∈ (0, δ) such that

ε < min{|A(t, x1 , x2)(x1 , x2)T | | t ≥ 0 and δ ≤ x1 + x2 ≤ 2Km}.

This proves that

lim inf
t→∞ (x1(t) + x2(t)) ≥ ε

and hence (0, 0, u2) �∈ ω.

Step (2). Suppose, for purposes of contradiction, that there exists a u2 such that

(K1 , 0, u2) ∈ ω.(B2)

A calculation shows that

er

1 + c(ū, u1)K1
> 1.(B3)

Then there exists a neighborhood V of (K1 , 0, ū) such that (x1(t), x2(t), u2(t)) ∈
V and x2(t) > 0 implies x2(t + 1) > x2(t). This shows that no solution
(x1(t), x2(t), u2(t)) with x1(0) ≥ 0 and x2(0) > 0 can converge to (K1 , 0, ū). Then,
by the Butler–McGehee theorem (see Smith and Thieme [2011]), we know that
there exists a point

x = (x1 , 0, u2) ∈ ω, (x1 , 0, u2) �= (K1 , 0, ū) , x1 > 0 (by Step 1).(B4)

(a) Suppose x1 �= K1 in (B4). Let ϕ(t) := (ϕ1(t), ϕ2(t), ϕ3(t)) be a total trajectory
through (x1 , 0, u2) ∈ ω which therefore lies in ω for t ∈ Z. Then ϕ1(t) satisfies
(A1a) for all t ∈ Z. Since this equation is of Beverton–Holt type and ϕ(t) is
either increasing or decreasing in t ∈ Z, we have that ϕ1(t) → 0 or ϕ1(t) → ∞
as t → −∞. Both cases lead to a contradiction. In particular, ϕ1(t) → 0, as
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t → −∞ contradicts the fact that no point of the form (0, 0, u2) can be in ω
and ϕ1(t) → ∞ as t → −∞ contradicts the fact that ω is compact.

(b) Now suppose x1 = K1 , that is, that x = (K1 , 0, u2). Then, for the solution
(x1(t), x2(t), u2(t)) of (7) with initial condition x = (K1 , 0, u2), it follows that
x1(t) = K1 for all t ≥ 0 and u2(t) satisfies (A2).

Case 1. If σ2
2 < σ−1 then limu→−∞ g(u) = −∞ and limu→∞ g(u) = ∞. In this case,

either

(i) g is increasing on one of the two intervals (−∞, v) or (w,∞),
(ii) or there exist c < v < a < ū and d > w > b > ū such that g is increasing on

(−∞, c) ∪ (a, b) ∪ (d,∞) and decreasing on (c, a) ∪ (b, d).

Consider the first alternative (i). In this case, g(u) is increasing on R. Let ϕ(t) =
(ϕ1(t), ϕ2(t), ϕ3(t)) be a total trajectory of (7) through (K1 , 0, u2) This trajectory
exists and lies in ω (Theorem 1.40, p. 20, in Smith and Thieme [2011]). But since
g(u) is increasing on R it follows |φ3(t)| → ∞ as t → −∞, which is a contradiction
to the compactness of ω. This rules out alternative (i).

Consider alternative (ii). Let I denote the basin of attraction of ū for (A2). Clearly
[a, b] ⊆ I. We claim that I = R.

First note that, if g−1(b) ∩ (c, a) = ∅, then g(u) ≤ b for all u ∈ (−∞, ū) and so,
from (A4), we obtain I = R. An analogous argument that I = R holds if g−1(a) ∩
(b, d) = ∅. Finally, suppose that g−1(b) ∩ (c, a) �= ∅ and g−1(a) ∩ (b, d) �= ∅. Then
there exists ū1 ∈ (c, a) such that g(ū1) = b and v̄1 ∈ (b, d) such that g(v̄1) = a. Then
[ũ1 , ṽ1 ] ⊆ I. By repeating the reasoning above with a and b replaced respectively
by ũ1 and ṽ1 , we obtain a decreasing sequence (ũn )n≥1 ⊂ (c, a) and an increasing
sequence (ṽn )n≥1 ⊂ (b, d), such that [ũn , ṽn ] ⊂ I and g(ũn+1) = ṽn , g(ṽn+1) = ũn

for all n ≥ 1. Let û and v̂ be the limits of (ũn )n and (ṽn )n , respectively. Then, since
g is continuous, we have g(û) = v̂ and g(v̂) = û, which means that {û, v̂} are the
two points of a period-two solution of (A2), whose existence is in contradiction to
Lemma A1. Thus, the claim that we made earlier holds.

Let Z be the closure of the orbit considered at the beginning of the proof (hence Z
is positively invariant), X = {(x1 , x2 , u2) | x2 = 0} , and M = Z ∩ X. From Step (1)
and (a) above, M can only contain points of the form (K1 , 0, u2). Also, according to
(B2), M �= ∅. Hence all solutions starting in M converge to (K1 , 0, ū). Then, using
(B3) and applying Corollary 1 in Salceanu and Smith [2009], we have that M is a
uniformly weak repeller (see definition in Salceanu and Smith [2009]). In particular,
we have that there exists ε > 0 such that

lim sup
t→∞

x2(t) > ε,(B5)
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for every solution (x1(t), x2(t), u2(t)) of system (7) that is contained in Z and has
x2(0) > 0. Then, since Z is a compact set, by applying Theorem 5.2 in Smith and
Thieme [2011], we see that (B5) holds with “lim sup” replaced by “lim inf.” But
this contradicts (B2).

Case 2: If σ2
2 > σ−1 , then limu→−∞ g(u) = ∞ and limu→∞ g(u) = −∞. Thus, we

have two possibilities: (10) either g is decreasing on R, or (20) there exist two
numbers a ∈ (v, ū) and b ∈ (ū, w) such that g is decreasing in (−∞, a) ∪ (b,∞) and
increasing in (a, b). Then, when either

(i) σ2
2 ≤ 2σ−1 or

(ii) σ2
2 > 2σ−1er/(er − 1) (which is equivalent to (er − 1)(σ2

2σ/2 − 1) > 1) and
(A9) holds

we conclude from Lemma A1 and the fact that u > ū ⇐⇒ g(u) < u (see (A4))
that a total trajectory through x would become unbounded. This would contradict
that ω is compact and invariant.

If σ2
2 > 2σ−1er/(er − 1) and (A10) holds, then the stable manifold of the

unique, non-trivial periodic solution γ of (7) is contained in the set {(x1 , x2 , u2) |
x2 = 0} and so again, by applying the Butler–McGehee theorem, ω contains
a point (K1 , 0, û2) on the stable manifold of γ with û2 �∈ {v̄, w̄}. Let ϕ(t) =
(ϕ1(t), ϕ2(t), ϕ3(t)) be a total trajectory through (K1 , 0, û2). First suppose g is
decreasing on R. If ϕ3(t) → ±∞ as t → −∞ we have a contradiction to the
fact that ω is compact and invariant. Otherwise, let l1 = limt→−∞ φ3(t) and
l2 = limt→∞ φ3(t). Then {l1 , l2} is a periodic solution of (A2), different from
γ = {(K1 , 0, v̄), (K1 , 0, w̄)}, again a contradiction to Lemma A1. Next, suppose
g is decreasing in (−∞, a) ∪ (b,∞) and increasing in (a, b). Then v̄ ∈ (−∞, a),
w̄ ∈ (b,∞) and solutions of (A2) with initial condition in (v̄, w̄) converges to ū.

Hence û2 �∈ [v̄, w̄]. Then, as above, it follows that either a total trajectory through
(K1 , 0, û2) becomes unbounded or there is a nontrivial period-two solution of (A2)
different from {ū, v̄}, both resulting in contradictions.

Case 3: If σ2
2 = σ−1 we have a similar situation to Case 2, with the only difference

being that now limu→±∞ g(u) = −σ2
2u1/σ2

α .

Appendix C: Proof of Theorem 2

First, we establish the existence of a compact attracting (or absorbing) set. To this
end note that, from the proof of Theorem 1, xi(t) is attracted to [0,Km ], i = 1, 2.
Thus, it is left to show that u2 is also attracted to a compact interval. To this end,
we first claim that

∣∣∣∣u2(t + 1)
u2 (t)

∣∣∣∣ < 1 if |u2(t)| is sufficiently large.
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Note that

u2(t + 1)
u2(t)

(C1)

= 1 − σ2
2

(σ + u1
σ2

α u2 (t)
)c(u2(t), u1)x1(t) + 1

σ2
K

c(u2(t), u2(t))x2(t)

1 + c(u2(t), u1)x1(t) + c(u2(t), u2(t))x2(t)
.

Define

a := σ +
u1

σ2
αu2

, 0 < b :=
1

σ2
K

, 0 ≤ x := c(u2 , u1)x1 , 0 ≤ y := c(u2 , u2)x2 ,

and note that

a =
1

σ2
K

− 1
σ2

α

(1 − u1

u2
) > 0 and a < b if |u2 | > u∗ :=

1
σσ2

α

|u1 |.

It is then straightforward to prove that |u2 | > u∗ implies

ax + by

1 + x + y
≤ b <

2
σ2

2

which, using (C1) implies the claim.

Since the function, given by the right-hand side of the equation for u2 in (7) is
continuous on the set

{(x1 , x2 , u2) | 0 ≤ x1 , x2 ≤ Km and − u∗ ≤ u2 ≤ u∗},
it has a minimum m1 and a maximum m2 on this set. Let M̂ := max{|m1 |, |m2 |, u∗}.
Then, clearly, u2(t0) ∈ [−u∗, u∗] implies u2(t) ∈ [−M̂, M̂ ] for all t ≥ t0 . Otherwise,
assume u2(t) �∈ [−u∗, u∗] for any t ≥ 0. Then, since |u2(t)| is decreasing, we have
that |u2(t)| → l ≥ 0 as t → ∞. Suppose l > u∗ for such a solution of (7) starting at
y0 = (x0

1 , x
0
2 , u

0
2). Then ω(y0) ⊆ {(x1 , x2 , u2) | |u2 | = l}.

Consider now the solution (x̃1(t), x̃2(t), ũ2(t)) of (7) starting at ỹ0 = (x̃0
1 , x̃

0
2 , ũ

0
2) ∈

ω(y0). Then, |ũ2(1)| < ũ2(0) = l, which contradicts the fact that ω(y0) is invariant.
Thus, every solution of (7) is attracted to the compact set B := {(x1 , x2 , u2) | 0 ≤
x1 , x2 ≤ Km and |u2 | ≤ M̂}.

Let X01 := {(x1 , x2 , u2) ∈ X | x2 = 0} and M1 := B ∩ X01 (hence M1 is com-
pact). Then, from the discussion, all solutions starting in M1 converge to (K1 , 0, ū).
The conclusion now is obtained now from Proposition 3.3 and Theorem 3.2 in
Salceanu [2011].
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Appendix D: Proof of Theorem 3

To study persistence of x1 , we need to understand the boundary dynamics in this
case. To this end, let x1(t) = 0 for all t ≥ 0. Then

u2(t + 1) = u2(t) − σ2
2

σ2
K

u2(t)c(u2(t), u2(t))x2(t)
1 + c(u2(t), u2(t))x2(t)

.(D1)

Thus, since σ2
K > σ2

2/2, it follows that u2(t + 1)/u2(t) ∈ (−1, 1) for all t, hence
u2(t) → 0 as t → ∞. From this we conclude

x2(t) → K2 :=
er − 1
c(0, 0)

= Km .

Let (x1(t), x2(t), u2(t)) denote a bounded solution of (7) with x1(0) > 0 and
x2(0) ≥ 0 and suppose that lim inf t→∞ x1(t) = 0. Then ω, the omega limit set of
this solution, contains a point of the form (0, x2 , u2). That no point of the form
(0, 0, u2) can be in ω can be proved the same as in the proof of Theorem 1. Hence,
from the preceding paragraph, we have that (0,K2 , 0) ∈ ω.

Using that σ < 0, straightforward calculation shows that

er

1 + c(u1 , 0)K2
> 1.

Then, as in the proof of Theorem 1, there exists a neighborhood V of (0,K2 , 0)
such that

(x1(t), x2(t), u2(t)) ∈ V and x1(t) > 0

imply x1(t + 1) > x1(t). This shows that no solution (x1(t), x2(t), u2(t)) with
x1(0) > 0 converges to (0,K2 , 0). Then, from the Butler–McGehee theorem, we
have that ω contains a point of the form (0, x2 , u2) with x2 > 0 and u2 �= 0. Then
the solution of (7) starting at (0, x2 , u2) would have |u2(t)| → ∞ as t → −∞, hence
we would have a contradiction to ω being bounded.
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