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A general version of a model of Ebenman for the dynamics of a population consisting of
competing juveniles and adults is analyzed using methods of bifurcation theory. A very general
existence result is obtained for non-trivial equilibria and non-negative synchronous two-cycles
that bifurcate simultaneously at the critical value r=1 of the inherent net reproductive rate r.
Stability is studied in this general setting near the bifurcation point and conditions are derived
that determine which of these two bifurcating branches is the stable branch. These general results
are supplemented by numerical studies of the asymptotic dynamics over wider parameter ranges
where various other bifurcations and stable attractors are found. The implications of these
results are discussed with respect to the effects on stability that age class competition within a
population can have and whether such competition is stabilizing or destabilizing.

1. Introduction. One aspect of the important role played by competition in
determining the dynamics of a population that until recently has received little
attention is that played by competition between different age (or size) classes
within the population. This type of competition occurs when two different age
classes consume a common resource. Organisms with complex life histories,
such as those involving metamorphoses in which larval and adult morpholo-
gies are radically different, generally undergo significant resource niche shifts
during their development. For such organisms joint use of resources by the
different stages or age classes is unlikely (examples include many marine
invertebrates, amphibians, and holometabolous insects such as beetles, flies,
butterflies and moths). On the other hand, organisms which do not undergo
such radical changes during their life cycles (e.g. birds, mammals, most reptiles,
fishes, and hemimetabolous insects such as aphids, true bugs and grass-
hoppers) can experience considerable competition between juveniles and
adults for common resources. See Ebenman (1988) for more discussion of this
phenomenon and for specific biological examples (as well as further references).

While models for age structured population growth abound in the literature,
relatively little literature to date has specifically addressed this type of

intraspecific competition. May et al. (1974) seem to have been the first to
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consider the effects of age class competition on the dynamics of a population.
Using the same differential equation model, Tschumy (1982) extended and
elaborated on their results. One of the principal conclusions of these authors
was that competition between age classes is destabilizing. Ebenman (1987,
1988) studied age class competition by means of a discrete model involving a
system of non-linear difference equations. He argues, amongst other things,
that the dynamics impled by this type of competition can be quite diverse and
that several of the conclusions drawn by May et al. and Tschumy may not hold
up over all parameter ranges. In particular, he concludes that competition
between juveniles and adults can be, under certain circumstances, a stabilizing
influence.

Our primary goal here is to give a more complete analysis of Ebenman’s
model than is given in his papers, and to do so in a more general setting, with
the hope of contributing to the further understanding of this particular type of
intraspecific competition. This model in its general setting takes the form:

{No(t"‘ 1)=N,())F(N () +aNo(t))

N,(t+1)=No(O)G(No () + BN, (1),
where N,(t) and N,(¢) denote the densities of juveniles and adults at time ¢
respectively. F denotes the per capita number of births per unit time (surviving
to time t) and G denotes the fraction of juveniles which survive one unit of time.
We are interested in the case when both F and G are dependent upon weighted
total population sizes. Specifically, we assume (Ebenman, 1988) that F is a
function of N,(¢)+aN,(t) and G is a function of Ny(t)+ SN, (¢) where a>0
measures the relatively “competitive” effects that juveniles have on adult
fertility while >0 measures that of adults on juvenile survival.

Although it is not necessary for much of our mathematical analysis we will
assume (Ebenman, 1987, 1988; Tschumy, 1982) that F and G are non-
increasing functions of their arguments, i.e. density effects are only deleterious.
Introducing the “inherent” (i.e. low density) adult per capita, per unit time

birth rate B=F(0)>0 and the juvenile per unit time survival fraction
S=3S8(0)e(0, 1), we write f=F/B and g=G/S and assume:

{f, geCY{(R—-R")
1, g <0, f(0)=g(0)=1.

Here R=(—00, +o) and R*=[0, +o0). The model equations above
become:

(1)

{No(t+ 1)=N,(&)Bf (N(£)+aN,(1))
N, (t+1)=No(t)Sg(No(t)+ BN, (t)).
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For our analysis, which uses bifurcation theory techniques, it is convenient
to introduce the inherent net reproductive rate r, i.e. the expected number of
offspring per individual per lifetime, in place of the birth rate B. Because of the
normalization of fand g at 0, this parameter is given by r = BS and we write the
model equations as:

Ny (4 1) = No(0)Sg(No () + BN, (1)) @)

{No(t+ 1)= N, (O (N, (1) + 2N, (1))/S
Our mathematical goal is to explore the asymptotic dynamics implied by
equations (2) as they depend upon the system parameters, in particular the
inherent net reproductive rate r and the competition coefficients « and . Using
the bifurcation theory approach of Cushing (1988), we investigate in Section 2
the existence and stability of positive equilibria as a function of r. Given the
monotonicity assumptions in hypothesis (1), the most common occurrence in
non-linear systems of difference equations modeling population growth is the
bifurcation from the trivial solution (N,, N,;)=(0, 0) of a global continuum of
(at least locally) stable positive equilibria (one-cycles) as r is increased through
the critical value r=1 (cf. Cushing, 1988). Equations (2), however, have the
unusual property that at r=1 there bifurcates, in addition, a continuum of
positive two-cycles and furthermore the bifurcating branch of equilibria may
not be stable. In Section 2 the existence and stability of these bifurcating one-
and two-cycle branches are studied as functions of « and f. It is also proved that
stability cannot persist globally (i.e. for all r>1) along these bifurcating
branches and that consequently further bifurcations result. In Section 3
system (2) is further explored numerically in the case of exponential non-
linearities and different types of possible asymptotic dynamics are identified,
including multiple attractors, various types of oscillations, period doublings,
and different paths to chaos. Some of the biological conclusions of Ebenman,
Tschumy and May et al. are discussed in Section 4 in light of the findings in
Sections 2 and 3.

2. Analysis. Our first task is to focus on the existence and stability of
equilibria of equations (2) as a function of the inherent net reproductive rate r.
Given the competition coefficients o and f, the survivability S, and the density
functionals f and g, we ask for what values of r do equilibrium solutions of
equation (2) exist? Qur analysis of this question will uncover the fact that two-
cycles play just as fundamental a role as do equilibria for the model
equation (2), at least from our bifurcation theory point-of-view.

A non-negative equilibrium solution of equations (2) is a constant solution
(No(®), N{(t))=(Ny, N,)=0. A positive equilibrium satisfies (N,, N,)>0. The
equilibrium (Ny, N,;)=(0,0) will be referred to as the trivial equilibrium.
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Obviously for equations (2) a non-trivial, non-negative equilibrium must be
positive. A non-negative two-cycle satisfies (Ny(t+2), N,(t+2))=
Ny(t), Ny(t))=0, but is not an equilibrium. A two-cycle is positive if
(No(t), N;(¢))>0 for all t. A two-cycle can be non-negative and non-positive,
provided one component is zero and the other positive for each z. An
equilibrium or a two-cycle pair consists of an r value and a corresponding
equilibrium or two-cycle.

2.1. Existence. A very general class of matrix equations, which includes
equation (2)as a special case, was studied by Cushing (1988). From Theorem 2
of this paper follows the existence of an unbounded continuum C< R x R? of
positive equilibrium pairs (r, (N,, N,)) which bifurcates from and only from
(1, (0, 0)). That is, (1, (0, 0))eC and (r, (N,, N,))eC\(1, (0, 0)) implies that
(r, (Ny, N,)) is a positive equilibrium pair.

Let o denote the r-spectrum of C, i.e. the projection of C\(1, (0, 0)) onto R.
Then for each reao there is at least one positive equilibrium. Because C is a
continuum, ¢ is an interval. Clearly 1 lies in the closure of ¢. From the
equilibrium equations:

3
Ny =NySg(Ny+BN,), ©)

{N0=N1’f(N1 +alNo)/S
for any positive equilibria (N,, N;)>0, including those from C for reg, one
finds

1f(Ny+aNo)g(No+ BNj)=1. “)

This “invariant” which holds along the continuum C expresses the biologically
reasonable fact that the net reproductive rate (not to be confused with the
inherent net reproductive rate r) must be 1 at equilibrium.

Note that the monotonicity assumptions on f and g in equation (1) are not
needed for any of the results so far. However, given these monotonicity
assumptions, it follows immediately from equation (4) that no positive
equilibrium can exist for r < 1. Thus, in this case, ¢ = (1, + o0). Under the added
assumption that:

lim f(x)= lim g(x)=0 )

(i.e. both fertility and survivability drop to zero as the population density
increases without bound) it further follows from equation (4) that ¢ must be
unbounded. This is because if ¢ were bounded then, since C is unbounded, it
must be the case that the set of positive equilibria (Ny, N,) from C is
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unbounded. Thus irclf {f(N,+aNy)g(N,+ BN,)} =0 which, if ¢ is bounded,

contradicts equation (4).
We summarize these conclusions in the following theorem.

THEOREM 1. Under the first hypothesis (1), equations (2) have no positive
equilibria for r<1. Furthermore, there exists an unbounded continuum of
equilibrium pairs (r, (N, N,)) that, except for the trivial solution (N,, N,)=
(0, 0), consists of positive equilibria (N, N,)>0 for r from an interval (1, r*),
r*< + oo. If hypothesis (5) holds then t*=+ o0, i.e. equations (2) have a
positive equilibrium for every r>1.

This theorem implies that in order for a population to survive in the sense of
equilibratjon it is necessary that the inherent net reproductive rate be greater
than 1, i.e. that at low population densities each individual at least replace
itself. Mathematically the phenomenon described by the results above is
referred to as “supercritical” bifurcation and is generally associated with a
stability of the bifurcating branch. We will see, however, that for the model
equations (2) this is not necessarily the case.

Before considering this peculiarity of these equations, as well as other
stability considerations, another bifurcation property of the critical value r=1
will be investigated.

In order to take a closer look at those positive equilibria near the bifurcation
point we perform a standard parameterization of the branch (Liapunov-
Schmidt expansion):

r=1+re+o(e)
N;=x;¢+ye*+o(ef?), (6)

for small ¢>0. A substitution of these expansions into the equilibrium
equations (3) and an equating of coefficients of resulting like powers of ¢ results
in the linear system (4 —I)x=0, hence x=col(1, .5) and (4—1I)y=—b for

y=col(y;) where:

0 - (k(oc-l—S)—i—r1 )

s 0 Sk’(1+BS)
k=f(0), k'=g'(0).

In order to solve the equation for y it is necessary that the vector b be
orthogonal the nullspace of the adjoint (transpose) of 4 —I. This leads to:

Fo= — (14 BS)K — (a+ S)k.

'
I
“l -
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Under hypothesis (1), r, >0 as is commensurate with Theorem 1.

That the linearization 4 of the equilibrium equations at the trivial solution
for r=1 has eigenvalue —1 (in addition to + 1) suggests the possibility of
bifurcating two-cycles. Two-cycles are equilibrium solutions of the first self
composition of equations (2) (which are not also equilibria of equations (2)).
The equilibrium equations of this composition are given by:

N0=h0(r= NO: Nl)NO
N;=h(r, Ny, NN, (7)

where:
h0=rf<r%f(N1 +0‘N0)N1+SQ(N0+BN1)N0)9(N0+HN1)
h1=rg<réf(N1 +aNy)N, +BSg(No+ﬁN1)No)f(N1+°‘No)'

If we look for positive two-cycles of equations (2), then equations (7) can be
written:

{ho(r, Ny, N,)—1=0

hi(r, Ny, N;)—1=0. ®)

The Jacobian of this system at r=1, (N,, N;)=(0,0) turns out to be
—4)7 A /S where:
1 o+S pS+1\,,
_71_( : >k+< x )k

A;:(“;S)m(ﬁsz_l)kc )

Under the (“generic”) assumptions that:

2

Ii

Ay #0 and in hypothesis (1) either k, or k' is non-zero (10)

this Jacobian is non-zero and equations (8) have a unique branch of solutions
(Ny, N,)for rnear 1, which in fact must be the positive equilibria of Theorem 1.
Thus there can be no positive two-cycles near this point.

On the other hand, equations (2) can have cycles which are not strictly
positive, but are non-negative with alternating zero and positive components.
We will refer to solution sequences with alternating zero and positive
components as synchronous, since in such a solution the age classes are
synchronized in such a way as to appear and vanish alternately in one time unit.
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Synchronous two-cycles of equations (2) can be found by looking for non-
trivial equilibria of the composite equations (7) which have one component
equal to zero, say without loss in generality N, =0. Then the composite
equations (7) reduce to the single equation:

No=1f(Sg(No)No)g(No)Ny, (11)

for N, >0, a solution of which yields a synchronous two-cycle which alternates
between (N,,0) and (0, SN,). Treating this equation by exactly the same
methods as used above on equations (3), with the role played by equation (4)
now played by:

rf(Sg(No)No)g(No)= 1,

we obtain a global, unbounded branch of non-negative synchronous two-cycle
pairs which bifurcates from (0, 0) at r=1. This yields the following result.

THEOREM 2. Under hypothesis (1), equations (2) have no non-negative two-
cycles for r<1. Furthermore, there exists an unbounded continuum of pairs
(r, Ny, N,)) that, except for (1, (0, 0)), consists of non-negative synchronous
two-cycles for r on an interval (1, 1*), r*< + co. If hypothesis (5) holds then
r* = + o0, i.e. equations (2 ) have a non-negative synchronous two-cycle for every
r>1.

By Theorems 1 and 2 there are two branches of cycles that simultaneously
bifurcate from the trivial solution of equations (2) at the critical value r=1.

2.2. Stability. The linearization of equations (2) at an equilibrium (N,, N,)
yields a linear 2 x 2 matrix system with coefficient matrix:

r r ., r
Eaf,(N1+aNO)N1 Ef(Nl““aNo)Nl +§f(N1+aNO)

Sg'(No+ BN, )Ny + Sg(Ny+ BN,) Sﬂg'(No+ﬁN1)No

The equilibrium is stable if the eigenvalues A, A~ of 4 lie inside the complex
unit circle and unstable if at least one lies outside.

If the linearization is carried out for the trivial equilibrium (0, 0), it is not
difficult to show that this equilibrium loses stability at »=1. That is, for r<1,
(0, 0) is stable while for r>1 it is unstable. (Also see Theorem 3 in Cushing
(1988) from which this follows.)

Next we turn our attention to the positive bifurcating equilibria near the
bifurcation point. Upon substitution of the expansions (6) the matrix A
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becomes a function of s. Its eigenvalues and eigenvectors have ¢-expansions of
the form:

At =AF+Afe+o(e)),
vE=vE+vieto(e)

whose coefficients can be found be the usual procedure of substituting these
expansions into the equation (4—Aljv=0 and equating the resulting
coefficients of like powers of &. This procedure yields:

Ji=1  and vg=<;),

Ao =—1 and v5=<_ls>,

and A{ given by equations (9).

Under the monotonicity assumption of hypothesis (1) and under hypothe-
sis (10) the coefficients A{ are non-zero and hence determine whether the
eigenvalues A* are within or outside the unit circle for >0 small. Moreover
these hypotheses imply A <0 so that |/l+| <1 for small ¢ Stability is
consequently determined by the sign of A[. If A; >0 then the positive
equilibrium near bifurcation are locally stable, whereas if A7 <0 then these
equilibria are unstable.

The boundary region in the a, f parameter plane determined by A; =0is a
straight line which divides the positive quadrant into a bounded triangular
region I and an unbounded region II (cf. Fig. 1). For parameter values o,
lying in regionI the local supercritical bifurcation of positive equilibria
described in (a) above gives rise to stable equilibria for r greater than, but near
1. For a, § lying in region II, however, these supercritically bifurcating
equilibria are locally unstable. As we shall see below, in region II it is the
bifurcating continuum of two-cycles which is stable.

To investigate the local stability of a synchronous two-cycle, we consider the
linearization of equations (7) at (N,, 0). The 2 x 2 matrix of the resulting linear
matrix equation has eigenvalues:

py=hy(r, Ny, 0)

oh
;t2=h0(r, N0a0)+N05N9' (ra No’ 0)
0

We analyze these eigenvalues near bifurcation in exactly the same manner as
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Sg'(0)
1I
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S 0Hg'(0)

0
Figure 1. The positive quadrant of the J&, ;5) parameter plane is divided into two
regions of differing local bifurcation properties at the primary bifurcation point
r=1.In the bounded, triangular region I the bifurcating equilibria are stable while
in region II the bifurcating two-cycles are stable. See Figs 2a and b, respectively.

we did those for the bifurcating equilibria above. The Liapunov-Schmidt
expansion of the bifurcating two-cycle has the form:
r=1—(Sk+k')e+ 0(|s ),
No=¢+o(g|),

which yields the expansions:
=1+ 2/11'8+0(|£|),
py =1+ (k' + Sk)e+ o(e]).

Hypotheses (1) and (10) imply u,<1 for £¢>0 small. Thus stability is
determined by p,, which is less than one in region II and greater than one in
region I.

THEOREM 3. Under hypotheses (1) and (10) the bifurcating branches of
equilibria and synchronous two-cycles have opposite stability properties in a
neighborhood of the bifurcation point (1, (0, 0)). More specifically, in region I of
the (o, B) parameter plane the bifurcating branch of positive equilibria are stable
and the branch of two-cycles is unstable while in region II the opposite occurs.

These results are illustrated in the bifurcation diagrams of Fig. 2.

The stability properties described in Theorem 3 for r near 1 may not, of
course, persist globally along the unbounded branch, i.e. for allr > 1. One often
expects further losses of stability and Hopf-type bifurcations to other
oscillatory solutions as r is increased. The results of some numerical
investigations which illustrate the richness of such dynamics for equations (2)
will be given in Section 3.
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/Unstable 2-cycles

Stable equilibria

(2)

Stable 2-cycles

_Unstable equilibria

(®)

Figure 2. Two continua of solutions of equations (2) bifurcate from the trivial
solution at the primary critical value =1, one consisting of positive equilibria and
the other of non-negative synchronous two-cycles. (a) In region I of Fig. 1 the
branch of positive equilibria is stable while the branch of non-negative synchronous
two-cycles is unstable. (b) In region II of Fig. 1 the branch of non-negative
synchronous two-cycles is stable while the branch of positive equilibria is unstable.

Analytically, under the assumption:

{(1) holds and there is a constant 4 >0 such that 12)

|f"(x)/f (x)| =6 and |g'(x)/g(x)| > for all xeR™,

we can offer the general loss of stability results contained in Theorem 4 below.
From hypothesis (12) and equations (4) we can conclude that the equilibria
(Ny, N,) on the bifurcating branch C are unbounded. This follows because the
r-spectrum ¢ is unbounded and equation (4) implies that along C either
S(N,+aN,) or g(N,+pBN,) is unbounded. This implies that one of the
components N, or N, is unbounded along C.
The linearized matrix A can be rewritten using the equilibrium equations (3):
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N I
aN, = —+ Ny=
P Y
N g g -l
1
LN, T BN, =
No 'y ‘g

where f*/fand ¢'/g are evaluated at N, +aN, and N, + BN, . The eigenvalues of
A lie inside the complex unit circle if and only if the inequalities |trA|
<1+detd <2 hold (cf. May et al., 1974). Now:

7

1+detA=(ocﬁ—1)f—%NON1 T Nl—%NO. (13)

f f
From hypothesis (12) g(x) <exp(—dx) and hence 0 < x?g(x) < M for some M
and all x>0. From this follows N,N,=SNZg(N,+BN,)<SN3g(N,)<SM
along the continuum C. Also from hypothesis (12) follows:

—(N1’}+ No %)>5(N0‘+N1),

and hence by equation (13), 1+det4 is unbounded from above along the
continuum C, implying that 1+ det4 <2 cannot hold globally along C.

A similar argument can be made for the two-cycles and we arrive at the
following result.

THEOREM 4. Under hypotheses (1) and (12 ) the stable bifurcating continuum of
equilibria in region I and the stable bifurcating continuum of two-cycles in
region I lose stability at some values of r> 1.

It will be seen in Section 3 that these losses of stability result in new
asymptotic states via secondary bifurcations, but that these new states can be of
different types.

In passing we note that it is easily seen from the model equations (2) that if
the initial population is seeded with one age class absent, then the age classes
are alternately zero for each unit of time. The dynamics of a non-trivial
population trajectory, say for:

No(©)>0, N,(0)=0, (14)

are determined by the single scalar difference equation (11). Equilibria of
equation (11) yield synchronous two-cycles of equations (2), two-cycles yield
synchronous four-cycles of equations (2), etc.

Typically a difference equation like equation (11) possesses the now familiar
sequence of stable period doubling bifurcations. This yields stable cycles for
equations (2) with respect to the restricted initial conditions (14) (or the
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symmetric case N,(0)>0, N,(0)=0). However, as we have seen, these cycles
may or may not be stable cycles of equations (2) with respect to the more
general case of positive initial conditions for both age classes. Thus a
population seeded with juveniles (or adults) only could exhibit stable cycles
whereas the same population seeded with both age classes represented could,
for example, equilibrate.

3. Numerical Results. The difference equations (2) lend themselves well to
numerical solution by computer. In order to corroborate the analytical results
of Section 2 and to further study the dynamics implied by the model equations
we investigated the prototype equations obtained by setting:

f(x)=exp(—kx), g(x)=exp(—k'x), k>0, k'>0. (15)

The resulting difference equations satisfy all the hypotheses of Section 2.

For any fixed $> 0, the nature of the local bifurcation of equilibria and two-
cycles as a function of r at the primary bifurcation point r=1 depends, as
described in Section 2, upon the location of the parameter pair o, fin Fig. 1. By
Theorem 4 both the stable equilibrium branch (when a, f lies in region I) and
the stable synchronous two-cycle branch (when «, § lies in region II) lose
stability if r is sufficiently increased. We numerically studied the nature of this
secondary bifurcation at a pointr =+’ > 1 by a calculating linearized eigenvalues
and by studying many computed solutions of equations (2) and (15) for
appropriate parameter values. Interestingly, these studies show that region I
can be subdivided into two subregions according to the properties of this
secondary bifurcation (see Fig. 3).

In region Ia the loss of equilibrium stability with increasing r occurs because
the linearized eigenvalues leave the complex unit circle at complex conjugate
points with polar argument §#7 (i.e. not at —1), but in all cases considered
between about 1.6 and n. In region Ib, on the other hand, stability is lost
because a real eigenvalue leaves the unit circle through — 1. This means that in
region Ib the secondary bifurcation produces a non-synchronous two-cycle (via
a Hopf bifurcation) while in region Ia this bifurcation leads to non-sychronous
periodic cycles of other periods or to aperiodic oscillations with “period”
roughly between 2 and 4, depending upon the angle 8. These two different
bifurcations are illustrated in the sequence of diagrams in Figs 4 and 5.

In region Ib, further increases in r >+’ lead to the familiar cascade of periodic
doubling bifurcations. In region Ia, however, further increases in r lead to more
complicated oscillations. In both cases “chaotic” solutions result for large
enough values of r.

Numerical studies carried out for a, f§ in region II also show that there are
two sub-regions of qualitatively different behavior. In region IIb, the stable
branch of synchronous two-cycles bifurcating from the primary bifurcation
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Figure 3. The parameter regions I and IT of Fig. 1 can each be sub-divided into two
sub-regions according to the nature of the bifurcation at the secondary critical point
¥ (Theorem 4). In region Ib the positive equilibria lose stability as a linearized
eigenvalue passes through — 1. In Ia an eigenvalue leaves the unit circle through a
point other than — 1. In region IIb the equilibrium branch remains unstable while
the two-cycle branch undergoes a period doubling cascade of bifurcations to chaos.
In region I1a the two-cycles brach repeats this behavior, but the equilibrium branch
acquires and again loses stability as an eigenvalue moves into the unit circle though
—1 and out again at a point different from —1. The diagram shown is for
equations (2) and (15) with S=0.8, k=1, k'=1.

point r=1 undergoes a typical cascade of period doubling, synchronous cycles
followed ultimately by “chaos”, as r>r' is increased.

In region Ila the bifurcating branch of synchronous two-cycles again
undergoes these same bifurcations. In this region however, the equilibrium
branch (which at primary bifurcation is unstable) acquires stability as r is
increased passed a critical point "> 1. Thus there are parameter regions in
which equations (2) and (15) has simultaneously a locally stable equilibrium
and locally attracting synchronous cycles. Upon further increases in r, this
equilibrium stability is lost, this time resulting in a bifurcation to locally stable
non-synchronous oscillations (of period not equal to a power of 2), similar to
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Figure 4. The sequence of bifurcations that occur in region Ia are illustrated by these
graphs of juvenile density against time obtained from solutions from equations (2)
and (15) with §=0.8, k=1, k'=1 and with («, f)= (0.5, 0.5). (a) Prior to primary
bifurcation at r=0.9 the density tends to zero. For r=1.5>1, but prior to
secondary bifurcation the juvenile density equilibrates. For r=31.5 secondary
bifurcation to an aperiodic solutions has arisen. Chaos is observed for r=45.

that which occurs in region Ia as described above. Figures 6 and 7 illustrate
these features.

4. Destabilization vs Stabilization. One of the primary issues in the literature
concerning intraspecific competition between age classes is whether such
interactions are destabilizing or not and how stability is affected by changes in
various model parameters. May et al. (1974) and Tschumy (1982) conclude
from their studies that strong intraspecific competition between age classes
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Figure 5. The sequence of bifurcations that occur in region Ib are illustrated by
these graphs of juvenile density against time obtained from solutions from
equations (2) and (15) with §=0.8, k=1, k¥'=1 and with («, )=(1.3, 0.25). For
r=1.5>1, but prior to secondary bifurcation the juvenile density equilibrates. At
r=2.6 secondary bifurcation positive non-synchronous two-cycles has occurred. A
further increase to r=15 shows a period doubling and ultimately chaos at r=30.

tends to destabilize a population’s equilibrium. Using the model equations in
Section 1, Ebenman (1987, 1988), on the other hand, concludes that increases
(or decreases) in competition between age classes can be either destabilizing or
stabilizing depending upon the values of other parameters in the model. The
answers to these questions depend on how “destabilization” is defined, i.e. how
the stability of two different equations are to be compared. Different definitions
are used in different papers (and sometimes different meanings are used within
the same paper) and as a result opposing conclusions can be drawn.
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It is clear from the results above summarized in Fig. 1 that, in a broad sense,
large magnitude competitive effects between juveniles and adults are
destabilizing. This is because increases in either « or § ultimately place the pair
parameter («, ) in region II of Fig. 1 where the primary bifurcation at r=1
results in unstable equilibria. As was seen, in region II there are either no stable
equilibria at all (region IIb) or there is a restricted range of r values
corresponding to stable equilibria (region IIa), but even in this case the
dynamics tend to be dominated by oscillations of one kind or another. This
general conclusion is in agreement with that of May et al. (1974) and Tschumy
(1982).

Another observation that can be made from Fig. 1 concerns the limiting
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Figure 6. The sequence of bifurcations that occur in region IIa are illustrated by
these graphs of juvenile density against time obtained from solutions from
equations (2) and (15) with S=0.8, k=1, k'=1 and with (o, £)=(0.6, 0.2). The
primary bifurcation yields a stable non-negative synchronous two-cycle, shown
here for r=11. At r=12.5 the positive equilibrium branch acquires stability, in the
presence of stable synchronous two-cycle. This stable equilibrium persists as the
synchronous two-cycle goes through period doublings for =18 and 23 and finally
passes to chaos at r=45. Equilibrium stability is lost at = 60 and gives rise to stable
aperiodic oscillations in the presence of other chaotic solutions.

cases as k— oo or k'— oo when the triangular region I approaches the semi-
infinite rectangular regions in Fig. 8.

From Fig. 8a we see that for k> k' stability is determined by «. That is, if the
density dependence is strongest on adult fertility then stability is determined by
the competitive effects of juveniles on adults. This conclusion is in agreement
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Figure 7. The sequence of bifurcations that occur in region IIb are illustrated by
these graphs of juvenile density against time obtained from solutions from
equations (2) and (15) with §=0.8, k=1, k¥'=1 and with (e, §)=(1.5, 1.0). The
primary bifurcation consists of stable synchronous two-cycles, as illustrated by
r=1.5. These undergo period doublings for r=15 and 20. Chaos is found for r =48.

with Ebenman (1987). From Fig. 8b it is seen that for the opposite case k' >k
stability is determined by p.

For smaller parameter values for « and f (i.e. within or near region I),
Ebenman (1987, 1988) uses the size of stable parameter regions to measure the
“stability” of a model, a model with a larger stable parameter region being
considered the more stable. In our terminology, a model with a smaller
secondary bifurcation value ' > 1 is less stable than one with a larger value of r'.
In general an analytic expression for # as a function of a and f is impossible to
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Figure 8. The parameter regions I and II in Fig. 1 are shown in the two limiting
cases as the density effects k on adult fertility and k' on juvenile survival get
arbitrarily large.

obtain, although Ebenman (1988) gives formulas which describe the stability
regions for several special cases with either f=1 or g=1.

For models with specified f and g, however, stability regions can easily be
explored numerically. Some examples for the case (15) can be found in
Ebenman (1987, 1988) and in Figs 9 and 10. Given the diversity of the stability
regions in these Figures, one must be careful about making general assertions
relating the size of the stability interval for r and increases in the parameters o
and S. '

On the whole, our numerical studies show that increases in « or f§ (age class
competition) are destabilizing by this “stability region size” criterion. There are
some notable exceptions, however. In region Ia increases in o were generally
found to be stabilizing, in agreement with Ebenman (1987, 1988); in region Ib
however, the opposite is generally true (Fig. 9). Figures 10a—d show cases of
destabilization with increasing f3, in agreement with Ebenman (1987) (who
takes a = f8), but in contrast to the opposite relationship that can be found for
different k, k' values (Ebenman, 1988).
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Figure 9. Equilibrium stability regions are shown as a function of a for equations (2)

and (15) with §=0.8, k=1, k'=1. (a) For §=0.25 one crosses region Ia through

region Ib into IIb as « increases. (b) For f=2.0 one crosses region Ia into Ila as «
increases.

The measure of model stability based upon sizes of stability parameter
regions discussed above distinguishes only between the presence of equilibrium
stability and instability and does not take into account relative strengths of
stability between two models. A common measure of model stability uses the
location of the linearized eigenvalues of a stable equilibrium inside the complex
unit circle. Any changes in model parameters which increase the magnitude of
the dominant eigenvalue are considered destabilizing while those which
decrease the magnitude are considered stabilizing. This measure of stability
does not necessarily correlated well with the size of the stable parameter region.

The linearized eigenvalues near the primary bifurcation point r=1 are real
and given by 2* =15 + Afe+o(¢]) where Ag = +1, 4; = —1 and A{ are given
by formulae (9). First we note that by equations (1) and (10) it is easy to show
that —A; >4 and hence |4 ~|>|4*| for small ¢ >0. The strength of the stability
of the bifurcating equilibrium near r=1 is determined by the magnitude of the
eigenvalue A~ = —1+ A7 e+ o(jg]).

We are interested in how A~ depends on the competition coefficients « and §,
i.e. in the derivatives d1~/da and dA~/d. Noting from equations (6) that
ex(r—1)/r, for ra1 we write A~ ~ —1+ A, (r—1)/r, and hence:

da” @)
S D

and:
dl‘Nd(A“/r) _
“dFN_Ti,B—I(r b
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Figure 10. Equilibrium stability regions are shown as a function of § for

equations (2)and (15) with §=0.8,k=1,k'=1. (a) For a = 1.5 one crosses region Ib

into IIb as f increases. (b) For «=0.6 one crosses region Ia through region ITa into

ITb as f increases. (c) For «=0.95 one crosses region Ib through Ia into Ila and

finaily into IIb as § increases. (d) For a=1.1 one crosses Ib into IIb, then into Ila
and back in 1Ib as f increases. Refer to Fig. 3.

A straightforward calculation yields:

di- ,

- —k(Sk+K)(r—1)/r,

di~ , ,

T SR =1,
di- da ,

PR T (Sk' k) (Sk+k) (r— 1)/r?.
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Since both dA~/da and dA~/df are negative for r > 1, rx 1, it follows that for
fixed r near 1 increases in either o or § are destabilizing. Consequently, near
primary bifurcation we have the opposite conclusion from that of Ebenman,
namely that increases in age class competition are destabilizing (again in
agreement with Tschumy and May et al.).

We also note that:

0> Sk'>k implies %—<%<0;
di™ di~

" impli —_—< <0,

0>k>Sk' implies T; < i <0

From the first inequality we conclude that if the density effects on adult fertility
are large in magnitude relative to those on juvenile survivability then stability is
more sensitive to increases in o than in f. This is in agreement with the
conclusions of Tschumy (1982) and Ebenman (1987) using parameter region
size measures of stability.

Our analysis shows that, on the other hand, if the density effects on adult
fertility are weaker than on juvenile survivability, stability is more sensitive to
changes in B than to changes in o. Here our eigenvalue sensitivity measure of
system stability leads to the opposite conclusion of Ebenman (1987).

The analysis above is valid only near » = 1. Any or all of these conclusions can
be false for larger values of r. In Figs 11 and 12 are shown some surfaces that
result from plots of the magnitude of the dominant linearized eigenvalue
against & and f§ and r. One can see from the complicated topography of these
examples that the stabilizing or destabilizing effects caused by changes in these
parameters is complicated and not uniform throughout parameter space.

5. Concluding Remarks. Using methods of bifurcation theory, supplemented
by numerical investigations, we have obtained some fairly complete overviews
of the dynamics associated with the model equations (2). This model has the
unusual property that two continua, one consisting of equilibria and the other
of synchronous two-cycles, simultaneously bifurcate from the trivial solution
as the inherent net reproduction rate r passes through the primary critical point
r= 1.1t was shown that when competition is weak (i.e. in region I of Fig. 1) the
branch of positive equilibria, near the critical point r=1, is stable and the
branch of two-cycles is unstable, but that the opposite is true when competition
is strong (i.e. in region II). This fact supports the conclusion of Tschumy (1982)
and May et al. (1974) that competition between age classes tends to be
destabilizing. :

This conclusion was further supported again near the primary bifurcation
point) by a linearized eigenvalue analysis that showed weakened stability, as
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Figure 11. The magnitude of the largest linearized eigenvalue of equations (2) and

(15) with S=0.8, k=1, k'=1, and f=2 is plotted above the («, r) parameter plane

for0<a<1.1and 1 <r<40. The lower the surface the more stable is the quilibrium.
This surface corresponds to Fig. 9b.

Figure 12. The magnitude of the largest linearized eigenvalue of equations (2) and

(15) with §=0.8, k=1, k'=1, and «=0.95 is plotted above the (B, r) parameter

plane for 0<f<12 and 1<r<70. The lower the surface the more stable is the
equilibrium. This surface corresponds to Fig. 10c.
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measured by the magnitude of the dominant eigenvalue, with increasing
competition coefficients (for fixed r).

Using a different measure of system stabilization, namely the size of the r
parameter interval for which stable equilibria exist, this conclusion is again
confirmed, with some notable exceptions pointed out by Ebenman. Increases
in juvenile competitive effects on adult fertility (the a coefficient) generally
results in larger stability regions provided one remains in region I, i.e. provided
these competition effects are not too great. Also for strong density effects on
juvenile survivability (e.g. for k €k’) increases in competition from adults (i.e. in
p in region I) can be stabilizing.

In all parameter regions, destabilization via further bifurcations was found
for large inherent net reproductive rate r. Loss of stability for large r is, of
course, commonly found in simple scalar difference equation models of
population growth (May et al., 1974). The explicit incorporation of age
structure in model equations (2), however, is seen here to promote more
diverse dynamics, including not only the familiar period doubling cascade of
bifurcations (of either synchronous or non-synchronous cycles) leading to
“chaos”, but bifurcations to other periodic and aperiodic oscillations with
various properties, equilibrium restabilizations, and the presence of multiple
stable attracting states.

The conclusion that stability is more sensitive to the competitive effects of
juveniles on adult fertility than to the competitive effects of adults on juvenile
survival (Ebenman, 1987; Tschumy, 1982) is borne out by the stability region
diagrams in Figs 9-12. It is also corroborated by the local eigenvalue analysis
near primary bifurcation, at least when the density effects on adult fertility are
relatively stronger than the density effects on juvenile survivability. The
eigenvalue sensitivity test of system stability, however, leads to the opposite
conclusion when density effects are stronger on juvenile survivability, namely
that in this case stability is more sensitive to the competitive effects of adults on
juvenile survival.

Another conclusion which follows from our investigations is that age specific
properties of vital rates can significantly alter the dynamics of the population
trajectory and models which do not take these properties into account can be
misleading. For example, the simple model:

N(t+1)=rN(t)/(1+ N(t)), N(0)>0,

possesses only equilibrium dynamics: N(t)—0 if 0<r<1 and N(t)-»r—1 for
r> 1. This equation could be taken as a non-age-structured analog of model
equations (2) with the density terms f=g=1/(1+ N). The results of Section 2
imply, however, that this age class competition model does not possess only
equilibrium dynamics.
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Another point along this same line is that the initial age distribution can
affect the asymptotic state of the population. Thus a small perturbation in total
population size from a stable total population size equilibrium can unexpec-
tedly cause a divergence from this stable equilibrium because of the manner in
which the densities of the individual age classes were perturbed. For example,
as was pointed out at the end of Section 2, an initial population seeded with
only juveniles or only adults can have very different dynamics predicted by
equations (2) than does one seeded with all age classes represented, regardless
of the total population numbers. Models without age structure cannot account
for such occurrences.

Is there any experimental or observational evidence to support these
theoretically drawn conclusions? Estimates of only some of the relevant
parameters in the models considered here are readily available in the literature.
Inherent (density independent) reproductive and survival rates, i.e. Band S or
equivalently r and S, are often estimated (e.g. see Hassell et al., 1976). Estimates
for the parameters determining the model non-linearities (density dependent
effects) are, on the other hand, less readily available. Therefore, following
Ebenman (1987, 1988), we will confine ourselves to some of the more
qualitative predictions of the theory above. For populations with weak to
moderate juvenile-adult competition (RegionI in Fig. 1) the theory here
predicts the familiar scenario of stable equilibrium dynamics for small net
reproductive rates r and oscillatory dynamics for large r. Moreover, the
oscillations need not have periods equal to powers of two (in units of
developmental time), as is typically the case with simpler non-age structured
models (May et al., 1974), but can arise with longer periods or even as aperiodic
(but almost periodic) oscillations. A striking example of this is provided by the
dynamics of three strains of the beetle Callosobruchus (Fujii, 1968). These
particular beetles exhibit little juvenile-adult competition and have different
net reproductive rates. Corresponding to increasing reproductive rates, their
dynamics range from monotoni¢ equilibration to damped oscillatory to
sustained oscillations (see Hassell et al., 1976). The sustained oscillations of C.
maculatus have roughly a period equal to two generations (55-60 days) or 4-5
developmental periods (developmental time is 10-14 days). The well-known
experimental results of Nicholson (1954) on the blowfly Lucilia cuprina provide
another example of a species that exhibits little juvenile-adult competition yet
persistent oscillations of roughly 3—4 developmental periods (the oscillations
are of period 35-40 days and developmental time is about 10 days). These
periods are consistent with the numerical studies reported in Section 3 above
where the base “period” of the bifurcating oscillations was roughly between 2
and 4. The waterflea Daphnia magna affords an example of a species whose
juveniles and adults are potential competitors (Slobodkin, 1961) and whose
dynamics also fall within the same scenario, ranging from equilibration to
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irregular sustained oscillations (Krebs, 1972) as the reproductive rate is
increased (by temperature regulation). According to the theory above species
with strong juvenile-adult competition should show a marked propensity to
oscillate. Cases in point include the flour beetle Tribolium castaneum whose
larva suffer a mortality rate due to adult cannibalism of 90% are characterized
by fluctuations and non-equilibrium states (Park, 1933). Populations of the
Colorado potato beetle Leptinotarsa decemlineata, for which there is strong
competition affecting adult fertility, show marked oscillations (Harcourt,
1971). Hamrin and Persson (1986) suggest that the 2 year cycles in the
planktivorous fish Coregonus albula is due to competition between juveniles
and older age classes. It is interesting to consider (as does May, 1976) the
widely recognized 3—4 year cycles among small mammals in boreal regions.
Given the obvious potential for resource competition between juveniles and
adults and the often high values of inherent net reproductive rates found in such
populations, a 3-4 year oscillation is strikingly commensurate with the periods
found in the numerical study in Section 3. The 3—4 period range at bifurcation
was found numerically to vary little with changes in the strengths of the non-
linearities as measured by k and k', although as found by Ebenman the critical
bifurcation value " was significantly affected. Larger values of k', correspond-
ing to populations in which adult fertility is more affected by competition than
is juvenile survivability, lowered ' and hence enhanced the probability of
population cycles. Density effects in fact heavily affect fertility of small mammal
populations (as opposed for example to the case of most birds for which effects
on fertility are weak; Lack, 1954). Biological examples that illustrate the
theoretical effects predicted by the model due to differences in the competitive
effects on adult reproduction vs juvenile survival are discussed in Eben-
man (1988). An interesting implication of our study here is that populations
with extraordinarily strong juvenile-adult competition (region II in Fig. 1),
particularly those in which adult fertility is greatly affected by this competition
(large o), should have a tendency to exhibit what we called synchronous
oscillations, regardless of the magnitude of the inherent net reproductive rate.
Consequently these populations tend asymptotically to oscillatory states in
which competition is avoided because of the synchromized, out-of-phase
appearance of juveniles and adults. It would be interesting to survey the
voluminous literature on (mainly insect) species with discrete non-overlapping
generations to see which have potentially competing juveniles and adults
should these stages coexist. While the examples cited above provide possible
support for some of our theoretical conclusions, it must be pointed out that the
mechanisms that determine the dynamics of populations, particularly natural
populations, are generally multifarious and involve many complicating factors.
It is usually too much to hope that the details of the dynamics can be accounted
for by simple models such as equations (2). Nonetheless, theoretical investiga-
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tions based upon simple models can serve the very important role of focusing
attention on specific mechanisms and their implications in order to suggest
possible explanations of observed phenomena. In this spirit it is hoped that the
results in this paper will serve to provoke further biological study into the
effects of competition between age classes.
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