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Abstract. A continunous size-structured model for a host-parasitoid interaction is derived
and analyzed. Parasites attack only immature hosts according to a size-specific preference
(probability) distribution . We investigate the problem of how to determine ¥ so as to
minimize the equilibrium level of the adult host (pest) population. It is shown that
this problem is equivalent to that of maximizing the expected number of parasitoid
emergences {per immature host} of an adult parasitoid over the course of its life time.
Under certain further conditions it is shown that this maximization is obtain by (and only
by) parasitization that is concentrated on certain specified immature size classes.

1. Introduction

The success of a biological control program based upon the release of preda-
tors, pathogens, competitors or parasites into a pest population depends cru-
cially on an understanding of the dynamics of the populations involved. Sim-
ple mathematical models have been used to help in this understanding, par-
ticularly with regard to predation and parasitization of the pest species by
the introduced species (see for example [1], [2], [5}, {61, (71, [8], (3L [9],
[107, 112}, {151, [17], [16]). It is often the case that parasites attack specific
life cycle stages of their hosts. Arthropod species form a notable example
since they often undergo dramatic changes in physiology and behavior dur-
ing their life cycles. However, most models appearing in the literature do not
account for the dynamics of life cycle stages, modeling instead the dynamics
of some gross population statistic such as total population size or biomass.
Some exceptions, in the case of host-parasite interactions, include [1], [5],
[71, [3], [17]. A deeper understanding of the dynamics of such host-parasitoid
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interactions requires models that take into account significant physiological
and/or behavioral differences among the individuals in different life cycles
stages. ,

Barclay [1] studies several nonlinear discrete (Leslie-type) age-structured
models for arthropod host-parasitoid interactions in which the parasitoid at-
tacks and oviposits in only one larval instar of the host. It is assumed that
each instar lasts the same time duration and therefore is determined by the
chronological age of the larva. Under his model assumptions, Barclay con-
cludes that optimal pest control (defined as minimum adult host equilibrium
level) is attained by parasitizing the youngest host larval instar. In [5] the
robustness of Barclay’s conclusions was investigated in a couple of direc-
tions. More general stage-structured discrete models were derived in which
the time durations of instars are not necessarily the same and in which par-
asitization was distributed over all instars, not necessarily focussed on a sin-
gle instar stage. It was then proved that in order to attain optimal control
it is necessary to parasitize a single instar stage and the stage to be para-
sitized was characterized (in terms of maximal adult parasitoid emergenis per
larva).

Our goal in this paper is to further investigate the robustness of these con-
clusions concerning the optimal strategy for a host-parasitoid control program.
Specifically, we will derive a continuous host-parasitoid model in which para-
sites attack host immatures according to some preference (or probability) distri-
bution and consider the question of what parasitization distribution will reduce
the adult host (pest) to its lowest equilibrium level. The model will allow for
varied growth and survivorships during the immature stages. It is derived in
Sec. 2. In Sec. 3 the integro-partial differential equations are analyzed. We
will not concern ourselves with the technical problems associated with exis-
tence and uniqueness of solutions, but instead concentrate on the existence of
equilibrium solutions and their properties. In this paper (as in [5]) the host
population model in the absence of parasitization is linear and therefore ex-
hibits exponential growth. This is a mathematically simplifying assumption and
is relevant to the case when the host (pest) population is in an exponential
growing phase. The model investigates the problem of controlling an exponen-
tially growing pest, as opposed to a pest near equilibrium. (We hope to consider
the latter problem, which introduces further nonlinear interactions, in future re-
search.) The conditions necessary to “control” the host by ceasing its exponential
growth and minimizing the resulting equilibrium level of its adult population
are derived and interpreted. While we do pot solve the minimization problem
in general, we show that its approximate solution (at low parasitoid equilib-
rium densities relative to that of the host) is, roughly speaking, attained by
concentrating the parasitization distribution on a single size class of immatures,
namely that which maximizes the expected number of parasitoid emergences
per larva per adult parasite. The technical mathematical details appear in the
Appendix.
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2. The model

For the host population in the absence of parasitization we adopt a McKendrick~
von Foerster type continuous linear size-structured model

dix + ds(gx) = —puls)x
glsp)x(t, s5) = [°° Bz, s)ds (0
x(0,8) = xp(s).

x(t, 5) is the per unit size density of unparasitized hosts of size s at time ¢. The
coefficient g(s) = ds/dt is the growth rate of an individual unparasitized host
of size s and S is the unparasitized host per capita birth rate. The only removals
from the population in the absence of parasitization is by death and u(s) is the
size-specific per capita death rate. The quantities s, and s, (0 < 55 < §,, < +00)
denote the unparasitized host size at birth and the size at onset of reproduction,
respectively. xg(s) is the initial size distribution.

In order to specify the model we must have submodels for the vital rates g, u,
and B. In the absence of parasitization we will assume that the unparasitized host
population grows exponentially. Thus, mathematically we ignore density effects
on the vital rates g, 3, and wu. For simplicity we assume that 8 > 0 is constant.
Since, as explained in the introduction, we wish to allow for size specific vital
rates, both g = g{s} and u = u(s) will be assumed size dependent. In our
analysis below we will require that these two vital rates have a certain amount of
smoothness. Sufficient for this are the assumptions that u(s) > 0 is continuously
differentiable and g(s) is twice continuously differentiable for s > s, and that
g(s) is bounded away from zero and 400! 0 < g, < g(8) < gy < +o0. Note
that there is a one-to-one relationship between an individual’s size s and the time
¢ taken to grow to that size which is given by the formula ¢t = fi (1/g(e) do.

In the presence of parasitization the removal rate, as modeled by the right
hand side of the partial differential equation (1), must be modified in order to
account for those individuals removed by parasitization. Let (s) be a proba-
bility distribution function, with supp i € [s4, 5], such that ¢ (s)As gives the
probability that an immature host is parasitized (per adult parasitoid) while in
the size class s to s + As. If f(y) is the number of potential adult parasitoid
encounters when the adult parasitoid population is at level v, then the probability
that a host immature survives parasitization while in the size class 5 to 5 + As
is given by (1 — a/x(s)As)f ) Here each encounter is treated as an independent
event. If the size interval from s, to s is divided into n subintervals of size As
and survival from parasitization over each subinterval is assumed to be an inde-
pendent event, then the probability that a host immature survives parasitization
until size s is given by

g

Jfim TT 0= w6989 = exp (= [ sb{a)f(y(t(cr)))drr)
N jﬂl S8y
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where t{(s) = + f:;(l/g(a))dcr.

The probability that an immature host is parasitized (per adult parasitoid)
during 2 time interval t to 7 + Az (during which time it is in the size class s to
s+ As) is given by ¥i(s)As = {/}(S)%AI w= ifr(s)g(s)As. Thus, the per host rate
of removal {per unit time) due to parasitization is given by #(s)g(s) f(y) and
the right hand side of the partial differential equation in (1) must be modified
by the addition of the term —if(s)g(s) f (¥)x. We then obtain the equations

& x + d5(gx) = -+(.w(3) + 1 (s)g(s} f(y)) x
glsp)x(t, sp) = [ Bz, s)ds )
x(0, 5) = xp(s)

for the unparasitized host population in the presence of parasitoids. Note that
we only model the unparasitized hosts; although parasitization may not be lethal
to an individual we assume parasitized hosts cannot reproduce. Here () is a
probability density function

i [sp, +00] = [0, +00), supp ¢ € [sp,5m), /s r(syds = 1.

We will refer to i as the “parasitization preference distribution”. With regard
to the number of per host parasitoid encounters f(y), as a function of adult
parasitoid numbers y, we assume

feClo,+00), F >0, f(0)=0, and Jim FO) = Foo < 400,

Finally, we need a dynamical equation for the total adult parasitoid population
y = y(1). Let #; = O be the incubation time for parasitoids and let

a = {t;) € [0, 1]

denote the probability that a parasitoid egg produces an emergent parasitoid in
t; units of time. For example, one assumption might be that the death rate of
a parasitized host is 8, and that pre-emergent parasitoid mortality is the same
as that of its host, in which case 7 = exp(~8,f;). Let n(s) denote the number
of parasitoid eggs that are oviposited in a immature host of size s. Finally, let
& = 0 be the per capita adult parasitoid death rate (assumed to be constant).
Under these assumptions we have the delay differential equation

“Sm

) = () Ol — ) / WP — 1, )ds — 8y ()

b

for the adult parasitoid population y.
The coupled system (2)—(3) constitutes our host-parasitoid model.
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3. Analysis

In this section we analyze equilibrium solutions of the model equations (2)-(3)
and determine some of their stability propertics. We also study the problem of
minimizing the adult host equilibrium population and determine, for sufficiently
low levels of parasitoid equilibrium levels, the approximate optimal parasitiza-
tion preference distribution #(s) that accomplishes this minimization. We begin
with the host population in the absence of parasitization.

3.1. Host dynamics in the absence of parasitoids

In the absence of parasitoids, the host dynamics satisfy the linear model (1}, An
integration of the equations

dt
—— =1
d
ds
an = g(s)
dx dg
% = (- »&;)x
for the characteristics yields
x(t 7, 55) ¢ MO e, 12 7(s) '
x{t, §) = ey (_)s;;j) = 4)
)C[}(S(T — f)) e stropy AT 8L “ﬁ(ﬁ';'a;f}) Lt < ‘T(S)

where 7w 75} = j;b dx/g(x) is the time required for an individual to grow
from size §; to size s, and where s{r ~ ) is the size of an individual of age
7~ t. Substitation of (4) into the birth equation in (1) gives

+00 $ o oy
x(t, sp) = / Bx (z’~ f dz/g(z),sb> B
' S Sp g(S)

for large t.
Setting x(t, s} = g(s)e™ we derive from (5) the characteristic equation

00 . 5 _ X . N
|- g [, detst) = [ n@/gdz L

ds 6
S g(s) * ©
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for A. Define

1
Jiexp (- [ w@)/5(2)dz) yds

If B8 > B, then the right hand side of equation (6) equals 8/8. > 1 when
A = (0 and decreases monotonically to 0 as A -+ +oc0. Thus, equation (6) has
a positive real root, which implies that x(z, 5) grows exponentially as ¢ -» +00
[13]. Suppose, on the other hand, that 0 < 8 < B.,. If Ais aroot with Re A = 0,
then the right hand side is smaller in magnitude than /8., and hence is strictly
less than 1. This means that equation (6) has no roots satisfying Re A = 0 and
hence x(t, s} decays to 0 as ¢ — 400 [13].

Bur =

3.2. Analysis of the host-parasitoid model

In the following two sub-sections we study the existence of positive (coexis-
tence) equilibria for the host-parasitoid model and minimization problem for the
host adult (pest) equilibrium.

3.2,1. Equilibria analysis

Theorem 1. (a) If B8 < Be,, then the trivial equilibrium (x,y) = (0,0) of the
host-parasitoid model (2}-(3) is globally artracting.
(b) If B > Ber, then (0,0) is unstable.

Proof. (a) Let B < B, The solution x, (¢, 5) = 0 of the model equations (1)
for the host population in the absence of parasitization decays exponentially to
zero. In order to show that the trivial equilibrium is attracting, we will show
that the solution x (¢, 8) of the model equations (2) for the host population in
the presence of parasitization satisfies the inequality

0 < x(1,8) < xu{t, 5)

for all sufficiently large ¢ and for all s = sp.
For a given solution of {2)—(3) the host-parasitoid model} (2) has characteristic
equations

dt

2z 1
dmn
ds
an = g(s)
dx

d
an = ~(p + E—f— + g fyhx
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and so we have the differential inequality

X dg
e (T P
dn — (e ds)
which vields

- i

(t,8) < x(t—r7,5p)e L, Mz}/g{z)cz%ff)l’ tz7(s)
X\, §) = 3

xols(r — 1)) € oo MNP gty

where 7 = fjb dx/g(x). If we can show

x(t, sp) < x,(z, 8p) forall 1 = 0,

then the desired result will follow from (4).
Let x,(4, 5. &) be the solution to (1) with the pertarbad initial condition

x40, 5, 8) = xo(s) + gh(s),

where 4 : (s, +00) — (0, 400} is such that A(s(\)) € L}0, +o0) where s =
s(n) is defined by 9 = [ (1/g(2))dz. Then x(0, sp) < x,{0, 5, €). First we will
use Theorem 4 (induction on closed, bounded-below subsets of R) appearing in
the Appendix to show

x(t, 5p) < x,(t, 55, 8) forall¢, g> 0. N

Then we will show that x, (¢, s, &) — x,(7, s) as € —> 0. From these facts we
will conclude that 0 < x(z, sp) < x,(¢t, 5) for all £ = Q.

Let & > 0. For ¢ < 0, define x,(1, 55, &) == x,(0, 55, £} and x(z, sp) = x(0, 5p).
The tuth set {r € R | x(r, sp) < x,(t, sp, £)} is open in R since x(¢, 5,) and
x,(t, 5p. €) are continuous in £ Let T € [0, +o0). F T = 0, then x(T, 5) <
x,(T, 5, 8). If T 3£ 0, assume x(f, 53) < x,(t, s, &) for all r € [0, 7). Under
this last assumption x(T', sp) < x,(T, ss, &), as is verified by the following
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inequalities.

gl x(T, sp) = [7°° Bx(T, s)ds

d
f:s"(?') BX(T —, Sb) e j; M2)/ 502 zg(is-:))d

= /e g (s -T
"4“](?} Bxo(sir -T)) ¢ fw( MO8 zgﬁ%_llds

I

A

d
< fsm Bl = 7.5, 2) € it s
5(1) B fxo(s(r - T))
ety DT g(s(r =T
+8 h(s('r —TNH] e fi T3 e ds

sm © Bx, (T, s, &)ds
= g(sb)xu(T S, £)

where s(7°) is the size at time T of an individual born at time 0. By Theorem 4
of the Appendix we conclude x(7, 53} < x,{2, 5p, £) for all t = 0.
It remains to show that x,{t, 55, &) —> x(t, §) as € — 0. By (4)

g(so) | xu(t, sp, €) = xu(t, 85} | = ifﬁo Blxu(t, s, 8) — x,(1, 5)]ds |

B{s(r--1))
< X(I) 3 Beh(s(r — )& ds

+ 98| xut = 7 50, )

— X, (t — 7, 8p) | g(f;’f ds

< [ Beh(s(m))g(s(n))dn
+ fi B 1 xu(n, 56, 8) — xulm, $5) | glse)d.

Thus, by Gronwall’s Inequality

g(sp) | Xt 0, ) — %a(t, 55) | < Begy fo ™ hls(dne.

It follows that x,(f, $p, &) ~> X,(t, sp) as & -» O for each ¢ > 0.

We conclude that 0 < x(7, 8) < x,(2, sp) for all 7 > 0 and consequently that
x{(t, 8) tends to O exponentially as ¢ —» +oc. '

From (3) we see that y satisfies an equation of the form y = &(1) — 8y
where £(r) — 0 as ¢t — -+o0o. Therefore, y(t) — 0 as t — +0o0, and thus
(x, v) = (0, 0) is globally attracting.

(b) Let 8 > B, If we set x(¢, §) = g(s)e', and y(r) = ce™ in the linearization
of the host-parasitoid model equations (2)-(3) at the equilibrium (0, 0) we obtain

as eigenvalues A = —& < 0 and those values of A for which the equation
, d
gq + (/\+~£+u(5))450

has a nonzero solution g £ 0. Substituting the general solution of this linear
equation into the birth equation in (2) we again obtain the characteristic equa-
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tion (6). As we have already seen 8 > S, implies this equation has a positive
root. Therefore (0, 0) is unstable. [:3

Define the number
Boo == Bere’™ > Ber.
Theorem 2. There exists a positive (coexistence} equilibrium of the host-parasi-
toid model (2)-(3) if and only if B,y < B < B, and this positive equilibrium

is unique when It exists.

Proof. To find a positive equilibrium (x,, y.), we investigate the static system
derived from equations (2)~(3)

@ 4 = s (W) + PO F ) 3o — 2= L,

(®) v = w5 £ [ n)is)g(s)x.(s)ds ®)
with initial condition
1 +00
v = oo [ Brods. ©)
An integration of (8a) gives
xols) = xu(sp)e [, wistde g(Sp) ~1se) f werdz (10)

g(s)

Substituting the initial condition (9) into (10) and integrating the result from s,
to 400, we find

oo +oo L s 00 [ wod:
f x(s)ds = Bx.(5)ds ] A, I , 1@/5dz = f0 )f_;,, $izydz ds,
S Sm S g (S)

or, since supp & <[5z, $mls
B =B’ (11)
Thus, there exists a unique positive equilibrium
0<ye=f""(In(B/Ber))
if and only if

Ber < B < Beo

Having found the adult parasitoid equilibrium y,, we can in turn find a unique
equilibrizm distribution x,(s) for the host. Substituting (9) into (10} and the
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result into (8b) we obtain an equation that can be solved for the total adult host
population

T o 5y,
/s Telsyds = : S - [T e e+ Foapandz\ |
m(@)Bf (v fit | n(sip(s)e o ds

RTY
(12)
This formula can be used in (9) and (10) to obtain the equilibrium distribution

Syee L:{"‘(Z)/S(Z}'*‘f(ye)tﬂ{z))dz
&

/8() ‘ O
w1 fve) 2 (n(s)w( 0e f;(#(z)/3(2)+f(ye)¢(z)))dz) N

The result in Theorem 2 can be viewed as a bifurcation phenomena as the
parameter B is increased through the critical value B, at which the zero (ex-
tinction) equilibrium loses stability. Such a transcritical bifurcation is generally
associated with an exchange of stability, which would led us to conjecture that
the positive equilibria in Theorem 2 is locally asymptotically stable at least for 8
close to B,,. However, because the host population in our model grows linearly
in the absence of the parasites, this bifurcation is not “generic” and the formal
bifurcation theorems do not apply.

We numerically investigated the stability of the positive (coexistence) equi-
librium for an age-structured case which

xe(s) =

g=1, 5 =0, 5,>0,0,=0, wel01]
n>=0, u=0 &>0

for =2 (13)

1/sm if 5<54p

Yis) :{O if 8> 8y

For this example Theorems 1 and 2 imply that the zero equilibrium loses stability
at B, = pet and there exists a unique positive equilibrium for each £ in the
interval (B, Boo) = [pe™, uePT#sn Figure 1 illustrates these facts by means
of a numerically computed bifurcation diagram. Our numerical results indicate
that the positive equilibria are global attracting. See Figure 2.

Caption for Figure 1: Positive equilibrium values of the unparasitized juvenile popu-
lation J = f;" x(1, s)ds, the unparasitized adult host population A = [} o x(¢, 5)ds and
the adult parasitoid population y for the eqations (2)-(3) with (13) and §p = 1, o =
Ol,n=p=38=b=a=1 are ploited against the parameter 8 € (B¢y, Boo) = (e, €2).

Note the vertical asymptote at Bog = €°.

Caption for Figure 2: Graphs of J, A and y against time 7 are shown for serveral different
initial conditions in the example described in Figure | with 8 = 3.5,
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3.2.2, Minimization of the adult host population

Our goal is to minimize the equilibrium adult host population, as given by
the complicated expression on the right hand side of the formula (12), by an
appropriate choice of the immature parasitization distribution function (s).

First we note that the formula (12) for the equilibrium adult host population
can be written

+00

B xe(s)dsEQp) =1 (14)
where
E@W) = % ‘S'” (W( £)n(s) FOIS)8®) - f;(#(z)/g(z)+f(yc)qb(z))dz> _g_(% ds.
(15)

The exponential appearing in the integrand is the probability that an imma-
ture survives unparasitized to size s (given that the adult parasitoid population
remains fixed at the equilibrium level y.). The expression f(y )@ (s)g(s}/y.
is the size specific (per immature host) parasitization rate per adult parasitoid
(at equilibrium). The quantity 7(¢;)n(s) is the number of emergent parasitoids
from an immature parasitized at size s and 1/g(s) is the expected time a host
spends in size class s. Finally, 1/6 is the expected life time of an adult para-
sitoid. Thus, E() is the (at equilibrium) expected number of parasitoid emer-
gences per (immaturej host of an adult parasitoid over the course of its life
time.

Since B |, S':O" x.{s)ds is the rate of immature host production at equilibrium
the identity (14) expresses the fact that at equilibrium the expected total num-
ber of parasitoid emergences of an adult parasitoid over the course of its life
time must be 1, i.e. each parasitoid adult exactly replaces itself at population
equilibrium.

From (14) we see that to choose ¢(s) so that ff * x.(s)ds is minimized is the
same a$ to choose (s} so that E(¥) is maximized. Thus, we arrive at the fol-
lowing result: the parasitization preference distribution that minimizes the adult
host population at equilibrium is the distribution that maximizes the expected
number of parasitoid emergences per (immature) host of an adult parasitoid
over the course of its life time.

We will study the problem of determining the distribution o that maximizes
E(y) only to lowest order for 8 close to the critical bifurcation point 8.,.. As
B — Be,, we see from (11} that y, — 0. Thus,

5

1 ™ - z
EW) =5 [ mens) O 5 a4 0 - gy,
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To first order term in B8 — B, E(}) is maximized and the adult host population
is minimized when

S I d

/ n(s)e [, wo)/adz (s)ds (16)

Sp

is maximized. QOur problem becomes: given n, g, and w, what parasitization

preference distribution ¢ should the parasitoids use in order to maximize (16)7?
Theorem 6 of the Appendix asserts that, in order to maximize (16), the para-

sitoids should attack only those size classes s at which

%

nis)e J, maigidz (17

attains a maximum as a function of § € [5p, 5, 1. This quantity is the inherent (i.e.
low parasitoid density) size-specific expected number of emerging adult para-
sitoids per host larva at equilibrium. Since the size classes are continuous rather
than discrete, in most cases a continuous parasitization preference distribution
function /(s}y will not maxirmize (16).

If (17) attains its maximum at only one size class, say § = 5, € 55, $u], then
Theorem 6 asserts that the parasitoids should attack only the size class s,. (This
is the conclusion reached for a general class of discrete models mn [5].) In this
case (s} must be taken as 8(s — s,), the Dirac delta function located at s,. It
is, of course, tmpossible in this case for a continuous parasitization preference
distribution ¢(s) to maximize (16), although the parasitoids can come arbitrarily
close to maximizing (16) by choosing a continuous preference distribution y(s)
sufficiently close to (s — s,).

An example is given by the case when the number of emergents n(s) = n
is independent of the size s of the host victim, in which case (17) is clearly
maximized at s == s55,. In this case only the smallest (newborn) immatures should
be parasitized. (This is the conclusion reached in [1] for a class of discrete
age-structured models.)

We summarize these results in the following theorem.

Theorem 3. Assume B, < B < Boo. The parasitoids can come, 1o first order
in |8 — Bel, arbitrarily close to minimizing the adult host equilibvium level
if and only if they concentrate sufficiently closely on those host size classes
which maximize (17, the inherent (low parasiioid density) expected number of
emerging adult parasitoids per host larva.
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4. Conclusions

In this paper we considered a continuous host-parasitoid model (2)~(3) for a
size-structured host population that is parasitized in its immature stages. We
are interested in the case when the host population grows exponentially in the
absence of parasitization, i.e. Ber < B. Theorem 2 implies that it is possible
for the parasitoid to control the host population in the sense that a positive
{coexistence) equilibrium state exists if Ber < B < Be. On the other hand, if
the host population’s growth rate is too large (8 > Boo) then the parasitoid will
fail to stop its exponential growth. By deriving the formula (12) for the adult host
equilibrium level we determined that this equilibrium level is minimized by an
appropriate choice of the parasitization preference distribution Y(s) if and only if
the quantity E(i) given by the formula (15) is maximized. The quantity E{(J) can
be interpreted as the expected number of parasitoid emergences (per immature
host) of an adult parasitoid over the course of its life time. For B sufficiently
close to B, (ie. for sufficiently small host exponential growth rates and for
smail parasitoid equilibrium levels) Theorem 3 characterizes the parasitization
distribution (s} that {approximately) maximizes E(y) and hence minimizes
the adult host equilibrium level. Roughly speaking, this theorem says that the
parasitization should be concentrated those host size classes which maximize the
expression (17) as a function of s. This has the effect of maximizing the inherent
{low parasitoid density) expected number of emerging adult parasitoids per host
larva. These conclusions corroborate those reached in [5] by means of a discrete
model. They also agree with Barclay’s assertion that if size correlates exactly
with chronological age (g(s) = 1) and the number of parasitoid emergences from
a host is a fixed constant (independent of host age), then the optimal strategy is
to parasitize the youngest immature class and this class only.

There are several interesting unsolved problems associated with the model
presented here. We have not studied the stability properties of the positive egui-
libria guaranteed by Theorem 2. The result in this Theorem can be viewed as a
bifurcation phenomena as the parameter 3 is increased through the critical value
B at which the zero (extinction) equilibrium loses stability. Such a transcritical
bifurcation is generally associated with an exchange of stability, which would
led us to conjecture that the positive equilibria in Theorem 2 are locally asymp-
totically stable at least for B close to B.,. However, because the host population
in our mode] grows linearly in the absence of the parasites, this bifurcation is
not “generic” and the formal bifurcation theorems do not apply.

Another interesting problem would be to investigate the robustness of the
conclusions above (and in [1] and [5]) in models that include density dependence
in the host population. Discrete models of this kind are considered numerically
in [1].

Finally, a key unsolved problem is that of maximizing the nonlinear functional
E (i) over the set of normalized probability distributions ¢ and determining the
characteristics of the optimal distributions i



16 Shandelle M. Henson and J. M. Cushing

References

1. HuGH ]. BARCLAY, Models of host-parasitoid interactions to determine the optimal
instar of parasitization for pest control, Natural Resource Modeling 1, No. 1 (1986),
81-103

7 IR. Beppmvaron, C.A. Freg and JH. Lawton, Dynamic complexity in predator-
prey models framed in difference equations, Nature 235 {1975), 58-60

3. T.8. BELLows, Jr., and M.P. HasseLL, The dynamics of age-structured host-para-
sitoid interactions, J. Anim. Ecol. 57 (1938), 250268

4. JouN B. Conway, A Course in Functional Analysis, Springer, New York, 1990

5. KaTHLEEN M. Crowe and 1M. CusHiNg, Optimal instar parasitization in a stage
structured host-parasitoid model, Natural Resource Modeling 8, No. 2 (1994}, 119-
138

6. A.P. Dosson, The population dynamics of competition between parasites, Para-
sirology 91 (1985), 317-347

7. H.CJ. Goprray and M.P. Hassgrr, Natural enemies can cause discrete generations
in tropical insects, Nature 327 (1987), 144-147

S M.P. HASSELL, The Dynamics of Arthropod Predator-Prey Systems, Princeton Uni-
versity Press, Princeton, New Jersey, 1973

9. M.P. HasseLL and RM. May, Generalist and specialist natural enemlies in insect
predator-prey interactions, J. Anim. Ecol. 55, (1986), 923-940

10. M.P. HasseLL and V.C. MoraN, Eqiitibrium levels and biological control, J. £nt.
Soc. of South Africa 39 (1976), 357-366

11. SuanpeLLE M. HensoN and THoMAs G. HaLiam, Induction on closed, bounded-
below subsets of R, Nonlinear Times & Digest 1, No. 2 (1994), 143-147

12. M.E. HocrperG, M.P. HasseLL and R.M. May, The dynamics of host-parasitoid-
pathogen interactions, Am. Nat. 135 (1990), 74-94

13. Frank HOPPENSTAEDT, Mathematical Theories of Populations: Demographics, Ge-
netics and Epidemics, Reg. Conf. Series in Appl. Math. 20, SIAM, Philadeiphia,
1975

14. §-§. Liu, R. Morron, and R.D. HuGHES, Ovipositon preferences of a hymenopter-
ous parasite for certain instars of aphid host, Entomol. Exp. Appl. 35 (1984), 249-254

15. R.M. May and M.P. HasserL, The dynamics of multiparasitoid-host interactions,
Am. Nat. 117 (1981), 234-261

16. R.M. May, M.P. HasseLL, R M. AnpEgrsoN and D.W. TonNkyN, Density dependence
in host-parasitoid models, J. Anim. Ecol.50 (1981), 855-865

17. W.W. Murpocs, RM. Nisper, S.P. BLytag, W.S. GURNEY and 1.D. RegvE, An
invulnerable age class and stability in delay-differential parasitoid-host models, Am.
Nat. 129 {1987), 263-282 '

18. S.B. Vinson, Host selection by insect parasitoids, An. Rev. of Ent. 21 (1976), 109~
133

Appendix

O(t) denotes a proposition which depends on a real parameter 1.

Theorem 4. [11] Suppose K C R is closed and bounded below in R; A =1{t €
R | Q) is true} is open in R; and for all t € K, Q1) is true whenever Q(x) is
true for all x € K such that x < t. Then Q(t) is true for all t € K.
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Proof. Suppose there is a ¢ € K such that Q(?) is not true. Then the set (R—A)NK
is nonempty, closed, and bounded below, and thus contains its infinum 7. It
follows that Q%) is true for all x € K such that x < T. Therefore, by assumption
Q(T) must be true. This is a contradiction and hence no such ¢ can exist. [

Theorem 8. Let X = [a,b], h € C(X), M = max,ex{h(0)}, T : P(X)— R be
defined by

T(w) = [ hp,

and K = {u € P(X) | fx hdp = M} = T~V (M), where P(X) denotes the space
of probability measures on X. Then K is the weak-star (wk — +) closure of

co{d; | x € X and h(x) = M},
where the convex hull co A of a set A is defined by

n

fid
coAﬁ{Za;y,-[neN, a; € RY, Zaiml, yi € A}.
fr]

f=]

Proof. K is a convex set. We will begin by showing K is also wk — compact.
It then follows from the Krein-Milman Theorem ([4], p. 142) that X is the
wk — * closure of co(ext X), where ext K denotes the extreme poinis of K
(points y € K such that no line segment containing y is contained in K). Finally
we will prove that ext K = {8, | x € X and h(x) = M).

(1) To show K is wk — % compact we note, using the Riesz Representation
Theorem, that K € P(X) C ball M(X) 2 ball Co(X)* = ball C(X)* where
M(X) is the space of positive measures and Co(X)* is the dual space of the space
Co(X) of continuous functions on X which vanish at infinity. The set ball C{X)*
is wk ~ x compact by Alaogin’s Theorem ([4], p. 130). Let {u,} € K be a net
which wk — * converges to some wx € ball M(X). Now, u, — & (wk — #) if
and only if F,, — F, pointwise in C(X)*, which occurs if and only if for all
g € C(X), F, (8) — F,(g). The latter occurs if and only if for all g € C(X),
Jx8dua ~ [y gdp. Thus, [ hdu, — [, hdy which implies Jyhdp = M.
We need yet to show that u € P(X) (i.e. that L is a positive measure). To
see this, note that for each e, [y gdu, = 0 and hence [, gdpu > 0 if g
C(X) is nonnegative. Thus, for all nonnegative ¢ € C(X), fxgdp = 0. Let
H < X be compact. We can write the characteristic function yy as the limit
of a decreasing nonnegative sequence of functions {gn} € C(X), and by the
monotone convergence theorerm,

lim/gndﬁﬂ/)mdu=/ dp = p(H) = 0.
X X H
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If E is a measurable set, then

W{Ey = sup{u(H) | H € E and H is compact} > 0.

Finally, u(X) = 1 since [y dpo — [y dp. Therefore p € K and this completes
the proof that K is wk — * compact.

(ii) Finally we prove that ext K = {8, | x € X and h(x) = M}. K # 0
since there exists an x € X such that #{x) = M, and hence §, ¢ K. Also, for all
w e PX), T(w) < M, and so M is an extreme point of T[P(X)]. By exercise
9, p. 145, and Theorem 8.4, p. 147 of [4], ext K = ext T™'(M) C ext P(X) =
{6, | x € X}. However, [, hdp = h(x) for g = 8, and so ext K S {8, | x € X
and h(x) = M}.

To show the reverse set containment, let xo € X such that h(xe) = M.
Clearly 8,, € K. Suppose x, # € K with,, = %()(—Hﬂ). Then y, ¢ € K € P{X)
and 8,, € ext P(X). Thus, x == i = 8y, and so 8y, € ext K. 0

Theorem 6. Let X = [a, b], h € C(X), M = maxex{h(x)}, and E = {x € X |
h(x) = M}. Let ¢y € L'(X) with fab Wis)ds = 1, and ¢ > 0 on X, Then

b
/ h(s)p(s)ds

d

is maximal if and only if suppy C E.

Proof. Suppose |, f h(s)p(s)ds is maximal. Define a measure pu by u(A) =
[, hds, so that dy = ¢ds. Then p € P(X). By Theorem 5, p is in the wk —
closure of co{8; | x € E}. Thus, there exists a net {¥,] < co{d, | x € E} of
probability measures converging wk — * to g, and hence Iy gdvy — [y gdu
for all g € C(X). Let y € X — E. Since E is closed in X, there exists an open
neighborhood U of y such that U N E = @. Choose p € C(X) such that p > 0
on U and p =0 on X —U. Then p = 0 on E and hence for all « it follows that
[y pdve = 0. This implies [, pdp = 0. Thus, 0 = u(U) = Ju W(s)ds, and so
W = 0 on U; this implies that y ¢ supp ¢, and we conclude supp ¢ € E.
Conversely suppose suppy € E. Then ff hsyf(s)ds = [phdu=M [ dp



