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Abstract. A general predator-prey model is considered in which the predator 
population is assumed to have an age structure which significantly affects its 
fecundity. The model equations are derived from the general McKendrick 
equations for age structured populations. The existence, stability and de- 
stabilization of equilibria are studied as they depend on the prey's natural 
carrying capacity and the maturation period rn of the predator. The main result 
of the paper is that for a broad class of maturation functions positive equilibria 
are either unstable for small m or are destabilized as m decreases to zero. This is 
in contrast to the usual rule of thumb that increasing (not decreasing) delays in 
growth rate responses cause instabilities. 
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1. Introduction 

The age-specific fecundity or fertility rate of a population is one of the most 
fundamental parameters in both the theory and practice of population dynamics 
and demography. The characteristics of the fecundity rate as a function of age have 
often been argued (both theoretically and experimentally) to be crucial determining 
factors in the resulting dynamical growth and age distribution of the population. In 
particular, the existence of an equilibrium (or stationary) age distribution, its 
stability properties and the occurrence of regular or even chaotic oscillations in 
population size all have been related to age-specific fecundity or to other 
parameters closely connected with it, such as maturation time, mean generation 
time, age of  maximum fecundity or width of the "reproductive window" (e.g. see 
[4, 5, 12 - 14, 16, 17, 21,26]). It has been generally asserted that if reproduction is 
sufficiently delayed because of age specificity in fecundity then the equilibrium 
population level is apt to be unstable and oscillations of some sort are likely to 
occur. This is usually based upon the generally held tenet in population biology that 
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a time delay in the growth rate response to environmental changes (including 
changes in the population's own size) will, if long enough, lead to instabilities or at 
least to destabilization of equilibrium population levels. 

There appears in the literature a great number of mathematical models which 
support this tenet. These invariably take the form of difference, differential-delay, 
integrodifferential or integral equations which exhibit the loss of stability of an 
equilibrium as some parameter measuring the "delay" is increased. Often a 
bifurcation or repeated bifurcations to limit cycles occur as well as other exotic 
behavior such as "chaos". Much has been written about these interesting 
phenomena in recent years even though the equations studied are very often 
inadequately derived and poorly related (or even irrelevant) to the delay causing 
mechanisms most frequently mentioned by population biologists, namely those 
related to age structure, fecundity and gestation periods (i.e. see [23]). Cases in 
point are the famous, overworked delay logistic (or Hutchinson's) equation and 
other similar delay equations of Kolmogorov type which, as can be seen from the 
fundamental McKendrick model equations for age structured populations 
[10, 11,25], do not model growth dynamics in which growth rate response delays 
are caused by mechanisms related to age-specific fecundity or gestation periods. 
(The delay logistic equation was first introduced and studied by V. Volterra [24] in 
an attempt to study the case of a delay caused by an entirely different mechanism 
involving the death rate and the accumulation of toxins over past time.) 

In an attempt to study the effects on model stability of several specific 
biological, delay causing mechanisms related to fecundity, Cushing [4] investigated 
many equations derived from the McKendrick model for age-structured popu- 
lations. This study concentrated on the effects of maturation periods (or, more 
generally, of age related differentials in inherent fecundity), of gestation periods 
and of age related differentials in the effects of density changes on fecundity (see 
[23] for a biological discussion of these phenomena). One of the several conclusions 
reached in [4] was that maturation periods per se, while they can cause instabilities 
in certain circumstances (in particular in suitable combination with the last two 
mentioned mechanisms), are not in general strongly destabilizing agents of model 
equilibria. 

The biological motivation for our investigations in the present paper lie in an 
attempt to understand further the effects on model stability of maturation periods 
in an age structured population and in particular to further justify the above stated 
conclusion from [4]. In fact, for the class of model equations considered here, our 
main result (Theorem 2) allows a stronger statement to be made: namely, in 
contrast to the generally held tenet mentioned above, destabilization of model 
equilibria occurs for decreasin9 and not increasing maturation periods.1 

The mathematical goal of this paper is to study the fundamental dynamics of a 
system of integrodifferential equations ((2.8) below). This system is derived from 
the McKendrick equations which describe the growth of an age-structured 
population. Unlike the single equations studied in [4] however, this model system 

i Although examples of this phenomenon for delay differential equations have been found [3, 9] these 
have been purely mathematical exercises. Here we have tried to carefully relate our equations to the 
theory of population dynamics. 
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contains an equation which describes the growth of a (lumped) resource or prey 
population and as a result it has the form of a predator2prey system. The derivation 
of the equations (which is made in Section 2) is made under several basic biological 
assumptions with certain types of predator and prey populations in mind which we 
now describe. The more technical mathematical assumptions are stated in detail in 
the following sections. 

To begin with, we assume that the populations of both the predator and its prey 
are closed to immigration and emigration and that they interact in a constant 
environment. Since we are primarily concerned here with (predator) populations 
which have age-specific differentials in reproductive output, we concentrate on age- 
specific, (predator) fecundity rates at the expense of ignoring age-differentials in the 
death rate. In particular, we are interested in maturation periods as a delay and 
instability causing mechanism, delays in death rate responses generally being 
considered of less importance [20, p. 488, 23]. This assumption that the predator's 
death rate/~ is independent of age a (which is a common one in the literature 
[7, 8, 10, 16, 17]) is equivalent to the assumption that the survivorship curve is 
exponentially decreasing (exp(-  #a)). Survivorship curves are a fundamental tool 
of population biologists and appear abundantly throughout the literature for many 
different species (a sampling is given by Pianka [18, p. 101 -1021). These curves, 
which are decreasing functions of age a, are roughly categorized by population 
biologists into three broad types, the so-called Type II being those which are in fact 
exponential. Type Il l  curves result from species with high juvenile mortality 
followed by relatively lower mortality at later ages and can also, if not too extreme, 
be approximated by exponentials. Examples of species with such survivorship 
curves (and hence for which the assumption that ~ is independent of age would seem 
to be reasonable) include the lizards Uta stansburiana and Eumecesfasciatus, the 
warthog and most birds for Type II and most insects and many fish, plants and 
marine invertebrates for Type III [18, 19]. 

We also ignore here any age structure in the prey population. That is to say, we 
assume that either the prey's vital parameters are not age-specific or that their 
dependence on prey age structure is insignificant as far as their effect on predator 
fecundity and death rates is concerned and is insignificant in comparison to the 
predator fecundity dependence on predator age structure. Examples of such 
predator-prey interactions might include predators which consume primarily 
inorganic nutrients or dead organic matter or those which graze or browse on plants 
(such as grasses) whose life cycle is so simple as to render age structure within them 
insignificant or whose life cycle is significantly longer (or shorter) than that of the 
predators. 

Finally, we assume that the prey grows logistically in the absence of predation 
and that both the prey's growth rate response to predation and the predator 
fecundity rate are general functions of the total population sizes of both species. 
The predator's death rate/~, however, we assume to be constant and independent of 
these population sizes. This frequently made assumption in models is reasonable for 
species for which the scarcity of resources has a more profound impact on fecundity 
than on survivorship. 

Under these basic assumptions, model equations governing the growth rates of 
the predator and prey populations are derived in Section 2. In Section 3 a simple 
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example is discussed. The two Figs. 1 and 2 in Section 3 serve not only to summarize 
the fundamental dynamical behavior of the example, but also serve to motivate the 
general results of the following Sections 4 and 5. In Section 4 the existence and 
stability of equilibria are studied as they depend on the prey's inherent carrying 
capacity K while in Section 5 they are studied as functions of the predator's 
maturation period m. The results (contained in Theorems 1 and 2) serve to establish 
the essential features of the stability region diagrams in the K, rn parameter plane 
given in Figs. 1 and 2 for the prototype example of Section 3. 

On the basis of these results we draw Several conclusions concerning predator- 
prey interactions of the type described above, the most of important of which are as 
follows. First of all, as is the case with most predator-prey models, if the prey's 
inherent carrying capacity K is too small there exists no positive equilibrium and 
hence no possibility of stable coexistence of the two populations and the predator 
population dies out. "Too small" here means so small that the predator's net 
reproductive rate at low predator population levels (and hence prey population 
level near K) is less than one (Theorem lb). However, if this net reproductive rate of 
the predators increases with increasing prey population levels (while the predation 
rate also increases with increasing predator population levels) and if there exists a 
(minimal) value of the prey's inherent carrying capacity K at which this net 
reproductive rate equals one, then stable coexistence and the survival of the 
predator population is possible (see Fig. 3). Under these circumstances, stable 
coexistence occurs if and only if the prey and predator isoclines bear a certain 
relationship to one another (see Figs. 4 and 5), a relationship which has the 
biological interpretation given at the end of Section 4. 

Secondly, while holding the prey carrying capacity K fixed at a value for which a 
positive equilibrium exists, a sufficient decrease in the predator's maturation period 
rn will either result in an unstable equilibrium or a destabilization of the 
equilibrium. 

Thus,.we conclude that a predator maturation period of sufficient length 
coupled with a prey inherent carrying capacity of sufficient size (but not too large) 
are the means by which predator and prey populations of the kind meeting the 
description above and modelled by equations (2.8) below can coexist in a stable 
manner. 

Although we are claiming here that increased maturation periods do not lead to 
model instabilities (to the contrary), we hasten to point out that the opposite 
conclusion can be drawn under a different set of assumptions concerning the 
populations. We have assumed, for example, that fecundity is dependent on total 
population sizes. As was stressed in [4], the assumption concerning how population 
density affects fecundity is a very crucial one insofar as equilibrium stability is 
concerned and if fecundity dependence on population density is a more complicated 
one related to the age structure within the population then increased maturation 
periods can very well lead to instabilities (and even chaos). This is in fact the case, 
whether explicitly stated or not, in many model equations studied in the literature 
[4, 16, 17]. 

A summary of our results is given in Section "7, while mathematical proofs have 
been relegated to an Appendix. 
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2. The Model Equations 

We will derive our model equations from the general theory of age structured 
populations essentially due to McKendrick [11] (also see [10, 25]). In this theory it 
is assumed that the population of reproducing individuals (here taken as the 
predator population) can be described by a density function p(a, t) of time t and age 
a, measured on the same scale, whose integral ~p(a , t )da  yields the total 
population between ages al and a2 at time t. Thus, the total population (of 
predators) of all ages at time t is P(t) = S~ p(a, t) da. If initial conditions are ignored, 
the McKendrick equations are 

Pa + Pt = - #P, a > 0, (2.1) 

p(O,t )=f~f(a , t )p(a, t )da (2.2) 

for - oo < t < + oo where # is the (per unit predator density) death rate a n d f  is the 
(per unit predator density)fecundity rate. 

The first order partial differential equation (2.1) accounts for removals from the 
predator population, which are assumed to be by death only. As discussed in 
Section 1, g is taken to be a positive constant independent of a, t and p. 

The Eq. (2.2) accounts for births into the predator population (which is assumed 
to be the only way to enter that population) by means of the age-specific fecundity 
rate function f(a, t) which is assumed to be a function of time t only implicitly 
through a dependence on the total population size P of the predators and also that 
R of a prey species. Specifically, we assume that f has the form 

f = b~(a)h(R, P). 

The positive constant b > 0 is called the birth modulus and the function fi(a) is called 
the maturation function. The maturation function/~ clearly describes the effects of 
age on fecundity. It will be assumed to be continuously differentiable and bounded 
for a >~ 0 and to satisfy 

fi(a) >~ 0, /~(0) : 0, /?*(#) : :  f ~  ~(a)e -ua da < + oo. (2.3) 

The condition (2.3) implies that the net reproductive rate at equilibrium 

f;f(a,t)e-Uada=bh(R,P)~*(#) 

is finite. The function h, which will be referred to as the fecundity response function, 
is assumed to be twice continuously dlfferentlable for R, P ~> 0 and to satisfy 

h(R, P) >~ O, h(O, O) = O, 

i.e. the nonnegative predator fecundity rate drops to zero when both populations 
disappear�9 

Before considering the dynamical equations for the resource population R, we 
will derive an integrodifferential equation for P = P(t). Assume p (+  o% t) = 0 for 
all t, i.e. that the density in age class a drops to zero as a --, + oo. Integration of 
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(2.1) yields 

p(a, t) = B(t - a)e -ua (2.4) 

where B(t):= p(0, t) which, when substituted into (2.2), yields 

B(t )=f ; f (a , t )B( t -a)e-~ada.  (2.5) 

On the other hand, an integration of (2.1) from a ~- 0 to + ~ gives 

P'(t) + #P(t) -- B(t) (2.6) 

which, after substitution into (2.5) and an integration by parts, gives 

P'(t) + #P(t)= j ~f.(a,t)P(t-a)e-U"da. (2.7) 

A solution of (2.7) defines the density p by means of (2.6) and (2.4). 
Similar equations could be derived for the prey population R. However, since 

our interest here lies in the case when the age structure of the resource is 
insignificant in comparison to that of the predator population P, we will avoid 
doing this by simply writing the differential equation 

0 
for the growth rate of R where the predation response function g is assumed to be 
twice continuously differentiable for R, P ~> 0 and satisfy 

g(R, P) >~ O, g(R, O) - 0 

(which implies that predation drops to zero in the absence of predators). This 
equation is sufficiently general to include the prey equation in most predator-prey 
equations in the literature under the assumption that in the absence of predation by 
P the resource R grows logistically. The positive constants r, K > 0 are the prey's 
inherent growth rate and natural carrying capacity respectively. 

Thus, the equations to be considered in this paper are 

P'(t) + #P(t) = bh(R(t), P(t)) J~ fi'(a)P(t - a)e Ila da, 

R'(t)= r R ( t ) ( 1 - ~ - ) -  g(R(t),P(t)), (2.8) 

where the above stated conditions on the constants and functions are assumed in 
force throughout. 

We will be interested exclusively in the existence and the stability or instability of 
nonnegative equilibria solutions (R(t), P(t)) = (R, P) = constant/> 0 of (2.8). A 
nonnegative equilibrium must satisfy the equations 

(bh(R, P)fl*(#) - I)P = O, 

r R ( 1 - R ) - g ( R , P ) = O ,  (2.9) 
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for which there are at least two nonnegative solutions (R, P) = (0, 0) and (K, 0). 
Positive equilibria lie at the intersection in the R, P plane of the prey isocline 
defined by the second equation and the predator pseudo-isocline defined by 
bh(R, P)/~*(#) = 1. This predator pseudo-isocline defines equilibrium population 
levels at which the net reproductive rate is equal to one (exact replacement) and is 
not a true isocline in that it implies zero growth rate only for populations held at 
equilibrium. 

By the stability of an equilibrium will be meant the usual (local) asymptotic 
stability in the theory of integro-differential equations (see e.g. [1, 15]). Necessary 
and sufficient for this stability is that the characteristic equation of the linearization 
at equilibrium have no complex roots z which satisfy Re z >~ 0. If (R, P) is an 
equilibrium of (2.8) then the characteristic equation turns out to be 

D : ;  z - r + 2 r ~  + g R ( R , P )  [(z + ~)(1 -- bh(R,P)p*(z + ~)) 

- b~*(#)#Php(R, P)] + b~*(#)l~Pge(R, P)hR(R, P) = 0, (2.10) 

where/~*(z): = ~ e-  za/~(a) da is the Laplace transform of/~. If(2.10) has at least one 
root z with Re z > 0 then (R, P) is unstable. 

We wish also to consider the destabilization of a stable equilibrium of (2.8). By 
this we mean that as some parameter in the system approaches a limiting value there 
is at least one root of (2.10) whose distance from the imaginary axis Re z = 0 tends 
to zero. This means, of  course, that the rate of convergence to the equilibrium as 
measured by the real part of the smallest (in magnitude) root of (2.10) tends to zero 
as the parameter approaches its limit. 

3. An Example 

As a motivating example consider (2.8) with r = b = 1 and 

~(a)= # + m  ae-a/m' h= R(cP + 1), g = R P ,  (3.1) 

where m > 0 and c are constants. This choice of the maturation function ~ implies 
that fecundity peaks at age a = m (although it is rather broadly distributed around 
a = m) which might be taken as a measure of a biological maturation period. For 
simplicity /? has been normalized so that b]?*(#)= 1 for m > 0, i.e. the net 
reproductive rate at equilibrium of the predator equals h(R, P) and is independent 
of m. These particular choices of the fecundity and predation response functions h 
and g are of "mass action" type familiar in Lotka-Volterra theory and as a result 
suffer the many often repeated shortcomings of  such models. Nonetheless, as the 
general results in the following sections show, many of the interesting and 
fundamental features of this simple example are present for very general h, g and/? 
in (2.8). 

The trivial equilibrium (R, P ) =  (0, 0) is unstable since the characteristic 
equation (2.10) is a quadratic with roots z = 1 and - #. The characteristic equation 
(2.10) for the equilibrium ( R , P ) =  (K, 0) has four roots z = -  1, - #  and 

( -  1 +_ x/-K)(#m + 1)/m and hence (K,0) is stable if and only if K <  Kcr:= 1. 
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Kcr=l 

~ F 

(b) 

(a) - m 

Fig. 1. Stability regions for nontrivial equilib- 
ria of(2.8) with (3.1) and r = b = 1,c = �89 
# ~ 0 are shown. In region (a) no positive 
equilibria exist and (R, P) = (K, 0) is stable. In 
(b) and (c), (K, 0) is unstable and there exists a 
unique positive equilibrium which is stable in 
(b) and unstable in (c) 

From the equilibrium equations (2.9) one finds that a unique positive 
equilibrium exists if and only if K > K~r. If K < Kcr then there exists a positive 
equilibrium if and only if c > 1 in which case there are exactly two. These positive 
equilibria are given by R = 1/(cP + 1) and P = P+ or P - ,  P-+ being roots of the 
quadratic 

cKP 2 + K ( 1 -  c)P + 1 -  K = O. 

To study the stability properties of these positive equilibria we turn to the 
characteristic equation (2.10), the left-hand side of  which is a rational function of z 
whose numerator is a quartic polynomial in z. The location of the roots can be 
determined by the Hurwitz criteria. These criteria, however, turn out to be rather 
formidable inequalities involving m, K and #. They can be greatly simplified by 
setting # = 0, the resulting stability and instability criteria remaining valid for 
# ~ 0. When/~ = 0, one finds that a positive equilibrium is stable if and only if 

P < 1, 2(cP 2 + 1)m > Pc, 2cP + (1 - c) > 0, 

(1 - P)(2cP 2 + (c - 1)P + 4)m > 2P(cP + 1). 

It is not our intent here to study this exampl~ or these inequalities in depth. 
Observe, however, that P is a function of K and hence these inequalities determine 
certain regions in the first quadrant of the m; Kparameter  plane. These regions are 
drawn for two cases c -- �89 and c = 2 in Figs. 1 and 2 which serve to motivate the 
general results in the following sections. The case c = 0, for which a diagram similar 
to that in Fig. 1 results, was given by Cushing [5]. 

There are several key features in Figs. 1 and 2 relative to the general 
considerations in following sections. First, in Fig. 1 note that if the carrying 
capacity K > Kc~ is held fixed one finds that the positive equilibrium is unstable for  
small m. Thus, stable coexistence is possible only for sufficiently large maturation 
periods m. Note that both the equilibrium and the net reproductive rate at 
equilibrium remain constant as m is varied in this example. 

Secondly, for fixed maturation period m, Fig. 1 shows that stable coexistence is 
impossible until a threshold value Kcr = 1 of the prey's natural carrying capacity K 
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Fig. 2. Stability regions for the same 
parameter values in Fig. 1, except that 
c = 2, are shown. Region (a) is as in Fig. i. 
In regions (c) and (b) there exist two 
positive equilibria (R, P-+), both of which 
are unstable in (c) and only one of which 
(R, P ) is stable in (b). In regions (d) and 
(e) there is only one positive equilibrium 
(R, P +) which is stable in (d) and unstable 
in (e). The equilibrium (K, 0) is stable in (b) 
and (c) and is unstable in (d) and (e) 

Kcr = 1 

K~= 8/9 

(c) 

(d) 

(b) 

(a) 

0 2 2 2  ..... 
m 

is surpassed (there is a supercritical bifurcation of  equilibria and an exchange of  
stability at K = Kcr), but  the stable equilibrium losses its stability at a second critical 
value o f  K determined by the curve F (at which point  a H o p f  bifurcation to a limit 
cycle occurs). These features are typical o f  predator-prey models. The de- 
stabilization o f  the positive equilibrium with increasing K is referred to as the 
"pa radox  of  enr ichment"  (Rosenzweig [22], Cushing [-2]). 

A slightly more  complicated situation occurs for c = 2 as can be seen in Fig. 2. 
The remarks concerning varying m still remain valid. On the other hand, the 
bifurcation at K = Kc~ = 1 is now subcritical and unstable. For  m sufficiently large 
(rn > 0.2222.. .)  there is still a threshold value K'cr = ~ of  K above which stable 
coexistence is possible, but  this is due to the existence in this example o f  a stable 
equilibrium (with large P) which does not  bifurcate f rom (Kcr, 0). 

4. Critical Carrying Capacity 

The purpose o f  this section is to study the existence and stability o f  equilibria for 
predator-prey interactions modelled by (2.8) as they depend on the inherent prey 
carrying capacity K. It will be shown that  the alternatives near K = Kc~ = 1 in Figs. 
1 and 2 for the pro to type  example in Section 3 hold for the more  general system 
(2.8). We will also determine those properties o f  the predat ion response function g 
and the fecundity response function h which differentiate between these two 
alternatives, that  is to say between the case o f  a stable bifurcation (to the "r ight"  as 
K increases th rough  a critical value Kcr) o f  a stable positive equilibrium as in Fig. 1 
and an unstable bifurcation (to the "left" as K decreases through Kcr) of  an unstable 
positive equilibrium as in Fig. 2. 

It will be assumed th roughou t  this section that  

ge(K,O) >~ 0 for all K>~ 0. (4.1) 

This assumption means roughly that  for small predator  populat ion sizes the 
predat ion rate does not  decrease with increasing prey populat ions  near carrying 
capacity. 
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First of all, the characteristic equation (2.10) associated with the trivial 
equilibrium (0, 0) has roots z = - # and r - gR(0, 0) SO that (0, 0) is stable if and 
only i f r  < gR(0, 0). Thus, small populations of both predator and prey die out if the 
inherent (per unit) prey growth rate is less than the (per unit) predation rate. 

Turning now to the equilibrium (K, 0), K > 0 we find that (2.10) has as roots the 
negative reals z = - # and - r - gR(K, 0) as well as all the roots of the equation 

bh(K, O)fl*(z + #) - 1 = 0. (4.2) 

Since [bfi*(z + #)l <<. bfl*(#) for Rez  ~> 0 by (2.3), we see immediately that (4.2) has 
no roots with Rez  ~> 0 if bh(K,O)fi*(#)< 1, i.e. the net reproductive rate of 
predators at low population levels is less than one for prey population level near 
carrying capacity. In this case, which certainly occurs for small K since h(0, 0) = 0, 
the equilibrium (K, 0) is stable and in this sense the population P cannot survive (at 
least small populations cannot) and the prey population returns to its natural 
carrying capacity K. 

Suppose now that there exists a critical value of K = Kcr for which the net 
reproductive rate of  predators is equal to one. Specifically, suppose 

bh(K~, O)fi*(#) = 1, hR(K~,, 0) ~ 0. (4.3) 

The question to be answered is what happens for Knear  Kcr? The following theorem 
whose proof  appears in the Appendix answers this question and summarizes the 
results of this section. 

Theorem 1. Assume (4.1). 
(a) The trivial equilibrium (0, O) is' stable if and only i f r  < gn(0, 0). That is to say, 

small populations of  both predator and prey die out i f  the (per unit) inherent prey 
growth rate is less than the (per unit)predation rate. 

(b) I f  bh(K, 0)fl*(#) < 1, then the equilibrium (R, P) = (K, O) is stable. That is to 
say, if the predator net reproductive rate at low population levels is less than one (exact 
replacement), small populations of  predators will die out while the prey population 
tends to its carrying capacity K. 

Assume that there exists a critical value of  the prey inherent carrying capacity 
K = Kcrfor which the predator net reproductive rate equals one, i.e. for which (4.3) 
holds. 

(c) The equilibrium (R, P) = (K, 0), for K ~ Kc~ is stable when K < K~r ( > Kr 
andunstablefor K > Kcr ( < Kc~)providedhR(Kc, O) > 0 ( < 0), i.e. providedpredator 
fecundity at low population levels' increases (decreases) with increasing prey 
population levels. 

Assume that 

det ( hR(K~, O) he(Kc, O) Jcr:= bfl*(#) - r - g R ( K ~ .  O) - -  g e ( K c .  0 ) / v s  O. 

(d) There exists a unique equilibrium (R(K), P(K)), continuous for Knear Kcr and 
satisfying (R(K~), P(K~r)) = (K~, 0), which is positive for K > Kr (< K~) provided 
hR(Kc. O)/Jcr < 0 (> 0). 

(e) This positive equilibrium is stable and the predator and prey populations can 
stably coexist if J~ < 0 and it is unstable if Jc~ > O. 
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Jcr < 0 Jcr > 0 

(a) 
Kcr Kcr 

hR(Kcr,O)>O 

Jcr > 0 Jcr < 0 

Fig. 3. The distance of the positive, nontrivial 
equilibria of  Theorem 1 from the equilibrium 
(K, 0) is plotted against the prey carrying 13 
capacity K. The horizontal K axis represents 
(K,0). An s indicates stability while a u 
indicates instability ( b ) 

K 
Kcr Kcr 

hR(Kcr,O) < O 

This long list of  statements is pictorially summarized by the bifurcation 
diagrams in Fig. 3. 

Since h(0, 0) --- 0, it follows that ifK,,r is taken to be the first value of Kfor  which 
the net reproductive rate equals one (bh(Kcr, 0)fi*(#)--- 1) then it follows that 
he(Kcr, 0) >~ 0. If we assume that hR(Kc, 0) > 0, then for this first critical value the 
alternatives in Fig. 3(a) hold. These correspond exactly to the situation near Kc~ = 1 
(for fixed m) in Figs. 1 and 2 respectively of the example in Section 3. Notice that it is 
the sign of the Jacobian Jc~ which distinguishes between the two alternatives. 

The possibility of stable coexistence of the predator and prey populations (of 
interest here because it implies the survival of the predator) is implied by the 
existence and stability of a positive equilibrium. Theorem l(e) shows that this 
stability is, for prey carrying capacities near criticality where the predator has a net 
reproductive rate of one, equivalent to the analytical condition Jc,. < 0. We close 
this section with a discussion of the biological and the phase plane geometrical 
meaning of  this sign condition on the Jacobian Jcr. From (2.9) the equations for a 
positive equilibrium are 

bh(R, P)fi*(#) - 1 = O, 

r R ( 1 -  R )  - g(R,P) = O, (4.4) 

the Jacobian of whose left-hand side is 

J: = bfl*(#) det k ( r  

hR hp ) 
R 

2r - ga - ge 
K 
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Let G : =  dR/dt/R denote the per capita growth rate of the prey R and note that 

J=  bfl*(#)Rdet( hRGR GehP)" 

Then Jc~ equals J evaluated at K = K,.r and (R, P) = (Kcr, 0). 
Let i,j  denote unit co-ordinate vectors in the (R, P) plane and let k be a mutual ly 

perpendicular unit  vector so that  i, j and k form a r ight-handed Cartesian co- 
ordinate system. Then J/bfl*(#)R is the k component  o f  the curl o f  the vector field 
(h, G), that  is 

J = bfl*(#)R(Vh x FG) .  k (4.5) 

and sign J c, = sign(Vh x VG)cr" k. Suppose Fh(Kcr, O) is rotated to VG(Kc, O) 
( through the smallest angle between them). The stability condition Jc~ < 0 is 
equivalent to this rotation being clockwise. 

The gradients FG and Fh are normal  to the prey isocline and the predator  
pseudo-isocline respectively and point  in the direction in the (R, P) plane o f  
maximum increase in prey per unit  growth rate and in predator  net reproductive 
rate (or equivalently predator  fecundity rate) respectively. 

We will now give a biological interpretation o f  this rota t ion condit ion for the 
case o f  the smallest critical value Kcr and hR(K~,, 0) > 0 (see Fig. 3a) in which case 
Vh(Kcr, 0) lies in the right half  plane. N o w  the condit ion (4. I) implies that  FG(K,.,, O) 
lies in the left half  plane. Under  the added reasonable assumption that  
Gp(Kc,, 0) < 0 (or equivalently ge(Kc, 0) > 0), the gradient VG lies in the third 

h=l 

G=O 

I 

VG / Kcr= 1 K 
(a) 0<C<1 P 

h.1 

(b) c>1 

~ Th 

Kcr I< ,r 1 
7G" 

--R 

Fig. 4. The isocline h = 1 is drawn for (a) 
0 < c < 1 and (b)c > 1 for the example of Section 
3 as illustrated in Figs. 1 and 2. Several isoclines 
G = 0 are drawn for K values for which positive 
equilibria exist. In (a) the rotation of Fh to FG is 
clockwise and the positive equilibrium is stable. 

- R The rotation is counterclockwise in (b) and the 
positive equilibrium is unstable. These correspond 
to the two cases in Fig. 3a 
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quadrant. Thus, if prey per unit growth decreases with increased predator population 
sizes (or equivalently if the predation rate increases with increased predator 
population sizes), then the clockwise rotation stability condi'tion stated above can be 
given the following biological interpretation near the smallest critical value K~.r : stable 
coexistence near (R, P) = (Kcr, O) occurs if and only if for a unit increase in the prey 
population the amount of  change in predator necessary to attain maximal increase in 
predator net reproductive rate is less than the amount of  change in predator necessary 
to attain maximal decrease in prey per capita growth rate. 

The example in Section 3 illustrates these results. The isoclines and gradients are 
drawn for this example in Fig. 4. 

5. Maturation Periods 

We now turn to the main results of the paper. These results will concern the stability 
properties of positive equilibria for small maturation periods. The notion of a 
"maturation period" is, in the theory and model equations of Section 2, necessarily 
contained in the maturation function fl(a) which serves to describe the dependence 
of fecundity on age. In order to introduce a parameter which represents a 
maturation period we do the following. Without attempting to define "maturation 
period" per se, we simply assume that an arbitrary maturation function/~o(a) is 
given which satisfies the conditions 

m o : = f ~ f i o ( a ) d a <  +oo, m l " = f ; a f l o ( a ) d a < + o o  

and which has, by some suitable definition of maturation period, a maturation 
period equal to one. Our results deal with system (2.8) with maturation functions of 
the form 

fi(a) = n(m)m- lfio(am 1) (5.1) 

for which m > 0 is now the maturation period. The constant n(m) is assumed 
independent of R and P and to satisfy 

n(m) ~ no as m ,L 0, where 0 < no < + oo. (5.2) 

Condition (5.2) guarantees that the net reproductive rate at equilibrium 
bhfi*(#) = bhn(m)fl~(t~m) approaches a finite, nonzero limit bhnomo as m > 0 
decreases to zero. 

The restriction of fl to the class of maturation functions described by (5.1) is 
equivalent to the biological assumption that the ratio p = p(m) of per unit offspring 
from age class a to a + da when the maturation period equals m to that from age 
class aim to (a + da)/m when the maturation period equals one is independent ofa.  
For  a justification of this, see the Appendix below. 

In order to study the question of stable coexistence for small predator 
maturation periods we first assume that a positive equilibrium exists for small m 
(for if none did, the question would be meaningless). Sufficient for this is the 
assumption that the equations 

bnomoh(R,P)-  l =O, r R ( 1 - R ) - g ( R , P ) = O  (5.3) 
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have a positive solution (R ~ p0) > 0 and that the equilibrium equations 

bn(m)fl*(l~m)h(R,P)-l=O, r R ( 1 - R ) - g ( R , P ) =  O, (5.4) 

which reduce to (5.3) when m = 0, have a smooth solution (R(m), P(m)) for m ~ 0 
such that (R(0), P(0)) = (R ~ po). This is guaranteed if the Jacobian J, given in 
Section 4, evaluated at (R~ ~ is nonzerol We denote this equilibrium by 
(R, P) = (R(m), P(m)). Our main result is contained in the following theorem. 

Theorem 2. The positive equilibrium (R, P)= (R(m), P(m)) corresponding to a 
maturation function fl 9iven by (5.1) is either unstable for small m > 0 or destabilized 
as m > 0 decreases to zero. 

This result implies that in order for a predator-prey interaction of the type being 
considered here to have a stable positive equilibrium, it is necessary for the 
predator's maturation period to be sufficiently long. 

We note in passing that one particular class of maturation functions consists of 
those with n(m) = 1 for which ~ fl(a) da = 1 for all m. This normalization implies 
in the biological characterization above that the ratio p(m) - 1. It is a frequently 
used one and is satisfied by the often used functions fi(a)= (n/m)"+la"e -"~/m, 
n = 1,2, 3 . . . .  Another class is given by n(m) = 1/bfl*(pm) which implies that the 
net reproductive rate at equilibrium of the predator is h(R,P) which is thus 
independent of the maturation period m. This normalization, which is used in 
Section 3, has the simplifying feature that the equilibrium equations (5.4) and hence 
the equilibria themselves are independent of the maturation period m. 

If the first alternative in Theorem 2 holds and the equilibrium becomes unstable, 
then it can happen that a Hopf  bifurcation to a stable limit cycle occurs as m 
decreases through a positive critical value. This is the reverse of the usual case when 
a Hopf  bifurcation occurs for a "delay" which increases through a critical value. We 
will not study this bifurcation phenomenon here, but we will offer some conditions 
sufficient to guarantee that the first alternative of Theorem 2 does in fact hold. 

Theorem 3. The positive equilibrium (R(m), P(m)) is unstable for small m > 0 if any 
one of the following conditions on the predator's fecundity response Junction is 
satisfied: 

(a) hv(R~ po) > O; 
(b) he(R ~ po) = 0 and hR(R ~ P~176 po) r 0; 
(c) he(R ~ po) < 0 and Jo > O. 

In this theorem Jo denotes the Jacobian Jevaluated at the equilibrium (R ~ po). 
It has the same interpretation as in Section 4 and is given by (4.5). 

The special case when h is independent of P was considered by Cushing I-5] with 
n(m) = 1. His results are a special case of Theorem 3(b). 

We can apply Theorems 2 and 3 to the specific example in Section 3 by way of  
illustration. In this example the positive equilibrium is independent of m. Since 
hp = cR in this example, Theorem 3(a) shows that the positive equilibrium is 
unstable for small m > 0. Since hRgv = (cP + 1)R = R for c = 0, Theorem 3(b) 
implies the same conclusion when c = 0. Finally, if c < 0 the isoclines appear as in 
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Fig. 5. The isoclines for the example in Section 3 are 
drawn, as in Fig. 4, but here for c < 0 

~ R  Kcr= 1 K 
Fig. 5. Since J is given by (4.5) and the rotation of Vh to VG is clockwise it follows 
that J < 0 for c < 0. Thus, Theorem 3(c) does not apply when c < 0, but Theorem 2 
does imply in this case that the positive equilibrium at least destabilizes for m 
decreasing to zero. 

6. Remarks on Maturation Periods 

In Section 5 no attempt was made to define a "maturation period". For the example 
of Section 3 the parameter m appearing in ri defined by (3.1), which was referred to 
as the "maturation period", is actually the age at which the fecundity rate is 
maximum (for fixed population sizes). While this seems to be not necessarily a good 
definition of what most would consider to be meant by "maturation period", it 
nonetheless provides a reasonable measure of the delay in growth rate response to 
population changes which is caused by age differentials in fecundity. Other 
measures of this delay (e.g. the first moment of ri) could just as well be used. 

If one wished to consider the "maturation period" to be the youngest age at 
which an individual in the population P could reproduce, then one might consider a 
maturation function ri satisfying f i (a )= 0 for 0 ~< a ~< m where m ~> 0 is now 
defined to be the "maturation period". If fl is continuously differentiable for a ~> 0, 
then the results of the previous sections of course apply. 

On the other hand, it is frequently the case in models involving age specific 
fecundity that fi is taken to have jump discontinuities, in particular at a -- m. One 
general form of maturation function with jump discontir~uities for which our results 
above still apply is (5.1) with 

rio(a) = [u(a) - u(a - z + 1)]?(a), 1 < ~ <~ + o% (6.1) 

where u(a) is the unit step function at a = 1. The function 7(a) is nonnegative and 
continuously differentiable for 1 ~< a ~ z. In the maturation function ri(a) given by 
(5.1) the constant -c is the ratio of the maximal age rm of fecundity to the maturation 
period m. 

The simple and frequently used "block" function is the special case when 
7 = constant. 

In the model equations of Section 2 the effect of considering such a maturation 
function is to replace the integral 5~ in the birth equation by the integral 5~m. If this 
change is followed through the derivations of Section 2, one finds that Eq. (2.7) has 
the additional term 
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f (m,  t)P(t - m)e-  um_ f(zm,  t)P(t - zm)e- u~,, (6.2) 

(which are the boundary terms in the integration by parts) added to the right-hand 
side. Thus, the first equation in the system (2.8) is replaced by 

p,(t) + #p(t) = bh(R(t) ,P( t ) ) I  f l  m fl,(a)P(t _ a)e-Ua da + P(t _ m)fl(m)e #m 

- P(t - rm)fl(zm)e u~m~ (6.3) 
1 

that is, system (2.8) now has instantaneous time lags in it due to the step 
discontinuities at a = m and, if ~ < + o% at a = zm. 

It is a straightforward calculation to show that for fi defined by (5.1) with rio 
given by (6.1)the equilibrium and characteristic equations remain unchanged from 
(2.9) and (2.10). Because the analysis in Sections 4 and 5 and in the Appendix 
depends only on these equations it follows that all o f our  results above apply for this 
kind of  maturation function with step discontinuities. 

7. Summary 
The system of integrodifferential equations (2.8) models the growth dynamics of a 
(predator) population and its (prey) resource under the assumption that the 
predator population has an age structure which significantly effects its birth rate, 
but not its death rate, while the resource or prey population has fecundity and death 
rates which are independent of any age structure. Predator fecundity and the 
predation rate are general functions of total population sizes and the prey grows 
logistically in the absence of predation. Under mild assumptions it is shown that 
unless the natural carrying capacity K of the prey exceeds a critical value 
determined by the predator net reproductive rate set equal to one then (small) 
predator populations go to extinction while the prey tends to its carrying capacity K 
(Theorem 1). At this critical value of the carrying capacity a bifurcation of positive 
equilibria is shown to occur, either a stable bifurcation (in which an exchange of 
stability occurs) or an unstable bifurcation. These bifurcations are characterized 
analytically (Theorem 1) as well as biologically and geometrically with respect to 
the predator and prey isocline structure (Section 4). 

A "maturation period" m is introduced into the model equations (2.8) and into 
the analysis by means of (5.1). The class of maturation functions defined by (5.1) is 
characterized by the requirement that the ratio of per capita offspring from any age 
class a to a + da for maturation period m to that of age group aim to (a + da)/m for 
maturation period one is independent ofa.  It is shown that positive equilibrium of 
(2.8) are either unstable for small m or are destabilized as m ~ 0 (Theorem 2). This is 
the reverse of the usual principle that instabilities or destabilization occurs for 
increasing delays. Some simple conditions on the fecundity and predation response 
functions are given (Theorem 3) which are sufficient to insure that the first 
alternative of instability occurs. 

These general results for (2.8) are illustrated by an example in Section 3. Figs. 1 
and 2 for this example exemplify the fundamental dynamical behavior in K, m 
parameter space of the general system (2.8) as described above. 
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Appendix 

Formal proofs of  Theorems 1 - 3 will be given in this Appendix. We begin with that of  Theorem 1. Parts 
(a) and (b) of  Theorem 1 were proved in Section 4. To prove part (c) observe that the characteristic 
equation (2.10) for the equilibrium (K, 0) 

D(z, K ) : =  (z + r + gR(K, 0))(z + #)(1 -- bh(K, 0)fl*(z + #)) = 0 (A. 1) 

has, by definition of Kcr, the root z = 0 when K = Kcr. Since 

D~(O, Kcr) = (r + gR(Kcr, O))#bh(K,~, O) e-  ~" aft(a) da > 0 (A.2) 
o 

the implicit function theorem implies the existence of a unique root z = z(K)  of  (A.1) for K ~ K~ 
satisfying z(K,.~)= 0. An implicit differentiation of (AA) with z = z(K) shows that z'(K~r)= 
- DK(O, Kc~)/D~(O, K,.r) where 

DK(O, K~r) = - (r + gR(K~r, O))#bhR(K~ , 0)fl*(#) 

and hence 

sign z'(K,.~) = sign hR(K,., 0). (A.3) 

It follows that Re z(K) > 0 for K > K~ ( < K,.~) provided hR(K,., 0) > 0 ( < 0) which proves the instability 
assertion in (c). 

It also follows from (A.3) that Rez(K) < 0 for K < K~, (>  K~) provided hR(K~, 0) > 0 ( <  0). This 
proves the stability assertion in (c) provided the existence of other roots with Re z >/0 can be ruled out  
for K ~ K~,. This we can do by a contradiction argument  as follows. Suppose to the contrary that  there 
exist sequences 

K, TK,.r(j,K~, ) , Rez,  ~> O, D(z , ,Ko)=O,  

where hR(K,,,., O) > 0 ( < 0). The sequence z, cannot  be unbounded because if this were so then D(z,,, K,) 
would be unbounded.  The roots z, are bounded and (by extracting a subsequence if necessary) it can be 
assumed without loss of  generality that z,, --* Zo for some z0, Re z 0 ~> O. By continuity, D(zo, K~,) = 0 
which implies 

1 - bh(K~,O)fi*(Zo + g) = 0 

or fi*(Zo + #) = fl*(#). This implies z0 = 0. But the existence of the roots z,, near zero for K, < Kc~ 
(> K,.r) contradicts the uniqueness of  the branch found by the implicit function theorem for which 
Re z < 0 when K < K,~ ( > K~r). 

Part (d) follows from a straightforward application of the implicit function theorem applied at 
(Kc~, 0) to the positive equilibrium equations (4.4) using the assumed Jacobian condition J,.~ ~ O. An 
implicit differentiation of (4.4) with (R, P) = (R(K),  P(K)) yields 

dP(K~,)/dK = - bfi*(p)rhR(K~, O)/J~ (A.4) 

which implies the inequalities in (d). 
Finally, to prove part (e) of  Theorem 1 we turn to the characteristic equation (2.10) with 

(R, P) = (R(K), P(K)): 

1 x #*(#) / 

+ bfl*(p)pPgp(R, P)hR(R, P) = O. 

Since D=(0, K~) is as given by (A.2) there exists a unique root z = z(K), z(K,.~) = 0 for K ~ K~r. An 
implicit differentiation yields z'(K~) = - DK(K~, O)/D~(K,., 0) where 

OK(O, Kc~) = - #J+~ dP(Kr = bfl*(#)r#hR(Kc, O) 

by (A.4). Thus 

sign z'(K~) = - sign hR(Kc~, 0). (A.5) 
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Now suppose Jcr > 0. By part (d) the positive equilibrium exists for K > Kcr ( <  K~,) when 
hR(K~,,O) < 0 (>  0). Thus,  by (A.5) the root z(K) satisfies Rez(K) > 0 for K >  K~ ( <  K, )  and the 
positive equilibrium is unstable. 

Suppose that J~ < 0. Then similarly by (A.5) the root z(K) (unique for K ~ K~) satisfies Re z(K) < 0 
for K > K~, ( < / ~ r )  when hR(K~,, 0) > 0 ( < 0). This would imply stability, except that  we must  rule out  
the possible existence of  roots other than on this branch which satisfy Re z ~> 0. Such roots can be ruled 
out  for K ~ K,.~ by a contradiction argument  similar to that in the proof  of  part (c) given above. 

This completes the proof of  Theorem 1. 
We turn now to the proof  of  Theorem 2, which is based upon an investigation of  the roots of  the 

following characteristic equation associated with the equilibrium (R, P) = (R(m), P(m)) when fl is given 
by (5.1): 

[ R ] I  ( f l~(zm+#_rn))  
D(z,m):= z -r+2r- -+gR(R,P)  (z+l~) 1 

K fl*(#m) / 

-- bn(m)fl*(#m)#Php(R, P)] + bn(m)fl~(#m)#PhR(R, P)gp(R, P) = 0. (A.6) 

We are interested in the location of the roots of  (A.6) for m > 0 near zero. If we make the change of 
variable 

z = ~/[m11/2 
in (A.6) then D = [m[-~/2 A(~, m), where 

[ ( R ) ] [  +#,ml~/x)fl~(#m)-fl*((lml~/Z+#m) 
h ( r  ~+ [m[  1/2 - r + 2 r  +gR  (~ 

K [mll/2fl~'(#m) 

- bn (m)~(#m)#Ph~]  + [mltJ2bn(m)fl{(#m)#Phage. 
A 

Now 

fl*(#m) - fl~(~lm[ 1/2 + #m) 1 ( '~ 1 - e x p ( -  ~]mll/2a) ~m~ 
[ml~t2fl*(#m) fl*(pm) Jo e-Um"fl~ im11/2 da -, m~- 

as m ---, 0. Thus 

A(~,O)=~(~2~o-bnomo#P~176176 ) . 

Suppose that he(R~ ~ > 0 and let ~o > 0 be the positive root of  A(~ ,0)=  0, i.e. ~0 = 
(bnomZopP~176176 1/2. Now A(ff, m) is defined and continuous in (~,m) near (~o,0) and is 
continuously differentiable in ~. In fact, 

c~A (~o, 0)/3~ = 2bnomo#P~ he( R ~ po) > 0 

and consequently the implicit function theorem (Goursat  I-6]) implies the existence of a root ~ = ~(m) for 
m ~ 0 satisfying if(0) = ~o > 0. It follows that Re ~(m) > 0 for m ~ 0. Thus,  the characteristic equation 
has a root 

z(m) = ~(m)/m 1/2, Re ~(m) > 0 for m > 0, m ~ 0 (A.7) 

lying in the right half plane and the equilibrium is consequently unstable for m ,~ 0. 
Suppose now that hp(R ~ po) < 0. Then A((, 0) = 0 has two purely imaginary roots 

~o = +- i(-  bnom~#P~ he( R ~ P~ ) ~/2. 

Since again ~A(ffo, 0)/~3~ = 2bnorno#P~ ~ po) # 0 we find that the implicit function theorem implies 
the existence of a root of  (A.6) 

z(m) = ~(rn)/m 1/2, Re~(0) = 0. 

It follows that  the equilibrium is destabilized as m $ 0. 
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A further investigation of the sign of Re z(m) for m ~ 0 would determine when Re z(m) > 0 and 
hence the equilibrium is genuinely unstable for m ~ 0. In principle this is easily done by a calculation of 
z'(m) for m ~ 0, but we found the resulting condition too complicated and awkward to present here. In 
any case the destabilization in the case when hp(R ~ p0) < 0 has been established. 

Finally, consider the case when hp(R ~ po) = 0. In this case we proceed slightly differently by writing 
z = (,/rn 1/3 and 

D = D((,m) = I~ + m a l 3 ( _  r + 2 r R  + g R ) l ( (  § l~ml,3) fl*("m) - fl*(~mZl3 + llm) 
mZ;3 fl'~(vm) 

+ bn(m)/3~(l~m)#PhRge = O. 

Since 

as m ~ 0 it follows that 

#*(pro) - -  fl~(~rn z13 + ~zm) -> ( r n  l 

mZ13 /3~ (#m ) mo 

D((~, O) = ~3 m t +  bnomoppohR(RO, pO)ge(RO ' po) = 0 
177 0 

has at least one root (o, Re (o > 0, when hR(R ~ P~176 , po) r O. Since D~((o, 0) = 3(~mu'mo r 0 the 
implicit function theorem implies the existence of a root 

z(m) = g,(m)/rn 1/3, Re if(m) > 0 for m ~, 0 (A.8) 

and the instability of the equilibrium follows. 
i fhg(R  o, po) = 0 then the characteristic equation has root z = 0 for all m which meets the definition 

of  the destabitization of the equilibrium. The same is true if ge(R~ ~ = O. 
This completes the proof of  Theorem 2. 
Finally we prove Theorem 3. Part (a) follows from (A.7) while part (b) follows from (A.8). We have 

only to prove part (c). Putting m = 0 in (A.6) we find that 

I Ro j D(z, O) = z - r + 2 r - -  + 9R(R ~ pO) [ _  bnomo#POhp(RO, p0)] 
K 

+ bnomoppohR(RO pO)gp(RO ' po) ~ 0 

which, when solved for z, yields the real root 

z = z o : = -- Jo/bmonohp(R ~ po) > O. 

Since D~(zo, O) = bnomotzP~ ~ po) ~ 0 another implicit function theorem application implies the 
existence of  roots z = z(m) for m ~ 0 which satisfy z(0) = zo and hence Rez(m) > 0 for m ~ 0. This 
completes the proof  of  Theorem 3. 

Finally, we verify the characterization of the maturation functions (5.1) given in Section 5. Suppose 
that the ratio p described in this characterization is independent of a. If fl =/~(a, m) is an arbitrary 
maturation function with maturation period m then 

bh(R, P)~(a, m) da 
p(m) 

bh( R, P)fl(a/m, 1)d(a/m) 

which implies that/3 is given by (5. l ) with flo(a) : =/3(a, 1) and n(m) = p(m). Conversely, suppose that 17 is 
given by (5.1). Then 

bh(R, P)/3(a) da n(m) 

bh(R, P)[3(a/m)d(a/m) n(1) 

is independent of a. 
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