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Abstract. We consider the phenomenon of partial migration which is exhibited by populations in which
some individuals migrate between habitats during their lifetime, but others do not. First, using an adap-
tive dynamics approach, we show that partial migration can be explained on the basis of negative density
dependence in the per capita fertilities alone, provided that this density dependence is attenuated for in-
creasing abundances of the subtypes that make up the population. We present an exact formula for the
optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant
subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well
as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS
because it is based on invasion exponents obtained from linearization arguments, which fail to capture the
stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a
“weak ESS”, as proposed in [24] for a related model, is a genuine ESS. Secondly, we use an evolutionary
game theory approach, and confirm, once again, that partial migration can be attributed to negative density
dependence alone. In this context, the result holds even when density dependence is not attenuated. In this
case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis
based on the adaptive dynamics.

The key feature of the population models considered here is that they are monotone dynamical systems,
which enables a a rather comprehensive mathematical analysis.
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1. Introduction

Partial migration is the phenomenon in which some individuals of a population migrate between habitats,
whereas others remain in a single habitat during their entire lifetime [5]. There are many examples of
populations that exhibit partial migration. In many bird species for instance, a fraction of the population
remains on site year-round, whereas the remaining fractions migrates towards warmer or more Southern
latitudes to overwinter [28]. Certain fish populations also display partial migration. For example, in
salmonids species a fraction of individuals migrate to the ocean before returning to spawn, and others
spend their entire life in the stream [17, 9].

There has been a lot of interest into why and how nature has developed such a complex system in
which populations consist of a mix of migratory and non-migratory individuals. Several mechanisms
have been implicated, including genetic control, density-dependence, and exogenous stochastic effects in
environmental variablessee [23, 16, 18, 5, 29, 40, 24] and references therein.

In this paper, motivated primarily by partial migration in the salmonid Oncorhynchus mykiss, we take
an adaptive dynamics approach, and show that negative density dependence in the per capita fertilities
alone can explain this intriguing phenomenon, provided that the negative density-dependence is attenuated
with increasing subtype abundances. Our results confirm and extend those of [18, 24], although the
analysis in these papers is based on different population models. Moreover, we clarify the notion of a“weak
Evolutionary Stable Strategy”, which was proposed in [24], and uncover a condition on the nature of the
density dependence that guarantees that it is in fact a true Evolutionary Stable Strategy (or ESS). But
to achieve this, we must first revisit and extend the definition of an ESS as found in most references
[10, 6, 34, 8]. This is because the classical definition is based on a linear stability analysis near a fixed
point (or, more generally near an invariant set) of a particular nonlinear dynamical system that models the
interaction between the candidate ESS and a mutant strategist. As it turns out, here such a linear stability
analysis near the fixed point corresponding to a candidate ESS, is inconclusive because the linearization is
critical. However, it is possible to perform a nonlinear stability analysis of this fixed point, avoiding center
manifold based approaches, but instead exploiting an important feature of the dynamical system, known
as K-monotonicity [15].

Furthermore, we show that this ESS is also a Convergent Stable Strategy (CSS). This implies that this
strategy is an evolutionary attractor for the adaptive dynamics. An ESS which is also a CSS is one of the
strongest notions in adaptive dynamics; not only can such a strategy resist invasion by mutants strategists
(by being an ESS), but the strategy value adopted by the population will also eventually converge to this
strategy in the evolutionary process, via consecutive fitness-increasing mutant substitutions.

Another aspect of our work is that we derive a formula for the ESS in terms of the demographic model
parameters for the migrant and non-migrant populations. This formula can be used to predict the ESS
value, whenever the basic demographic parameters of the migrant and non-migrant populations are known.
Additionally, this formula may be used to determine some of these demographic parameters in case they
are not known, provided that a reliable estimate of the ESS value exists, possibly based on field or lab
data.

To assess if our findings depend on the specific principles upon which the theory of adaptive dynamics is
built, we also investigate whether partial migration can be explained using ideas from evolutionary game
theory [44]. We find that the exact same ESS found using adaptive dynamics, is also the optimal allocation
strategy towards migrants in this case. This provides solid theoretical evidence for the specific ESS value
predicted by both modeling frameworks. An interesting difference between the two approaches, is that
density dependence of the fertilities does no longer have to be attenuated in the evolutionary game setup.
Whether or not attenuation in density dependence can be relaxed in the realm of adaptive dynamics, is
currently unknown.
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2. A population model for migrants and non-migrants with fixed allocation strategy

2.1. Population model. We consider the following density-dependent model.

(1)




x1(t+ 1)
xM (t+ 1)
xN (t+ 1)



 =




0 fM (xM (t)) fN (xN (t))

φsM 0 0
(1− φ)sN 0 0








x1(t)
xM (t)
xN (t)



 ,

where x1(t), xM (t) and xN (t) are non-negative real numbers, respectively representing the abundances
of eggs, migrant adults and non-migrant adults at time t, where t is a non-negative integer. A fraction
φ ∈ [0, 1] of eggs at time t will become migrant adults, provided they survive a season, which is captured
by the survival probability sM ∈ (0, 1] in the model. Similarly, a fraction 1 − φ of eggs will become non-
migrant adults, after surviving a season, with survival probability sN ∈ (0, 1]. The parameter φ represents
an allocation strategy whereby each morph (migrant or non-migrant) produces offspring that can become
either type of morphs. In this way, the population is completely integrated and does not represent two
separately evolving populations. For now, we assume that φ is fixed, although later on, when taking
an adaptive dynamics perspective, we will think of φ as a varying strategy value that will be subject to
evolution.

2.2. Density dependence assumptions. We assume that the number of eggs for both migrant and
non-migrant adults is negatively affected by their respective abundances. This implicitly assumes that
the migrant abundance does not affect the fertility of non-migrants, and vice versa. This is based on the
biological system of steelhead (migrants) and rainbow trout (non-migrants) (both of the species O. mykiss),
because the two morphs have segregated spawning times or habitats [27].

Mathematically, we make the following assumptions:

(H1) fM : [0,∞) → (0,∞) and fN : [0,∞) → (0,+∞) are smooth functions, with negative derivatives, i.e.
f �
M
(z) < 0, and f �

N
(z) < 0, for all z ≥ 0. We set fM,∞ = limz→∞ fM (z) and fN,∞ = limz→∞ fN (z),

for appropriate non-negative constants fM,∞ and fN,∞.

(H2) gM (z) := fM (z)z and gN (z) := fN (z)z have positive derivatives, i.e. g�
M
(z) > 0, and g�

N
(z) >

0, for all z ≥ 0.

(H2) expresses that, although the per capita fertilities decrease as the adult abundances increase (by
(H1)), the total fertilities of migrants and residents are in fact increasing.

An important consequence of condition (H2), is that it ensures that system (1) is monotone. This
means that if x(0) ≤ y(0) (the latter inequality for the two vectors means that all 3 corresponding com-
ponents of these vectors are ordered accordingly), then x(1) ≤ y(1), for any given pair of non-negative
initial population vectors x(0) and y(0). To prove this, we apply the fundamental theorem of calculus, in
conjunction with the fact that the Jacobian matrix in any state of system (1) is a non-negative matrix by
condition (H2):

y(1)− x(1) = T (y(0))− T (x(0)) =

� 1

0
J(ty(0) + (1− t)x(0))(y(0)− x(0))dt ≥ 0,

where T denotes the map on the right-hand side of (1), and J is the Jacobian matrix of system (1) (i.e.,
the derivative of the map T ).

Examples: Several well-known fertility functions satisfy the two hypotheses (H1)-(H2):

• The Beverton-Holt function [2]

fB(z) =
aB

1 + bBz
,

where aB and bB are arbitrary positive constants, serves as our main example of a fertility function
that satisfies all the above conditions. Indeed, fB(z) is a smoothly decreasing function of z ≥ 0
with zero limit as z → ∞, hence it satisfies (H1). The function gB(z) = zfB(z) has derivative

g�B(z) =
aB

(1 + bBz)2
,
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which is positive for z ≥ 0, hence it satisfies (H2).
• The Hassell function [14] generalizes the Beverton-Holt function:

fH(z) =
aH

(1 + bHz)cH
,

where aH and bH are still arbitrary positive constants, but an additional positive parameter cH is
introduced (for cH = 1, we recover the Beverton-Holt function). The function fH(z) is a smoothly
decreasing function of z ≥ 0 with zero limit as z → ∞, hence it satisfies (H1). The function
gH(z) = zfH(z) has derivative

g�H(z) =
aH(1 + (1− cH)bHz)

(1 + bHz)cH+1
,

which is positive for z ≥ 0, provided that

0 < cH ≤ 1,

whence satisfies (H2).

On the other hand, the Ricker function [32]:

fR(z) = er(1−z/k),

where r and k are positive parameters satisfies (H1), but does not satisfy (H2). Indeed, the function
gR(z) = zfR(z) has derivative

g�R(z) = er(1−z/k)
�
1− r

k
z
�
,

which changes sign when z crosses through the value k/r. Therefore, the function gR(z) is not monotonically
increasing for z ≥ 0, hence fails to satisfy (H2).

2.3. The Basic Reproduction number. Model (1) can be re-written more compactly in vector form as

(2) x(t+ 1) = A1(x(t),φ)x(t),

where

x =




x1
xM
xN



 , and A1(x,φ) =




0 fM (xM ) fN (xN )

φsM 0 0
(1− φ)sN 0 0



 .

By splitting A1(x,φ) as:

A1(x,φ) = F + T, where F =




0 fM (xM ) fN (xN )
0 0 0
0 0 0



 , and T =




0 0 0

φsM 0 0
(1− φ)sN 0 0



 ,

we can associate the basic reproduction number to the non-negative matrix A1(x,φ) in the usual way
[7, 4, 22, 1]:

(3) R0(x,φ) := ρ(F (I − T )−1) = φsMfM (xM ) + (1− φ)sNfN (xN ), for every (x,φ) ∈ R3
+ × [0, 1].

Here, ρ(F (I − T )−1) denotes the spectral radius of F (I − T )−1.
For convenience, we also define

R0(∞,φ) = φsMfM,∞ + (1− φ)sNfN,∞, for every φ ∈ [0, 1].

2.4. Global Stability for the population model. The main result, which we prove in the Appendix,
is that populations with a fixed allocation strategy φ will settle at a globally stable fixed point, provided
that the basic reproduction number near the extinction fixed point is larger than 1:

Theorem 2.1. Assume that (H1) − (H2) holds for system (1), and that the basic reproduction numbers

satisfy:

(4) R0(∞,φ) < 1 < R0(0,φ), for all φ ∈ [0, 1].

Then the following holds:
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(1) For all φ ∈ (0, 1), system (1) has a unique, positive fixed point x∗(φ) which is linearly stable, and

which attracts all positive solutions of (1).
(2) If φ = 0, then system (1) has a unique, non-zero fixed point (x̃1, 0, x̃N ), where x̃N > 0 is the unique

positive solution to the equation sNfN (z) = 1, and x̃1 = x̃N/sN . This fixed point is linearly stable,

and attracts all positive solutions of system (1).
(3) If φ = 1, then system (1) has a unique, non-zero fixed point (x̂1, x̂M , 0), where x̂M > 0 is the unique

positive solution to the equation sMfM (z) = 1, and x̂1 = x̂M/sM . This fixed point is linearly stable,

and attracts all positive solutions of system (1).

The function φ → x∗(φ) is smooth, and limφ→0 x∗(φ) = (x̃1, 0, x̃N ) and limφ→1 x∗(φ) = (x̂1, x̂M , 0).

Remark 2.2. Notice that condition (4) is equivalent to:

sMfM (0) > 1, sNfN (0) > 1, and sMfM,∞ < 1, sNfN,∞ < 1.

because R0(0,φ) (R0(∞,φ)) is a convex combination of the numbers sMfM (0) and sNfN (0) (sMfM,∞ and
sNfN,∞).

Also note that fM,∞ = fR,∞ = 0 in case fM and fR are Beverton-Holt or Hassell functions, and hence
the condition that R0(∞,φ) < 1 is automatically satisfied, because R0(∞,φ) = 0.

3. Adaptive dynamics: generalizing the definition of ESS and CSS

Theorem 2.1 shows that for a given allocation strategy φ, there will be a unique globally stable fixed
point. This result does not, however, explain which value of φ is adopted in natural populations. One
possible choice would be to pick the value of φ that maximizes the basic reproduction number R0(0,φ).
Formula (3) shows that the latter is a linear function of the variable φ, which would suggest that φ must
take on one of its extreme values, namely zero or one, at least if the extremal values sMfM (0) and sNfN (0)
of the function R0(0,φ) are different (if they are the same, then R0(0,φ) is a constant function, hence every
φ in [0, 1] would be a maxmizer). This would imply that either only migrants (if φ = 1 is the maximizer),
or only non-migrants (if φ = 0 is the maximizer) would occur, and this would obviously contradict that a
mix of migrants and non-migrants is present in natural populations.

Instead of the above argument, here we shall take an adaptive dynamics approach to address this
question. We will show that there exists a unique evolutionary stable strategy (ESS) φ∗, corresponding to
a non-extreme value of the strategy parameter φ, i.e. φ∗ will belong to (0, 1). Moreover, we will show that
φ∗ is also a converging stable strategy (CSS), making φ∗ an evolutionary stable attractor for the adaptive
dynamics. The latter property provides theoretical evidence for how the ESS φ∗ has evolved dynamically.
Moreover, we shall derive an analytical formula for the ESS φ∗ in terms of the model’s demographic
parameters. This is relevant to natural populations for which these parameters are known (e.g. from field
work or from lab experiments), because the formula can be used to predict the ESS φ∗.

3.1. The coupled resident-mutant model. We consider a resident population that uses strategy value
φ, and assume invasion by a mutant population using strategy value φ� �= φ. The resulting dynamical
population model takes the following form:

(5) X(t+ 1) = A(X(t))X(t),

where

X(t) =





resident egg abundance (x1(t))
resident migrant adult abundance (xM (t))

resident non-migrant adult abundance (xN (t))
mutant egg abundance (y1(t))

mutant migrant adult abundance (yM (t))
mutant non-migrant adult abundance (yN (t))




,

A(X(t)) =

�
A1(x(t) + y(t),φ) 0

0 A1(x(t) + y(t),φ�)

�
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with

x =




x1
xM
xN



 , y =




y1
yM
yN



 , and A1(x,φ) =




0 fM (xM ) fN (xN )

φsM 0 0
(1− φ)sN 0 0





The specific form of the interaction matrix A(X) implies that the density dependence of the fertilities by
migrants, only depends on the total (resident plus mutant, or xM +yM ) adult migrant abundance, and not
on the non-migrant abundance. Once again, this is motivated by the species O. mykiss, in which migrants
and non-migrants spawn in segregated habitats, thereby avoiding competitive effects with each other in
this process. The fact that density dependence is assumed to depend on the total abundances, expresses
that residents and mutants of each morph (migrant and non-migrant) spawn in the same areas, hence
experience the detrimental competitive effects of each other’s presence. Another important feature of this
model is that it assumes that there is no inter-mating between residents and mutants. Indeed, resident
adults will only generate resident eggs, and mutant adults will only generate mutant eggs. This is a strong
assumption favoring assortative mating, although this is questionable. However, in the context of adaptive
dynamics, it is a commonly made assumption. One problem when trying to relax this assumption, is that
additional biological knowledge is required, which may not be available. For example, when a resident and
mutant adult mate, the nature of their offspring (resident or mutant) needs to be specified. This requires
the introduction of yet another allocation strategy parameter for the probability that this offspring becomes
a resident. This probability depends on complex and poorly known genetic and environmental factors. We
avoid such difficulties by making an assortative mating assumption, yet are fully aware of its limitations.
The model studied here can serve as a benchmark to compare the behavior of future models to, which
incorporate the possibility of inter-mating.

We assume that all assumptions (H1) − (H2) and condition (4) of Theorem 2.1 continue to hold here

for system (5). Hence, for each φ in [0, 1], system (5) has a fixed point X∗(φ) =

�
x∗(φ)
0

�
, where x∗(φ) =




x∗1(φ)
x∗
M
(φ)

x∗
N
(φ)



 is the unique nonzero fixed point of system (1) featured in Theorem 2.1.

Definition 3.1. We say that φ∗ in [0, 1] is an evolutionary stable strategy (ESS) if X∗(φ∗) is a locally
asymptotically stable fixed point of system (5) for all φ� �= φ∗ in some neighborhood of φ∗.

This notion captures that if the resident population has adopted an ESS, then it cannot be invaded by
mutants that use nearby strategies. Contrary to its terminology, an ESS merely represents a fixed point
for the adaptive dynamics. This does not necessarily mean that an ESS possesses any kind of stability
properties for the adaptive dynamics. An ESS that exhibits certain stability features for the adaptive
dynamics, requires the introduction of another concept:

Definition 3.2. We say that φ∗ in [0, 1] is a convergence stable strategy (CSS) if there is a neighborhood
N of φ∗ such that X∗(φ∗) is not an asymptotically stable fixed point of system (5) for all pairs (φ,φ�) with
φ in N that satisfy that either φ < φ� < φ∗ or φ∗ < φ� < φ, but an asymptotically stable fixed point of
system (5) for all pairs (φ,φ�) with φ in N that satisfy that either φ� < φ < φ∗ or φ∗ < φ < φ�.

The intuitive idea behind this definition is as follows: Suppose that the resident has adopted a strategy
that is nearby, but distinct from a CSS. Suppose also that a mutant is introduced whose strategy is farther
away from the CSS value. This mutant will then fail to invade the environment occupied by the resident.
But over time, a mutant may arise whose strategy value is closer to the CSS value. Such a mutant will
be able to successfully invade the resident’s environment. Iterating this process, yields a sequence of
successfully invading mutants whose strategies converge monotonically towards the CSS.

Definitions 3.1 and 3.2 are more general than the corresponding ones usually found in the literature, as
they cover the latter. For instance, no reference is made to any kind of fitness function, which is what is
normally done when defining ESS and CSS. The main reason for the more general definitions proposed here,
is that whereas notions of ESS and CSS in the literature are invariably based on linearization arguments
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near fixed points of coupled models, we encounter a situation here where such arguments are inconclusive.
In particular, we find that the linearization of the coupled model (5) near the boundary fixed point X∗(φ∗),
where φ∗ is the candidate ESS, is critical due to the occurrence of 2 eigenvalues having modulus equal to 1.
According to the classical ESS definition based on linearization arguments, φ∗ would not be called on ESS.
However, a more detailed non-linear analysis reveals that the fixed point X∗(φ∗) is locally asymptotically
stable for all values φ� �= φ∗. In other words, no mutant φ� �= φ∗ can successfully invade the resident φ∗,
and this is exactly the key property exhibited by an ESS as captured by Definition 3.1.

3.2. Linear invasion analysis. To investigate whether the mutant can successfully invade the resident
population, we fix a (resident,mutant) strategy pair (φ,φ�) in [0, 1] × [0, 1], and linearize system (5) near
the fixed point X∗(φ). By Theorem 2.1, the upper diagonal block of the linearization near X∗(φ) is a
stable matrix, and thus we focus on the 3× 3 matrix in the lower-diagonal block, which takes the form:

A1(x
∗(φ),φ�) =




0 fM (x∗

M
(φ)) fN (x∗

N
(φ))

φ�sM 0 0
(1− φ�)sN 0 0





The mutant can successfully invade if the dominant eigenvalue of this matrix is larger than 1, and it
cannot invade if it has dominant eigenvalue less than 1. Since this dominant eigenvalue and R0(x∗(φ),φ�)
are always on the same side of 1 as shown in [22], the success or failure of invasion by the mutant can be
determined by checking the sign of:

(6) W (φ,φ�) := R0(x
∗(φ),φ�)− 1 = φ�sMfM (x∗M (φ)) + (1− φ�)sNfN (x∗N (φ))− 1,

where we have used the formula (3). In the context of adaptive dynamics, the function W (φ,φ�) is often
referred to as the fitness of the mutant adopting strategy φ� in an environment occupied by a resident
population adopting strategy φ. If W (φ,φ�) > 0, then the mutant can successfully invade; if W (φ,φ�) < 0,
then the mutant fails to invade.

We next simplify the function W (φ,φ�) by using the fact that x∗(φ) is the unique non-zero fixed point of
system (1), or equivalently of system (2). Then the Perron-Frobenius Theorem implies in particular that
the dominant eigenvalue of A1(x∗(φ),φ) is equal to one, and hence by [22] that:

R0(x
∗(φ),φ) = φsMfM (x∗M (φ)) + (1− φ)sNfN (x∗N (φ)) = 1.

Therefore,

(7) W (φ,φ�) = (φ� − φ)(sMfM (x∗M (φ))− sNfN (x∗N (φ))).

This simplification reveals that W (φ,φ�) is the product of (φ� − φ) and a function that depends only on φ.
We further investigate the latter function, and focus on which value(s) of φ in [0, 1], this function is zero.
This happens if and only if sM (fM (x∗

M
(φ))) = sNfN (x∗

N
(φ)). Since x∗(φ) is a non-zero fixed point of (1),

there holds that
x∗1(φ) = x∗1(φ) (φsMfM (x∗M (φ) + (1− φ)sNfN (x∗N (φ))) .

Theorem 2.1 shows that x∗1(φ) > 0 for all φ in [0, 1], and therefore sM (fM (x∗
M
(φ))) = sNfN (x∗

N
(φ)) holds,

if and only if
sMfM (x∗M (φ)) = 1 = sNfN (x∗N (φ)).

But this is equivalent to
x∗M (φ) = x̂M and x∗N (φ) = x̃N ,

where we recall that x̂M and x̃N are the respective unique solutions of the equations sMfM (z) = 1 and
sNfN (z) = 1. Since x∗(φ) is a non-zero fixed point of system (1) with x∗1(φ) > 0, this is equivalent to

x∗
M
(φ)

x∗
N
(φ)

=
x̂M
x̃N

=
sM
sN

φ

1− φ
,

The equation on the right can now be solved for φ, and this yields the following unique solution in [0, 1]:

(8) φ∗ =
x̂M/x̃N

x̂M/x̃N + sM/sN
.



8 PATRICK DE LEENHEER, ANUSHAYA MOHAPATRA, HALEY A. OHMS, DAVID A. LYTLE, AND J.M. CUSHING

!

!

"#

$%&%' $(&)%'

$(&('

*+

,-

*-

,+

. /

/
$%&('

Figure 1. Pairwise invasibility plot (PIP): W (φ,φ�) is the fitness of a mutant strategist φ�

in an environment set by a resident strategist φ, which is obtained from a linear stability
analysis of the fixed point X∗(φ) of system (5). W (φ,φ�) = 0 if (φ,φ�) belongs to one
of the two dashed lines; W (φ,φ�) > 0 if (φ,φ�) belongs to the NW or SE region (dark);
W (φ,φ�) < 00 if (φ,φ�) belongs to the NE or SW region (light).

The formula (8) clearly shows that φ∗ belongs to (0, 1), which corresponds to a non-extreme allocation
strategy, exhibiting a mix of migrants and non-migrants. We have established that W (φ,φ�) = 0 if and
only if

φ = φ� or φ = φ∗.

It is now relatively straightforward to describe the sign of the function W (φ,φ�) for all pairs (φ,φ�) in
[0, 1]× [0, 1], as depicted in Figure 1. Indeed, W (φ,φ�) is a continuous function, which is zero if and only if
either the pair (φ,φ�) belongs to the diagonal where φ = φ�, or to the vertical line through φ∗. These two
lines divide the square [0, 1]× [0, 1] in four open regions, where the sign of the function W is either positive
or negative. We label these -perhaps a bit inaccurately, compared to the familiar compass directions- by
NE, SE, SW and NW, see Figure 1. The sign of W (φ,φ�) for pairs (φ,φ�) in the SE region is the same as
the sign of W (1, 0) = −(1− sNfN (0)), which is positive by Remark 2.2. Similarly, W (0, 1) = sMfM (0)− 1
is positive as well, and thus W (φ,φ�) > 0 in the NW region. The sign of W (φ,φ�) for pairs (φ,φ�) in
the NE region is the same as the sign of W (φ, 1), where φ is an arbitrary value in the open interval
(φ∗, 1). Since W can be factored as in (7), the sign of W (φ, 1) is equal to the sign of the second factor
sMfM (x∗

M
(φ)) − sNfN (x∗

N
(φ)), which is continuous in φ. The analysis above has shown that the latter

function can only be zero when φ = φ∗, and since φ > φ∗, it follows that the sign of this second factor
is equal to the sign of sMfM (x∗

M
(1)) − sNfN (x∗

N
(1)) = 1 − sNfN (0), which is negative by Remark 2.2.

Thus, W (φ,φ�) is negative for all pairs (φ,φ�) in the NE region. A similar argument shows that W (φ,φ�)
is negative for all pairs (φ,φ�) in the SW region.

Remark 3.3. It is rather remarkable that the Pairwise Invasibility Plot looks exactly the same as the
corresponding PIPs in [24] and [18], although the latter papers consider different population models. The
underlying population model considered here has 3 state variables (eggs, migrant and non-migrant adults),
and differs from the one in [24] where there is only a single state variable for the total (migrant plus
non-migrant) number of adults. Moreover, the model in [24] assumes that density dependence takes place
in the survival probabilities sM and sN , not in fertilities fM and fN . And one more difference, is that in
addition to density dependence, there is also explicit trait dependence on the parameter φ of the survival
probabilities. Despite all these differences, the PIP of both models look exactly the same. In fact, the
same is true for the model considered by [18], where the underlying population model resembles more
closely the one considered here. Indeed, that model has 2 state variables (for migrant and non-migrant
adults), and considers only density dependence (no frequency dependence) in the fertilities, but not in the
survival probabilities. On the other hand, the model deviates from the one presented here in the specific
way in which density dependence occurs for the migrants, namely by assuming that migrants experience
density dependence based on the sum of migrant and non-migrant adults. In our models, the subtypes only
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experience density dependence from individuals of the same subtype. But once again, the PIP obtained in
[18] looks identical to the one obtained here as well. Thus, it appears that partial migration can be based
on the existence of a unique ESS which is also a CSS for a wide variety of models. However, at this stage
in the analysis we have not yet established that φ∗ is indeed an ESS. This will be achieved in the following
subsection, using a nonlinear local stability analysis. Such a nonlinear analysis has not been carried out in
[24] or [18], which explain the proposal in [24] to refer to φ∗ as a ’weak ESS’. Our analysis will reveal that
this so-called weak ESS, is in fact a true ESS.

3.3. Nonlinear invasion analysis: φ∗ is an ESS and a CSS for convex fertility functions. The
linear invasion analysis performed above, shows that the only candidate ESS is φ∗, given by formula (8).
However, since W (φ∗,φ�) = 0 for all φ� in [0, 1], it is not yet possible to conclude that φ∗ is in fact an ESS
in the sense of Definition 3.1. To achieve this, we will subject system (5) to a local, but nonlinear stability
analysis near the fixed point X(φ∗) for arbitrary values of the mutant strategy φ� �= φ∗. Our main result
is that φ∗ is indeed an ESS, as well as a CSS, provided that the fertility functions fM and fN are strictly
convex, which is the case when they are both Beverton-Holt or Hassell functions as we will show later.

Theorem 3.4. Assume that the conditions of Theorem 2.1 hold. Let φ∗ be given by (8), and suppose that

φ� ∈ (0, 1), but that φ� �= φ∗. If

(C) f ��
M (x∗M (φ∗)) > 0 and f ��

N (x∗N (φ∗)) > 0,

then the fixed point X∗(φ∗) of system (5) is locally asymptotically stable, and hence φ∗ is an ESS. Moreover,

φ∗ is the unique ESS in [0, 1], and it is also a CSS.

Proof. The linear invasion analysis in the subsection above clearly shows that the only candidate for an
ESS is φ∗. Indeed, if φ �= φ∗, then there always exist mutant strategies φ� �= φ, but near φ, such that
W (φ,φ�) > 0. This implies that the fixed point X∗(φ) is a (linearly) unstable fixed point of system (5),
and hence such a φ cannot be an ESS in the sense of Definition 3.1. We also note that the linear invasion
analysis above shows that φ∗ is always a CSS, by verifying that the conditions in Definition 3.2 hold, which
can be seen quite easily from Figure 1.

Thus, we are left with proving that φ∗ is an ESS when (C) holds. We will do this by showing that the
fixed point X∗(φ∗) of system (5), is locally asymptotically stable whenever φ� ∈ (0, 1), yet φ� �= φ∗.

A key property of system (5) is that it is monotone [15] with respect to the partial order on R6 induced
by the cone K = R3

+ × (−R3
+); we will refer to this by saying that system (5) is K-monotone. This cone

K generates the partial order ≤K on R6
+, which is defined by declaring that X ≤K Y if and only if the

vector Y −X belongs to K. K-monotonicity of system (5) is then defined as follows:

(9) If X ≤K Y, then A(X)X ≤K A(Y )Y.

Thus, K-monotonicity simply expresses that 2 solutions of system (5) that are ordered initially,will preserve
the order. That system (5) is indeed K-monotone follows from the assumptions (H1) and (H2), as shown
in [15] .

By means of the linear coordinate change

X̃ = X −X∗(φ),

we first translate the fixed point X∗(φ) of system (5) to the origin of R6, and dropping tildes, we re-write
the transformed system, which is also K-monotone, as

(10) X(t+ 1) = F (X(t)).

We claim that as long as φ∗ �= φ� ∈ (0, 1), the origin is an asymptotically stable fixed point for (10)
with respect to perturbations ∆X = (∆x,∆y) near X = 0 for which ∆x is arbitrary, but for which
∆y ≥ 0. We shall first show that there are two vectors u1 ≤K 0 and 0 ≤K u2, such that the set
N = {X | u1 ≤K X ≤K u2} is a compact neighborhood of X = 0, and such that

(11) u1 ≤K F (u1) ≤K 0 ≤K F (u2) ≤K u2.

To establish this claim, we start by calculating the Jacobian matrix J of F (X) at X = 0:

(12) J =

�
A1(x∗(φ∗),φ∗) +B B

0 A1(x∗(φ∗),φ�)

�
,
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where

B =




0 f

�
M
(x∗

M
(φ∗))x∗

M
(φ∗) f

�
N
(x∗

N
(φ∗))x∗

N
(φ∗)

0 0 0
0 0 0



 .

The spectrum of J consists of all the eigenvalues of the matrix A1(x∗(φ∗),φ∗) + B (all of which have
modulus less than 1, as shown in the proof of Theorem 2.1), and of the matrix A1(x∗(φ∗),φ�), a non-
negative and irreducible (as φ� ∈ (0, 1)) matrix whose dominant eigenvalue equals 1, because by assumption
W (φ∗,φ�) = 0, or equivalently by (6) because R0(x∗(φ∗),φ�) = 1. Hence, the spectral radius of J equals
1 as well. Now J is a K-monotone matrix (meaning that J maps the cone K into itself), and thus the
Perron-Frobenius Theorem for K-monotone matrices [43], implies that there is an eigenvector 0 ≤K V
corresponding to the dominant eigenvalue 1. In fact, in the Appendix we calculate V explicitly, and show
that V belongs to the interior of K for all φ� ∈ (0, 1). It is also shown in the Appendix that for all
sufficiently small � > 0, there holds that u1 ≤K F (u1), when u1 = −�V .

The existence of a vector 0 ≤K u2 such that F (u2) ≤K u2 can be established as follows. We reconsider

system (5) and assume that φ = φ∗, and that φ� ∈ (0, 1). Then the set {X =

�
x
y

�
| y = 0} is invariant,

and the restriction of the dynamics to this invariant set, is such that all solutions with positive initial
x-vector, converge to x∗(φ∗) by Theorem 2.1. Moreover, in Case 1 of the proof of Theorem 2.1, we have
shown that there exists a positive vector b in R3 such that 0 ≤ T (b) ≤ b, where T (x) = A1(x,φ∗)x. In
fact, b can be chosen so that all its components are strictly larger than the corresponding components of
x∗(φ∗). Consequently, by setting

u2 =

�
b− x∗(φ∗)

0

�
,

it follows that u2 ≥K 0, and it can be verified that

F (u2) =

�
A1(b,φ∗)b− x∗(φ∗)

0

�
=

�
T (b)− x∗(φ∗)

0

�
≤K

�
b− x∗(φ∗)

0

�
= u2

Combining the existence of the vectors u1 and u2 with the properties listed above, and the fact that system
(10) is K-monotone, establishes (11). Notice in particular that the vectors u1 and u2 are such that N is
indeed a compact neighborhood of X = 0.

Now, since system (10) is K-monotone, (11) implies that the orbit starting at u1 is increasing with
respect to the partial order ≤K , and bounded above (by the zero fixed point). Thus, it must converge
to some fixed point X1 in N . Similarly, K-monotonicity and (11) imply that the orbit starting in u2 is
decreasing with respect to the partial order ≤K , and bounded below by the zero fixed point, and must
also converge to some fixed point X2 in N . We now claim that we can always shrink N by choosing � > 0
sufficiently small in the definition of u1, so that X1 = X2 = 0. To see this, suppose that (x̃, ỹ) is any fixed
point of system (10) in N , with ỹ ≥ 0. If ỹ = 0, we first shrink N by choosing � > 0 sufficiently small
in the definition of the vector u1, so that N does not include the fixed point (−x∗(φ∗), 0) of system (10).
Then x̃ must also be equal to 0 since (0, 0) is the unique fixed point in N of system (10) restricted to the
invariant set where y = 0. Therefore, any fixed point (x̃, ỹ) in N is necessarily such that ỹ �= 0. In fact,
the system equations (10) -see also (19) in the Appendix for the explicit functional forms- imply that ỹ
must necessarily be a positive vector because φ� ∈ (0, 1). Moreover, as shown above, for any fixed point
(x̃, ỹ) in N , we have made sure that x̃+x∗(φ∗) is a positive vector as well. Therefore, if N would contain a
fixed point (x̃, ỹ), other than X = 0, then both x̃+x∗(φ∗) and ỹ would both be positive vectors. Then the
original system (5) would have a positive fixed point as well. In the Appendix we show that this system
can have at most one positive fixed point. By choosing � > 0 even smaller in the definition of u1, we can
then ensure that the corresponding shifted fixed point for system (10), does not belong to N . Therefore, N
is an isolating neighborhood for the fixed point X = 0, in the sense that it contains no other fixed points.
In conclusion, we have proved the claim that X1 = X2 = 0 by appropriately choosing N , and therefore by
K-monotonicity, all solutions in the compact, invariant neighborhood N , converge to X = 0. Going back
to the original coordinates, we have proved that the fixed point X∗(φ∗) of the coupled system (5) is locally
asymptotically stable, which completes the proof of the theorem. �
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Examples: We have shown earlier that the Beverton-Holt [2] and Hassell [14] fertility functions satisfy
the two hypotheses (H1)-(H2). Next we show that they also satisfy the convexity condition (C), from
which follows that Theorem 3.4 applies when the fertility functions for migrants and non-migrants are of
these types:

• The Beverton-Holt function [2]

fB(z) =
aB

1 + bBz
,

where aB and bB are arbitrary positive constants, has the following second derivative:

f ��
B(z) =

2aBb2B
(1 + bBz)3

,

which is positive for all z ≥ 0, and thus (C) holds.
• The Hassell function [14]:

fH(z) =
aH

(1 + bHz)cH
,

where aH and bH are positive constants, and 0 < c ≤ 1 (which is imposed to make (H1)-(H2)
hold), has the following second derivative:

f ��
H =

aHb2
H
cH(cH + 1)

(1 + bHz)cH+2
,

which is positive for all z ≥ 0, implying that (C) holds.

3.4. Parametrizing models for salmonid species. Fecundity values of migrants and non-migrants
vary widely by location. In most cases, migrants have greater fecundities than non-migrants, although in
limited number of cases migrant fecundities are approximately equal to non-migrant. Individual fecundity
is highly correlated with length [39, 3, 37] as well as age and the number of spawning migrations [31].
Mean non-migrant fecundities range from 170 eggs in Idaho desert populations [37], to 1400 eggs in a
central Oregon population [38], and 3431 eggs in a western Alaska population [33], to 3065 eggs in an
eastern Russian population [19].
Mean migrant fecundities range from 3438 in a coastal Oregon population [3], 3500 eggs in a central Oregon
population [38], 4335-5706 eggs in a coastal Washington population [31], 7584 and 5171 in two California
populations [36], and 10,638 in an eastern Russian population [19].
It is well documented among salmonids and their relatives (i.e., salmoniformes) that an increase in spawners
leads to decreased spawning success and egg survival, therefore decreasing individual fertility [42, 11, 26]. To
our knowledge, no fertility studies have been conducted directly on steelhead and rainbow trout, although
they exhibit spawning behavior similar to many salmoniformes where density-dependent fertility taking
the form of a Beverton-Holt function has been documented [12].
Survival probabilities also vary widely by location and are highly dependent on the age, size, and condition
of an individual, as well as environmental conditions [35]. Migrants and no-nmigrants are indistinguishable
as juveniles and therefore their early life survival is thought to be similar. Estimates derived from a
number of sources indicate that survival from egg to ocean outmigrant or maturing non-migrant is 0.04
[30], although some estimates report juvenile annual survival at 0.0695 [25]. Survival to and from the ocean
ranges from 0.03 to 0.17 [39, 46, 45, 30].
Based on these ranges of parameter values obtained from the literature, we now estimate the optimal
allocation strategy φ∗ for a specific example. We assume that migrants and non-migrants have Beverton-
Holt fertility functions:

fM (z) =
8000

1 + z

10

and fN (z) =
1000

1 + z

50

,

given that migrant and non-migrant fecundities ranged from 3438 to 10638, and from 170 to 3431 respec-
tively. We were unable to find estimates for the b-values in the above Beverton-Holt functions from the
literature, but choose 1/10 for migrants and 1/50 for non-migrants. The ratio of five reflects that density-
dependence is felt more quickly for migrants, i.e. for smaller abundance values, because of their larger
size compared to non-migrants. Indeed, with this particular choice, the per capita fertility for migrants
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drops to half its maximum of 4000 for z = 10, whereas the analogous drop for non-migrants occurs at an
abundance of z = 50, which is 5 times higher. Based on the above cited survival probabilities, we set:

sM = (0.04)(0.1) = 0.004 and sN = 0.04.

These numbers are chosen because juvenile survival is similar for migrants and non-migrants with a prob-
ability of 0.04, but migrants must survive their stay in the ocean which we assume occurs with probability
0.1, given the range of 0.03 to 0.17 above. We also assume that non-migrants have a 100% survival rate in
the river system in the same period of time, probably overestimating this rate somewhat. These parameter
values are all we need to find the ESS value φ∗. Indeed, first we note that with these values, we have that

sMfM (0) = 32, and sNfN (0) = 40,

both of which are larger than 1, which implies the existence of unique positive solutions to the equations
sMfM (z) = 1 and sNfN (z) = 1. These are given by

x̂M = 10(32− 1) = 310 and x̃N = 50(40− 1) = 1950

respectively. Recall also from Theorem 2.1 that x̂M and x̃N are the respective fixed point abundances of
migrants and non-migrants in populations that consist of migrants, respectively non-migrants only. Finally,
we plug these values into (8) and obtain that

φ∗ =
310/1950

310/1950 + 0.004/0.04
= 94%,

which means that the optimal allocation strategy is highly skewed towards migrants in this case.

4. Evolutionary dynamics

An alternative to adaptive dynamics is to model evolution according to the Evolutionary Game Theory
approach as advocated in [20, 21, 44, 1]. In this methodology, an individual’s allocation strategy is denoted
by v, and the mean allocation strategy φ(t) in the population is treated as a dynamic state variable whose
dynamics are governed by Lande’s equation (or the breeder’s equation, Fisher’s equation, or the canonical
equation of evolution). The methodology provides a coupled system for the population dynamics and the
mean allocation strategy, known as the Darwinian dynamics:




x1(t+ 1)
xM (t+ 1)
xN (t+ 1)



 =




0 fM (xM (t)) fN (xN (t))

vsM 0 0
(1− v)sN 0 0




�����
v=φ(t)




x1(t)
xM (t)
xN (t)



(13)

φ(t+ 1) = φ(t) + σ2∂ ln(λ(x(t), v)

∂v

���
v=φ(t)

,(14)

Equation (14) states that the change in the mean strategy is proportional to the fitness gradient. Fitness
here is taken to be ln (λ(x, v)), where λ(x, v) is the dominant eigenvalue of the matrix

A1(x, v) =




0 fM (xM ) fN (xN )

vsM 0 0
(1− v)sN 0 0



 .

The constant σ2 is related to the (assumed constant) variance of the strategy throughout the population
(equal, or proportional to the variance, depending on how the trait dynamics are derived) and is referred
to as the speed of evolution.

A straightforward calculation shows that λ(x, v) equals the square root of the basic reproduction number
associated to A1(x, v), which we already defined in (3):

λ(x, v) = (R0(x, v))
1/2, where R0(x, v) := vsMfM (xM ) + (1− v)sNfN (xN ).



THE PUZZLE OF PARTIAL MIGRATION: ADAPTIVE DYNAMICS AND EVOLUTIONARY GAME THEORY PERSPECTIVES13

Hence, system (13)− (14) can be re-written as:



x1(t+ 1)
xM (t+ 1)
xN (t+ 1)



 =




0 fM (xM (t)) fN (xN (t))

φ(t)sM 0 0
(1− φ(t))sN 0 0








x1(t)
xM (t)
xN (t)



(15)

φ(t+ 1) = φ(t) +
1

2

σ2

R0(x(t),φ(t))

∂R0(x(t), v)

∂v

���
v=φ(t)

,(16)

We first study this system for σ = 0, i.e. when there are no evolutionary forces at work:

Theorem 4.1. Assume that σ2 = 0. Suppose that (H1)− (H2) hold, and that (4) is satisfied.

Then the following holds:

(1) For every fixed φ0 in (0, 1), every positive solution of system (15)−(16) with initial condition (x0,φ0)
for arbitrary positive x0, converges to a unique positive fixed point (x∗(φ0),φ0), where x∗(φ0) is the
unique positive fixed point of system (1) with φ = φ0 (see Theorem 2.1). The fixed point (x∗(φ0),φ0)
is linearly stable with respect to positive initial conditions with arbitrary positive x0, but fixed φ0.

(2) If φ0 = 0, then every positive solution of system (15) − (16) with initial condition (x0,φ0) for

arbitrary positive x0, converges to a unique non-zero fixed point (x̃1, 0, x̃N , 0), where x̃N > 0 is the

unique positive solution to the equation sNfN (z) = 1, and x̃1 = x̃N/sN . This fixed point is linearly

stable with respect to initial conditions with arbitrary positive x0, but fixed φ0 = 1.
(3) If φ0 = 1, then every positive solution of system (15)−(16) with initial condition (x0, 0) for arbitrary

positive x0, converges to a unique non-zero fixed point (x̂1, x̂M , 0, 1), where x̃N > 0 is the unique

positive solution to the equation sMfM (z) = 1, and x̂1 = x̂M/sM . This fixed point is linearly stable

with respect to initial conditions with arbitrary positive x0, but fixed φ0 = 0.

The function φ → x∗(φ) is smooth, and limφ→0 x∗(φ) = (x̃1, 0, x̃N ) and limφ→1 x∗(φ) = (x̂1, x̂M , 0).

Proof. The proof follows immediately from Theorem 2.1, and the fact that for each φ0 in [0, 1], the set
{(x,φ) ∈ R3

+ × [0, 1] | φ = φ0} is forward invariant for solutions of system (15)− (16) when σ2 = 0. �

We now turn to the case where σ2 > 0. In addition to the assumptions made in Theorem 4.1, we impose
the following condition which is generically satisfied:

(17) sMfM (0) �= sNfN (0).

Equivalently, R0(0,φ) = φsMfM (0)+(1−φ)sNfN (0), considered as a function of the variable φ with values
in [0, 1], should not be a constant function.

In the appendix, we prove the following result.

Theorem 4.2. Assume that σ2 > 0. Suppose that (H1)− (H2) hold, and that (4) and (17) are satisfied.

For all σ2 > 0, system (15)− (16) has a unique fixed point (x∗(φ∗),φ∗) in R3
+ × [0, 1], where φ∗ is given

by formula (8), and x∗(φ∗) is the unique positive fixed point of system (1) with φ = φ∗ (see Theorem 2.1).
Moreover, there exists σ2

∗ > 0, such that (x∗(φ∗),φ∗) is a locally asymptotically stable fixed point of system

(15)− (16) for all 0 < σ2 < σ2
∗.

5. Comparing adaptive dynamics and evolutionary game theoretic approaches

The goal of this paper was to explain how partial migration has evolved, first using an adaptive dynamics
framework which led to Theorem 3.4, and secondly, by applying the canonical model of evolutionary game
theory which resulted in Theorem 4.2. Perhaps the most striking conclusion is that both approaches lead
to the same, unique evolutionary stable allocation strategy value φ∗ (for every individual in the context
of adaptive dynamics, but only for the population mean in the evolutionary game theory methodology1,

1In the context of evolutionary game theory, a mean population strategy φ∗ is said to be an ESS if the Darwinian dynamics
has an asymptotically stable fixed point (x∗,φ∗), and is such that λ(x∗, v), seen as a function of the variable v, has a global
maximum at v = φ∗. Note that here, λ(x∗, v) is a constant function of v, and equal to 1; for further discussion of the ESS
concept in evolutionary game theory, see [44].
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given by the formula (8), and reproduced here:

φ∗ =
x̂M/x̃N

x̂M/x̃N + sM/sN
.

Here, x̂M and x̃N are the unique roots of the equation sMfM (z) = 1 and sNfN (z) = 1 respectively, see
Theorem 2.1. These roots represent the fixed point level of migrant adults for a model where no eggs
become non-migrants (model (1) with φ = 1), respectively the fixed point level of non-migrant adults for
a model where no eggs grow into migrants (model (1) with φ = 0). This formula can be used to predict
the optimal allocation strategy towards migrants, when the vital parameters of both subtypes are known.

The main difference between both approaches is that we require the convexity condition (C) in the proof
that φ∗ is an ESS of the adaptive dynamics. Condition (C) expresses that the negative density dependence
in the fertility functions fM and fN should be attenuated. The result based on evolutionary game theory
in Theorem 4.2 does not require such a condition. This suggests that perhaps condition (C) may not be
necessary in the adaptive dynamics setting. We remark that condition (C) is only a sufficient condition
used to establish that φ∗ is an ESS for the adaptive dynamics; currently, we do not know whether it is also
a necessary condition.

6. Conclusions

This work concisely demonstrates that partial migration can be attributed to density dependence alone,
and does not have to rely on strategy dependence (also known as “frequency dependence” [24]), or other
features. The density dependence used in this model is perhaps the simplest form of density dependence
wherein the densities of migrants and non-migrants only affect a vital rate within their own type.

There are several possible extensions of the underlying population model (1). For example, we have
ignored juveniles, by only modeling eggs and adults. It is at least conceivable that the introduction of
juvenile classes whose abundances negatively affect adult fertilities, will not necessarily lead to an ESS
with a corresponding locally stable fixed point X∗(φ∗) for the coupled model (5), but instead exhibits a
stable synchronous periodic cycle. Further work is needed to examine this possibility.

Another important feature of the population model (1) is that it assumes that the fertilities of migrants
and non-migrants is not negatively affected by the other subtype. Although this assumption is reasonable
for O. mykiss, it is not valid for other species exhibiting partial migration, with other forms of density
dependence [18, 41, 13]. For example, in some bird populations, nonmigrants may only experience density
dependence in fertilities caused by other nonmigrant individuals, whereas migrants experience competitive
effects caused by both migrants and non-migrants alike. Indeed, nonmigrants will be able to select the best
breeding grounds prior to the return of the migrants. The latter will have to deal with nonmigrants that
have already established a breeding spot, and with other returning migrants. Mathematically, scenarios
like this one, can be described by replacing fM (xM (t)) in model (1) by fM (xM (t)+xN (t)), but retaining all
other model parameters and functionals. Although this operation may be perceived as relatively minor, it
is by no means harmless: the resulting population model is no longer monotone, and therefore alternative
proof techniques will have to be developed to understand the behavior of these models. Nevertheless, our
results can serve as a starting point and background to compare the behavior of such models to.
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8. Appendix

8.1. Proof of Theorem 2.1.

Proof. Case 1: φ ∈ (0, 1).
We first show that for each φ ∈ (0, 1), there exists a positive vector positive vector b, such that the set:

[0, b] := {z ∈ R3
+ | 0 ≤ x ≤ b},

is compact, forward invariant, and absorbing for system (1). To see this, notice first that continuity
of R0(x,φ), as well as condition (4), imply the existence of a positive vector aφ such that R0(aφ,φ) < 1.
Consequently, the dominant eigenvalue of the non-negative matrix A1(aφ,φ), denoted by λP , is also strictly
less than 1 by the results in [22]. Notice that the matrix A1(aφ,φ) is irreducible, hence by the Perron-
Frobenius Theorem there is a positive eigenvector zφ corresponding to the dominant eigenvalue λP :

A1(aφ,φ)zφ = λP zφ.

We assume without loss of generality that ||zφ|| = 1. Let γ∗ > 0 be such that for all γ ≥ γ∗:

aφ ≤ γzφ.

Such a γ∗ clearly exists because zφ is a positive vector. Condition (H1) then implies that for all γ ≥ γ∗:

A1(γzφ,φ) ≤ A1(aφ,φ),

where the former inequality holds entry-wise for both matrices. This implies that for all γ ≥ γ∗:

(18) A1(γzφ,φ)(γzφ) ≤ A1(aφ,φ)(γzφ) = λP (γzφ).

Thus, by setting b := γ∗zφ, and using the monotonicity of the system, the latter shows that [0, b] is forward
invariant: If 0 ≤ x ≤ b, then 0 = T (0) ≤ T (x) ≤ T (b) ≤ λP b ≤ b, because λP < 1. The set [0, b] is clearly
compact and we have just established that it is forward invariant. To show that it is absorbing, let y ≥ 0
be an arbitrary state. Then there is a γy > γ∗ such that:

y ≤ γyzφ.

Monotonicity and (18) imply that

0 = T (0) ≤ T (y) ≤ T (γyzφ) ≤ λP (γyzφ),

and more generally that:
0 ≤ T r(y) ≤ λr

P (γyzφ),

for all positive integers r for which λr−1
P

γy > γ∗. Since λP < 1, there exists a minimal positive integer r∗

such that λr
∗

P
γy ≤ γ∗, and hence that

0 ≤ T r
∗
(y) ≤ λr

∗
P (γyzφ) ≤ γ∗zφ = b,

which shows that the orbit starting in y is absorbed in the set [0, b] in the r∗th step.
Next, we establish that there exists a positive fixed point. First, the right inequality in (4) implies that

the zero fixed point is linearly unstable by the results in [22]. Note that the linearization of (1) at the zero
fixed point is given by A1(0,φ), which is a non-negative, irreducible matrix. Hence, this linearization has
a dominant eigenvalue µ > 1, and corresponding positive eigenvector v:

A1(0,φ)v = µv

We shall consider the orbit starting in sufficiently small positive scalar multiples of the vector v, and show
that these orbits must be increasing. A Taylor expansion of T yields that

T (�v) = T (0) +A1(0,φ)(�v) + o(�) = µ(�v) + o(�) ≥ �v,

where the last inequality holds for all sufficiently small and positive � because µ > 1. Exploiting mono-
tonicity, we see that the orbit starting in �v is indeed increasing. Since it is bounded above (by b), it must
converge, and the limit is necessarily a fixed point, which we denote by x∗1. Then x∗1 is clearly positive since
x∗1 ≥ �v, and �v is a positive vector. We have already shown that T (b) ≤ b, and exploiting monotonicity
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once again, we see that the orbit starting in b is decreasing. Since it is bounded below (by 0), it converges
to a fixed point, denoted by x∗2. In fact, we have that:

0 = T (0) ≤ �v ≤ T (�v) ≤ T (b) ≤ b,

and by monotonicity, there follows that:
x∗1 ≤ x∗2.

We claim that in fact
x∗1 = x∗2.

To see this, note that since x∗1 and x∗2 are fixed points, there holds that:

A1(x
∗
1,φ)x

∗
1 = x∗1 and A1(x

∗
2,φ)x

∗
2 = x∗2

Since both above matrices are non-negative and irreducible, and the vectors x∗1 and x∗2 are positive vectors,
the Perron-Frobenius Theorem implies that their respective dominant eigenvalues λ1 and λ2 are both equal
to 1. However, we also have that

A1(x
∗
1,φ) ≤ A1(x

∗
2,φ) and A1(x

∗
1,φ) �= A1(x

∗
2,φ),

because of condition (H1) (as before, the inequality between the above two matrices holds entry-wise).
But then the Perron-Frobenius Theorem would imply that λ1 < λ2, contradicting that λ1 = λ2 = 1.
Henceforth, we denote x∗1 as x∗(φ), to emphasize that the fixed point depends on φ.

We claim that the orbit of every positive initial condition x0 in [0, b], converges to x∗(φ). To see this,
note that there is some � > 0 such that �v ≤ x0 ≤ b. Exploiting monotonicity, and the fact that the
orbits starting in �v and b converge to x∗(φ), it follows that the orbit starting in x0 converges to x∗(φ) as
well. In particular, x∗(φ) is the unique, positive fixed point in [0, b]. Finally, since [0, b] is absorbing, every
positive orbit eventually enters [0, b], and the first time it enters [0, b], this occurs in some positive vector.
Therefore, every orbit starting in a positive vector must converge to x∗(φ) as well. To see that x∗(φ) is
linearly stable, consider the Jacobian matrix at x∗(φ):

J(x∗(φ)) = A1(x
∗(φ),φ) +




0 − −
0 0 0
0 0 0





where the −signs in the matrix above represent negative values in view of condition (H1), although their
actual values are irrelevant for what values. Therefore,

J(x∗(φ)) ≤ A1(x
∗(φ),φ), and J(x∗(φ)) �= A1(x

∗(φ),φ).

Since the dominant eigenvalue of A1(x∗(φ),φ) equals 1, as we established above, the Perron-Frobenius
Theorem implies that the dominant eigenvalue of the non-negative and irreducible matrix J(x∗(φ)) is less
than 1. This implies the linear stability of the fixed point x∗(φ).

Case 2 : φ = 0.
First notice that every orbit of (1) enters the invariant part of the the boundary of R3

+ where xM = 0 in
1 step. The restriction of the dynamics to this part of the boundary is given by a planar and monotone
system: �

x1(t+ 1)
xN (t+ 1)

�
=

�
0 fN (xN (t))
sN 0

��
x1(t)
xN (t)

�

Assumption (4) with φ = 0 implies that the zero fixed point of the above system is linearly unstable, and
that it has a compact, invariant and absorbing set of the form [0, b2] for some positive vector b2. This can
be proved using similar arguments we used to establish a comparable result for system (1) in the case where
φ ∈ (0, 1). Along the same lines, it can also be proved that there is a unique positive fixed point in [0, b2],
which is both locally stable, as well as globally attractive for all positive orbits. In fact, it is straightforward
to calculate this fixed point explicitly; it equals (x̃N/sN , x̃N ), where x̃N is the unique solution to the
equation sNfN (z) = 1. (Note that condition (4) can be rephrased as sNfN,∞ < 1 < sNfN (0), and since
fN (z) is decreasing by condition (H1), there must be a unique solution x̃N ). Linear stability of the
corresponding fixed point (x̃N/sN , 0, x̃N ) of system (1) with φ = 0 can be established using a linearization
argument as before. And global convergence of positive orbits to this fixed point follows because the fixed
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point (x̃N/sN , x̃N ) attracts all positive orbits of the planar system above, in conjunction with the fact that
all orbits of system (1) enter the part of the boundary where xM = 0 in 1 step.

Case 3 : φ = 1.
The proof is similar to the case φ = 0.

To conclude the proof, we remark that the smoothness of the fixed point x∗(φ) when φ belongs to [0, 1]
follows from the Implicit Function Theorem, applied to the fixed point equation x = A1(x,φ)x, and the fact
established above that the Jacobian matrix J(x∗(φ)) has dominant eigenvalue less than 1. The statements
regarding the limiting values of x∗(φ) as φ approaches 0 or 1, follow from the uniqueness of the positive
fixed point (when φ ∈ (0, 1)), and of the non-negative fixed point (when φ = 0 or 1). �

8.2. Dynamics along a dominant eigenvector. Recall system (10), where the map F (X) is given
explicitly by:

(19)





fM (xM + yM + x∗
M
(φ∗))(xM + x∗

M
(φ∗)) + fN (xN + yN + x∗

N
(φ∗))(xN + x∗

N
(φ∗))− x∗1(φ

∗)
sMφ∗(x1 + x∗1(φ

∗))− x∗
M
(φ∗)

sN (1− φ∗)(x1 + x∗1(φ
∗))− x∗

N
(φ∗)

yMfM (xM + yM + x∗
M
(φ∗)) + yNfN (xN + yN + x∗

N
(φ∗))

sMφ
�
y1

sN (1− φ
�
)y1





Let us start by determining an eigenvector 0 ≤K V corresponding to the dominant eigenvalue 1 of the
Jacobian matrix J , obtained by linearizing F at X = 0, and given in (12). There must hold that JV = V ,

or more explicitly, by denoting V =

�
v
ṽ

�
= (v1, v2, v3, ṽ1, ṽ2, ṽ3)T , that:

A1(x
∗(φ∗),φ�)ṽ = ṽ(20)

(A1(x
∗(φ∗),φ∗) +B) v +Bṽ = v,(21)

where

A1(x
∗(φ∗),φ�) =




0 1/sM 1/sN

sMφ� 0 0
sN (1− φ�) 0 0



 ,

and

A1(x
∗(φ∗),φ∗) +B =




0 1/sM + f �

M
(x∗

M
(φ∗))x∗

M
(φ∗) 1/sN + f �

N
(x∗

N
(φ∗))x∗

N
(φ∗)

sMφ∗ 0 0
sN (1− φ∗) 0 0



 .

We first find a nonzero solution ṽ for (20). This must be a non-positive vector because we’re looking for
an eigenvector V in the cone K:

ṽ =




−1

−sMφ�

−sN (1− φ�)





Plugging this into (21), and rearranging yields that v must satisfy:

(22)




−1 1

sM
+ f

�
M
(x∗

M
(φ∗))x∗

M
(φ∗) 1

sN
+ f

�
N
(x∗

N
(φ∗))x∗

N
(φ∗)

sMφ∗ −1 0
sN (1− φ∗) 0 −1



 v =




b
0
0



 ,

where b = f
�
M
(x∗

M
(φ∗))x∗

M
(φ∗)sMφ� + f

�
N
(x∗

N
(φ∗))x∗

N
(φ∗)sN (1− φ�) < 0 because of (H1). Solving (22) for

the vector v yields:

v =
1

det




b

sMφ∗b
sN (1− φ∗)b



 , where det = φ∗sMf �
M (x∗M (φ∗))x∗M (φ∗) + (1− φ∗)sNf �

N (x∗N (φ∗))x∗N (φ∗) < 0,
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again because of (H1). The vector v is a positive vector, as expected. In summary, an eigenvector 0 ≤K V
for the dominant eigenvalue 1 of the matrix J is given by:

V =





b/det
sMφ∗b/det

sN (1− φ∗)b/det
−1

−sMφ�

−sN (1− φ�)





Note also that V belongs to the interior of K because φ� ∈ (0, 1). Next, for any � > 0, we set

(23) u1 = −�V = �





−b/det
−sMφ∗b/det

−sN (1− φ∗)b/det
1

sMφ�

sN (1− φ�)




,

and therefore

u1 ≤K 0.

We now proceed to show that for all sufficiently small � > 0, there also holds that:

(24) u1 ≤K F (u1).

By using a Taylor expansion for F near X = 0,

(25) F (u1) = Ju1 + h(u1) +O(||u1||3) = u1 + h(u1) +O(||u1||3).

Here, h = (h1, h2, h3, h4, h5, h6)T with each hi(u1) = uT1 Hiu1 and Hi being the Hessian with respect
to Fi. One can verify that h2 = h3 = h5 = h6 = 0 and that the corresponding higher order terms
O2 = O3 = O5 = O6 vanish too because F2, F3, F5 and F6 are affine functions in X. Henceforth, we focus
on finding the sign of h1(u1) and h4(u1).

We start by calculating h1(u1) = uT1 H1u1 where H1 is the Hessian corresponding to F1, where from now
on we drop the argument φ∗ from the functions x∗

M
(φ∗) and x∗

N
(φ∗) to economize on the notation:

H1 =





0 0 0 0 0 0
0 f

��
M
(x∗

M
)x∗

M
+ 2f

�
M
(x∗

M
) 0 0 f

��
M
(x∗

M
)x∗

M
+ f

�
M
(x∗

M
) 0

0 0 f
��
N
(x∗

N
)x∗

N
+ 2f

�
N
(x∗

N
) 0 0 f

��
N
(x∗

N
)x∗

N
+ f

�
N
(x∗

N
)

0 0 0 0 0 0
0 f

��
M
(x∗

M
)x∗

M
+ f

�
M
(x∗

M
) 0 0 f

�
M
(x∗

M
) 0

0 0 f
��
N
(x∗

N
)x∗

N
+ f

�
N
(x∗

N
) 0 0 f

�
N
(x∗

N
)





We denote u1 = (u11 , u12 , u13 , u14 , u15 , u16)
T , and simplify h1(u1) to:

(26) h1(u1) = (c− α)(u12 + u15)
2 + (d− β)(u13 + u16)

2 + αu15(u12 + u15) + βu16(u13 + u16),

where c = f
��
M
(x∗

M
)x∗

M
, d = f

��
N
(x∗

N
)x∗

N
,α = −2f

�
M
(x∗

M
) and β = −2f

�
N
(x∗

N
). Our goal is te re-write h1(u1)

as a function of the variable z = φ∗ − φ�. The coefficients c, d,α and β only depend on φ∗, but not on φ�.
Moreover, we can express (u12 + u15), (u13 + u16), u15 and u16 in terms of z using the various values of the
components of u1 from (23):

u12 + u15 = − �

det
f

�
N (x∗N )x∗NsMsNz =: −�C1(φ

∗)z(27)

u13 + u16 =
�

det
f

�
M (x∗M )x∗MsMsNz =: �C2(φ

∗)z(28)

u15 = � (−sMz + sMφ∗)(29)

u16 = � (sN (1 + z)− sNφ∗)(30)
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By plugging (27)− (30) into (26), we obtain h1(u1)/�2 as a function of z, denoted by Q1(z):

Q1(z) =
�
(c− α)C2

1 (φ
∗) + (d− β)C2

2 (φ
∗) + αsMC1(φ

∗) + βsNC2(φ
∗)
�
z2 +

[−αsMφ∗C1(φ
∗) + βsN (1− φ∗)C2(φ

∗)] z

Clearly, Q1(0) = 0,

Q
�
1(0) = −αsMφ∗C1(φ

∗) + βsN (1− φ∗)C2(φ
∗)

=
2

det
sMsNf

�
M (x∗M )f

�
N (x∗N ) [sMφ∗x∗M − sN (1− φ∗)x∗N ]

= 0,

were we have used that x∗
M

= sMφ∗x∗1 and that x∗
N

= sN (1 − φ∗)x∗1. These latter two equalities can also
be used to show that:

Q
��
1(0) =

2

det2

�
(f

�
N (x∗N )x∗NsMsN )2f

��
M (x∗M )x∗M + (f

�
M (x∗M )x∗MsMsN )2f

��
N (x∗N )x∗N

�

> 0,

where we have used the convexity assumption that f
��
N
(x∗

N
) > 0 and f

��
M
(x∗

M
) > 0. This implies that

Q1(z) > 0 for all z �= 0, and thus that h1(u1) > 0 for all φ� �= φ∗.
Similarly, h4(u1) = uT1 H4u1, where the Hessian H4 takes the form

H4 =





0 0 0 0 0 0
0 0 0 0 p 0
0 0 0 0 0 q
0 0 0 0 0 0
0 p 0 0 2p 0
0 0 q 0 0 2q




, with p = f

�
M (x∗M ) and q = f

�
N (x∗N ).

Therefore,

(31) h4(u1) = 2pu15(u12 + u15) + 2qu16(u13 + u16)

By plugging (27)− (30) into (31), and setting Q4(z) = h4(u1)/�2, we obtain

Q4(z) = [2psMC1(φ
∗) + 2qsNC2(φ

∗)]z2 + [2qsNC2(φ
∗)(1− φ∗)− 2psMC1(φ

∗)φ∗]z

It can be verified that Q4(0) = 0 = Q
�
4(0), and that

Q
��
4(0) =

4sMsNf �
M
(x∗

M
)f �

N
(x∗

N
))

det
(sMx∗N + sNx∗M )

< 0.

This implies that Q4(z) < 0 for all z �= 0, and thus that h4(u1) < 0 for all φ� �= φ∗. Consequently, (24)
holds for all sufficiently small � > 0.

8.3. At most one positive fixed point. We will show that the coupled system (5) has at most one
positive fixed point when φ = φ∗ and φ� �= φ∗. First recall the system equations:

(32)





x1(t+ 1)
xM (t+ 1)
xN (t+ 1)
y1(t+ 1)
yM (t+ 1)
yN (t+ 1)




= A





x1(t)
xM (t)
xN (t)
y1(t)
yM (t)
yN (t)




, with

A =

�
A1(x(t) + y(t),φ∗) 0

0 A1(x(t) + y(t),φ�)

�
, and A1(x,φ) =




0 fM (xM ) fN (xN )

φsM 0 0
(1− φ)sN 0 0





Let (x̃, ỹ) be a positive fixed point of (32).
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If we set

z1 = sM (φ∗x̃1 + φ
�
ỹ1)(33)

z2 = sN ((1− φ∗)x̃1 + (1− φ
�
)ỹ1),(34)

then there must hold in particular, that:

(35)

�
sMφ∗ sN (1− φ∗)
sMφ

�
sN (1− φ

�
)

��
fM (z1)
fN (z2)

�
=

�
1
1

�
,

where we have used that x̃1 and ỹ1 are both positive. Let B =

�
sMφ∗ sN (1− φ∗)
sMφ

�
sN (1− φ

�
)

�
, and notice that

det(B) = sMsN (φ∗ − φ
�
) �= 0 since φ

� �= φ∗. Hence, the system (35) can have at most one solution (z1, z2)
because both functions fM and fN are decreasing by hypothesis (H1), and are therefore 1-to-1 functions.
Equations (33)− (34) can be re-written as follows:

(36)

�
sMφ∗ sMφ

�

sN (1− φ∗) sN (1− φ
�
)

��
x̃1
ỹ1

�
=

�
z1
z2

�

Similarly, (36) has at most one solution (x̃1, ỹ1). Since the other components of a fixed point are uniquely
determined by x̃1 and ỹ1 (namely, x̃M = sMφ∗x̃1, x̃N = sN (1−φ∗)x̃1 and ỹM = sMφ�ỹ1, ỹN = sN (1−φ�)ỹ1),
we have just shown that the coupled system (32) can have at most one positive fixed point.

8.4. Proof of Theorem 4.2.

Proof. Step 1: We search for the fixed points (x,φ) of system (15)− (16).
If we assume that x1 = 0, then xM = xN = 0 as well. But then the fixed point equation associated to

equation (16) implies that sMfM (0) − sNfN (0) = 0, contradicting (17). Hence, we assume that the fixed
point (x,φ) is such that x1 > 0. Then a similar argument implies that

sMfM (xM ) = sNfN (xN )

must hold, and using x1 > 0, that:

1 = φ(sMfM (xM )− sNfN (xN )) + sNfN (xN )

The last two equations imply that

sMfM (xM ) = 1 = sNfN (xN ),

but since fM and fN are decreasing functions, the values of xM and xR are uniquely determined:

xM = x̂M and xN = x̃N ,

see Theorem 2.1. Then it follows that

φ = φ∗,

where φ∗ was defined in formula (8). Finally,

x1 = x̂M/(φ∗sM ) (= x̃N/((1− φ∗)sN ) .

We have shown that there is a unique fixed point for system (15)−(16), which equals the vector (x∗(φ∗),φ∗),
where x∗(φ∗) is the unique positive fixed point of system (1) in case φ = φ∗.

Step 2: To prove local asymptotic stability of the fixed point (x∗(φ∗),φ∗) provided that σ2 > 0 is
sufficiently small, we linearize the Darwinian system (15)− (16) near the fixed point (x∗(φ∗),φ∗) yielding
the following Jacobian matrix:

JD(σ
2) =

�
C(x∗(φ∗),φ∗) ∗

0 1

�
+ σ2





0 0 0 0
0 0 0 0
0 0 0 0

0
sMf

�
M

(x∗
M

(φ∗))
2 − sNf

�
N
(x∗

N
(φ∗))

2 0



 ,
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where the ∗ represents a 3-dimensional vector whose value is unimportant at present, and the 3 × 3 non-
negative matrix C(x∗(φ∗),φ∗) is defined as:

C(x∗(φ∗),φ∗) = A1(x
∗(φ∗),φ∗) +




0 f �

M
(x∗

M
(φ∗))x∗

M
(φ∗) f �

N
(x∗

N
(φ∗))x∗

N
(φ∗)

0 0 0
0 0 0





By (H1), it follows that the nonzero entries in the second matrix on the right, are both negative. Moreover,
since A1(x∗(φ∗),φ∗)x∗(φ∗) = x∗(φ∗), it follows that the dominant eigenvalue of the non-negative matrix
A1(x∗(φ∗),φ∗) equals 1, and hence the Perron-Frobenius Theorem implies that the dominant eigenvalue
of the non-negative matrix C(x∗(φ∗),φ∗) is less than 1. Consequently, the dominant eigenvalue of JD(0)
is 1, and this eigenvalue is simple. By continuity of eigenvalues, the matrix JD(σ2) will also have a
real, simple and dominant eigenvalue λp(σ2) for all sufficiently small σ2, such that λp(0) = 1. We claim
that λp(σ2) < 1, at least for all sufficiently small σ2. To prove this, we now examine the roots of the
characteristic polynomial F (λ,σ2) := det(λI − JD(σ2)) associated to the matrix JD(σ2). To avoid heavy
notation, we first recall the definitions of the functions gM and gN in (H2), and define positive constants
a, b, c, d, g and h, and negative constants e and f , as follows:
(37)

JD(σ
2) =





0 a b 0
c 0 0 g
d 0 0 −h
0 σ2e −σ2f 1



 :=





0 g�
M
(x∗

M
(φ∗)) g�

N
(x∗

N
(φ∗)) 0

φ∗sM 0 0 sMx∗1(φ
∗)

(1− φ∗)sN 0 0 −sNx∗1(φ
∗)

0 σ2 sMf
�
M

(x∗
M

(φ∗))
2 −σ2 sNf

�
N
(x∗

N
(φ∗))

2 1





A tedious calculation shows that the characteristic polynomial of the matrix JD(σ2) is given by:

F (λ,σ2) = λ4 − λ3 −
�
σ2(eg + fh) + (ac+ bd)

�
λ2 + (ac+ bd)λ+ σ2(af + be)(ch+ dg)

Note that F (λ, 0) is positive for all λ > 1 = λp(0) (since λp(0) = 1 is the dominant root of F (λ, 0), and
limλ→∞ F (λ, 0) = +∞). Moreover, ∂F/∂λ(λp(0), 0) must be positive because λp(0) = 1 is a simple root of
F (λ, 0) (this can also be shown directly by calculating this partial derivative using the expression above:
∂F/∂λ(λp(0), 0) = 1 − (ac + bd), and this is positive because ac + bd is the basic reproduction number
associated to the matrix C(x∗(φ∗),φ∗) which is less than 1, as shown earlier). Therefore, the claim above
(namely, that λp(σ2) < 1, for all sufficiently small σ2) will be proved, provided we can show that for all
sufficiently small σ2, there holds that:

(38) F (1,σ2) > 1.

Evaluating F (1,σ2) yields:

F (1,σ2) = σ2 ((af + be)(ch+ dg)− (eg + fh)) .

Therefore, a sufficient condition for (38) to hold, is that:

f [a(ch+ dg)− h] + e [b(ch+ dg)− g] > 0

Recall that e and f are negative, which implies that the above inequality holds if:

ch+ dg <
h

a
and ch+ dg <

g

b
or equivalently, by using the definitions of the various parameters in (37), if:

sMg�M (x∗M (φ∗)) < 1 and sNg�N (x∗N (φ∗)) < 1.

Recalling the definition of the functions gM and gN in (H2), this holds if:

sM
�
f �
M (x∗M (φ∗))x∗M (φ∗) + fM (x∗M (φ∗))

�
< 1 and sN

�
f �
N (x∗N (φ∗))x∗N (φ∗) + fN (x∗N (φ∗))

�
< 1

However, we have shown in Step 1 that sMfM (x∗
M
(φ∗)) = 1 = sNfN (x∗

N
(φ∗)), and thus the above inequality

holds, provided that:

sMf �
M (x∗M (φ∗))x∗M (φ∗) < 0 and sNf �

N (x∗N (φ∗))x∗N (φ∗) < 0.

By (H1), these last two inequalities are indeed satisfied. This concludes the proof of this Theorem.
�



22 PATRICK DE LEENHEER, ANUSHAYA MOHAPATRA, HALEY A. OHMS, DAVID A. LYTLE, AND J.M. CUSHING

References

[1] N. M. A. Allen, B. and U. Dieckmann, Adaptive dynamics with interaction structure, The American Naturalist, 181
(2013), pp. E139–E163.

[2] R. Beverton and S. Holt, On the Dynamics of Exploited Fish Populations, 1957.
[3] R. V. Bulkley, Fecundity of Steelhead Trout, Salmo gairdneri, from Alsea River, Oregon, Journal of the Fisheries

Research Board of Canada, 24 (1967), pp. 917–926.
[4] H. Caswell, Matrix Population Models, Sinauer Associates, Sunderland, Mass, 2nd edition ed., Sept. 2000.
[5] B. B. Chapman, C. Brnmark, J.-. Nilsson, and L.-A. Hansson, The ecology and evolution of partial migration,

Oikos, 120 (2011), pp. 1764–1775.
[6] F. Christiansen, On conditions for evolutionary stability for a continuously varying character, The American Naturalist,

138 (1991), pp. 37–50.
[7] J. Cushing, An introduction to structured population dynamics, SIAM, 1998.
[8] O. Diekmann, A beginner’s guide to adaptive dynamics, Banach Center Publications, 63 (2004), pp. 47–86.
[9] J. J. Dodson, N. Aubin-Horth, V. Thriault, and D. J. Pez, The evolutionary ecology of alternative migratory tactics

in salmonid fishes, Biological Reviews, 88 (2013), pp. 602–625.
[10] I. Eshel, Evolutionary and continuous stability, Journal of Theoretical Biology, 103 (1983), pp. 99–111.
[11] T. E. Essington, T. P. Quinn, and V. E. Ewert, Intra-and inter-specific competition and the reproductive success of

sympatric Pacific salmon, Canadian Journal of Fisheries and Aquatic Sciences, 57 (2000), pp. 205–213.
[12] A. P. Foss-Grant, E. F. Zipkin, J. T. Thorson, O. P. Jensen, and W. F. Fagan, Hierarchical analysis of taxonomic

variation in intraspecific competition across fish species, Ecology, (2016).
[13] C. K. Griswold, C. M. Taylor, and D. R. Norris, The equilibrium population size of a partially migratory population

and its response to environmental change, Oikos, 120 (2011), pp. 1847–1859.
[14] M. Hassell, Density-dependence in single-species populations, The Journal of Animal Ecology, 44 (1975), pp. 283–295.
[15] M. W. Hirsch and H. SMITH, Monotone maps: a review, Journal of Difference Equations and Applications, 11 (2005),

pp. 379–398.
[16] A. Kaitala, V. Kaitala, and P. Lundberg, A Theory of Partial Migration, American Naturalist, 142 (1993), pp. 59–

81. WOS:A1993LW99900004.
[17] N. W. Kendall, J. R. McMillan, M. R. Sloat, T. W. Buehrens, T. P. Quinn, G. R. Pess, K. V. Kuzishchin,

M. M. McClure, R. W. Zabel, and M. Bradford, Anadromy and residency in steelhead and rainbow trout ( On-
corhynchus mykiss ): a review of the processes and patterns, Canadian Journal of Fisheries and Aquatic Sciences, 72
(2015), pp. 319–342.

[18] H. Kokko, Modelling for field biologists and other interesting people, Cambridge University Press, 2007.
[19] K. V. Kuzishchin, A. Y. Maltsev, M. A. Gruzdeva, K. A. Savvaitova, D. S. Pavlov, and D. A. Stanford,

On joint spawning of anadromous and resident mykiss Parasalmo mykiss in rivers of Western Kamchatka, Journal of
Ichthyology, 47, pp. 348–352.

[20] R. Lande, Natural selection and random genetic drift in phenotypic evolution, Evolution, 30 (1976), pp. 314–334.
[21] , A quantitative genetic theory of life history evolution, Ecology, 63 (1982), pp. 607–615.
[22] C.-K. Li and H. Schneider, Applications of Perron-Frobenius theory to population dynamics, Journal of Mathematical

Biology, 44 (2002), pp. 450–462.
[23] P. Lundberg, The evolution of partial migration in birds, Trends in Ecology and Evolution, 3 (1988), pp. 172–175.
[24] P. Lundberg, On the evolutionary stability of partial migration, Journal of Theoretical Biology, 321 (2013), pp. 36 – 39.
[25] M. G. Mitro and A. V. Zale, Seasonal Survival, Movement, and Habitat Use of Age-0 Rainbow Trout in the Henrys

Fork of the Snake River, Idaho, Transactions of the American Fisheries Society, 131 (2002), pp. 271–286.
[26] J. W. Moore, D. E. Schindler, and C. P. Ruff, Habitat saturation drives thresholds in stream subsidies, Ecology, 89

(2008), pp. 306–312.
[27] D. S. Pavlov, N. N. Nemova, P. I. Kirillov, E. A. Kirillova, Z. A. Nefedova, and O. B. Vasileva, The lipid

status and feeding habits of yearlings of mykiss Parasalmo mykiss, Journal of Ichthyology, 50 (2010), pp. 543–551.
[28] C. Perez, J. P. Granadeiro, M. P. Dias, H. Alonso, and P. Catry, When males are more inclined to stay at home:

insights into the partial migration of a pelagic seabird provided by geolocators and isotopes, Behavioral Ecology, 25 (2013),
pp. 313–319.

[29] F. Pulido, Evolutionary genetics of partial migration-the threshold model of migration revis(it)ed, Oikos, 120 (2011),
pp. 1776–1783.

[30] T. P. Quinn, The behavior and ecology of Pacific salmon and trout, University of Washington Press, Bethesda, MD,
2005.

[31] T. P. Quinn, T. R. Seamons, L. A. Vllestad, and E. Duffy, Effects of growth and reproductive history on the egg
sizefecundity trade-off in steelhead, Transactions of the American Fisheries Society, 140 (2011), pp. 45–51.

[32] W. Ricker, Stock and recruitment, Journal of the Fisheries Research Board of Canada, 11 (1954), pp. 559–623.
[33] R. Russell, Rainbow trout life history studies in lower Talarik Creek - Kvichak drainage, Tech. Rep. G-II-E, Alaska

Department of Fish and Game, 1977.
[34] G. M. S.A.H. Geritz, E. Kisdi and J. Metz, Evolutionary singular strategies and the adaptive growth and branching

of the evolutionary tree, Evolutionary Ecology, 12 (1998), pp. 35–57.



THE PUZZLE OF PARTIAL MIGRATION: ADAPTIVE DYNAMICS AND EVOLUTIONARY GAME THEORY PERSPECTIVES23

[35] W. H. Satterthwaite, M. P. Beakes, E. M. Collins, D. R. Swank, J. E. Merz, R. G. Titus, S. M. Sogard, and
M. Mangel, Steelhead Life History on California’s Central Coast: Insights from a State-Dependent Model, Transactions
of the American Fisheries Society, 138 (2009), pp. 532–548.

[36] W. H. Satterthwaite, M. P. Beakes, E. M. Collins, D. R. Swank, J. E. Merz, R. G. Titus, S. M. Sogard, and
M. Mangel, State-dependent life history models in a changing (and regulated) environment: steelhead in the California
Central Valley, Evolutionary Applications, 3 (2010), pp. 221–243.

[37] D. J. Schill, G. W. LaBar, E. R. Mamer, and K. A. Meyer, Sex ratio, fecundity, and models predicting length at
sexual maturity of redband trout in Idaho desert streams, North American Journal of Fisheries Management, 30 (2010),
pp. 1352–1363.

[38] R. Schroeder and L. Smith, Life history of rainobw trout and effects of angling regulations in the Deschutes River,
Oregon Information report (fish) 89-6, 1989.

[39] L. Shapovalov and A. C. Taft, The life histories of the steelhead rainbow trout (Salmo gairdneri gairdneri) and silver
salmon (Oncorhynchus kisutch): with special reference to Waddell Creek, California, and recommendations regarding their
management, California Department of Fish and Game, 1954.

[40] A. Shaw and S. Levin, To breed or not to breed: a model of partial migration, Oikos, 120 (2011), pp. 1871–1879.
[41] C. M. Taylor and D. R. Norris, Predicting conditions for migration: effects of density dependence and habitat quality,

Biology Letters, 3 (2007), pp. 280–284.
[42] E. P. van den Berghe and M. R. Gross, Natural Selection Resulting from Female Breeding Competition in a Pacific

Salmon (Coho: Oncorhynchus kisutch), Evolution, 43 (1989), pp. 125–140.
[43] J. S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM Journal of Applied Mathematics,

16 (1968), pp. 1208–1222.
[44] T. Vincent and J. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, Cambridge, 2005.
[45] B. R. Ward, Declivity in steelhead (Oncorhynchus mykiss) recruitment at the Keogh River over the past decade, Canadian

Journal of Fisheries and Aquatic Sciences, 57 (2000), pp. 298–306.
[46] B. R. Ward and P. A. Slaney, Egg-to-smolt survival and fry-to-smolt density dependence of Keough River steelhead

trout, Canadian Special Publication of Fisheries and Aquatic Sciences, (1993), pp. 209–217.

Department of Mathematics, Oregon State University, Corvallis, OR 97330

Department of Mathematics, Oregon State University, Corvallis, OR 97330

Department of Integrative Biology, Oregon State University, Corvallis, OR 97330

Department of Integrative Biology, Oregon State University, Corvallis, OR 97330

Department of Mathematics, University of Arizona, Tuscon, AZ 85721




