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ABSTRACT 

A simple nonlinear discrete model is derived for the dynamics of a two-age class 

population consisting of juveniles and adults that includes cannibalism of juveniles by 

adults. The model is investigated analytically and numerically. It is shown how even this 

very simple model, by incorporating the negative and positive feedbacks due to cannibal- 
ism, can account for several important phenomena concerning the dynamics of cannibalis- 
tic populations that have been discussed and studied in the literature. These include the 
possibilities that the practice of cannibalism can (1) in certain circumstances be a form of 
self-regulation that promotes stable equilibration, while in other circumstances it can lead 

to population oscillations; (2) result in a viable population in circumstances when its 

absence would otherwise result in extinction; and (3) be the source of multiple stable 

equilibria and hysteresis effects. 

1. INTRODUCTION 

In an environment with limited resources the natural propensity for 

biological populations to grow exponentially is ultimately regulated in some 

manner or another. In classical models of population dynamics, such as the 
famous logistic equation, this “density self-regulation” is expressed through 
an assumption that the net per capita growth rate (births minus deaths) is a 
decreasing function of total population size. Usually there is no attempt in 
such models to account precisely for this regulation mechanism, and only 
its gross qualitative properties at the high aggregate level of total popula- 
tion numbers, with individual organisms treated as identical, are specified. 
The facts that individual organisms within a species often differ signifi- 
cantly in important physiological and behavioral characteristics and that 
self-regulation often occurs because of interactions between individual 
organisms (e.g., intraspecific competition and predation) imply that a more 
complete understanding of a population’s dynamics often requires a “struc- 
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tured population” model in which appropriate classes or categories of 
individuals are distinguished (see Werner and Gilliam [21]). 

Although the modeling methodology for the dynamics of structured 
populations is well established (see Metz and Diekmann [16] and Caswell 
[2]), the study of intraspecific interaction models is still in its infancy. Some 
examples of intraspecific competition models that have been recently 
studied include age-structured models of competition between juveniles 
and adults in which either juvenile survival or adult fecundity are adversely 
affected by interclass competition [3, 4, 7, 8, 14, 15, 191. Other examples 
include the size-structured models of Ebenman [9] and of Cushing and Li 
[5] that include density-dependent individual body size growth rates, which 
in turn affect size at maturity and hence adult fertility. 

Another potential regulatory interaction between members of a species 
is intraspecific predation or cannibalism. The two survey articles of Fox [lo] 
and Polis [18] discuss the importance of cannibalism in a wide diversity of 
animals, across many taxa, and its effects on the dynamics and evolution of 
cannibalistic species. Some of the important consequences that cannibalism 
can have on the dynamics of populations, which can be found in this and 
other literature, include the following. Cannibalism can be an effective 
mechanism for the regulation and equilibration of population density. On 
the other hand, for some species and some environmental circumstances, 
cannibalism can result in population oscillations (even to the extent of 
wiping out entire age classes). Thus, cannibalism can promote either 
equilibration or oscillations depending upon the exact circumstances under 
which it is practiced. Second, in some cases cannibalism can be a crucial 
mechanism for population survival. The so-called lifeboat strategy asserts 
that the resources obtained from cannibalism can permit a population to 
survive during periods of noncannibalistic resource scarcity or in other 
circumstances under which it could not otherwise survive [18, 201. For 
example, the cannibalism of young by adults may provide access to re- 
sources available to young individuals that are otherwise unavailable to 
adults. Third, the interplay between the negative and positive feedbacks 
inherent in cannibalism can result in multiple steady states and hence 
hysteresis effects. This hysteresis can lead to catastrophic crashes to lower 
equilibrium levels, as population parameters are changed below critical 
values, that cannot be reversed by increasing the parameters back above 
their critical values. This fact has been used by Botsford [l], for example, to 
explain the collapse of certain harvested fish populations and their failure 
to return to preharvested levels after harvesting is ceased (although other 
explanations are possible, such as evolutionary effects as studied, for 
example, by Law and Grey [Ill). 

Only a handful of dynamical models for populations practicing cannibal- 
ism appear in the literature. There have been some studies of the extreme 
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case of egg cannibalism that address the destabilization effect of cannibal- 

ism (e.g., [61, [121X The possibility of oscillations in a discrete age-structured 
cannibalism model was studied by Landahl and Hansen [13] (their model 
does not incorporate a positive feedback of cannibalism on adult fertility, 
however). Botsford [l] used some continuous age-structured models to 
study the multiple steady-state and hysteresis phenomena. Van den Bosch 
et al. [20] studied the lifeboat strategy using a continuous age-structured 
model involving integro-partial differential equations. 

Our primary purpose here is to show that the effects of cannibalism 
discussed above can all be found in a very simple discrete age-structured 
model, one that is both analytically and numerically very tractable. A point 
to be made, then, is that one does not need a complicated model in order 
to capture all of these dynamical phenomena. The simplicity of the model 
suggests that these phenomena are very likely to be common in model 
cannibalistic populations and consequently might also be expected to occur 
in more sophisticated models. 

Cannibalism, like interspecies predation, is most commonly practiced by 
larger individuals on smaller individuals [18, 211. If we assume that age 
correlates with body size, then a simple model could be built by distinguish- 
ing just two age classes, a juvenile class and an adult class, such as is done 
in the simple model for intraspecific competition introduced by Ebenman 
[7]. The building of a model for the dynamics of the population involves the 
building of submodels for juvenile survival and adult fecundity. Under the 
assumption that adults cannibalize juveniles, the juvenile survival rate 
would be lowered (from its inherent level) by adult cannibalism. Adult 
fecundity would in turn be a function of the energy obtained from the 
practice of cannibalism as well as from noncannibalistic sources (for which 
there could also be intraspecific competition among adults). These assump- 
tions form the basis for the simple discrete model derived in Section 2. An 
analysis of the model, its equilibria, and its cycles is given in Section 3. We 
do not attempt a complete and full analysis of the dynamics implied by the 
model but limit ourselves simply to demonstrating that the dynamical 
features discussed above can be found. A discussion of these issues can be 
found in Section 4. 

2. THE MODEL EQUATIONS 

Let J(t) and A(t) denote the number or density of juveniles and adults, 
respectively, at times t = 0, 1,2,. . . in a population in which adults cannibal- 
ize juveniles. Let the “inherent” probability (i.e., the probability at low 
juvenile population densities) that a juvenile will be cannibalized during 
one unit of time when the adult population has density A be denoted by 
q*(A). This fraction, which necessarily vanishes when A = 0, will be 
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assumed to monotonically approach a limiting (maximal) value c, 0 < c < 1, 
as A + +m. We write **(A) = cq(A), where V is a continuously differ- 
entiable function of A E [0, + m) that satisfies 

o<*(A)<l, Y(0) = 0, ?‘(A) > 0, u’( +m) = 1. (2.1) 

Under this assumption, the coefficient c is the maximal possible inher- 
ent probability of being cannibalized. It will be referred to in this paper as 
the cannibalism coefficient. The assumption in (2.1) that T( +m> = 1 is 
indicative of a “contest” (or “interference”) competition between adults for 
juvenile “prey.” For the case of “scramble” (or “exploitative”) competition 
between adults, one would want V(+M) = 0, in which case ‘v would not be 
monotonically increasing. Most of our analytical results remain valid for 
scramble competition. Specifically, Theorems 2-7 (Section 3) remain valid 
only under the assumption that U’(O) > 0. Only the global existence of 
positive equilibria (for all r > rm in Theorem 1) is in doubt if V(A) 
decreases for large A > 0. We restrict our attention here to contest compe- 
tition, noting that scramble competition is less common in animals than 
plants ([171, p. 252). 

Since cannibalism rates can be affected by changes in juvenile density in 
the same way that predator responses are affected by heterospecific prey 
density [18], we assume that adult cannibalism saturates as a function of 
increasing juvenile density (as, for example, in Holling type II or III 
functional responses). If 4(J) denotes the fractional reduction in the 
inherent probability of being cannibalized when the juvenile population 
density is J > 0, then the probability of being cannibalized at juvenile and 
adult population levels J and A is cW(Ah$(J). If l- p is the probability 
that a juvenile will die of causes other than cannibalism during one unit of 
time, then (treating survival from cannibalism and from death by these 
other causes as independent) the probability that a juvenile survives one 
unit of time is p[l- CT(A)+(J)]. It follows that the number of surviving, 
and hence maturing, juveniles is 

P[I-~~(A)~(J)]J=P[J-~W(A)~(J)], 

where Q(J) = +(J)J. It is assumed that 4 and @ are continuously differen- 
tiable functions of J E [0, + CQ) that satisfy 

0<4(J)<l, 4(O) = 1, d’(J) < 0, 

Q’(J) > 0, @(+m)<+-oa. (2.2) 

For times t = 0, 1,2,. . we now have that 

A(t+l)=p[J(t)-cW(A(t))@(J(t))]+sA(t). (2.3) 

Here s is the survival probability of an adult over one unit of time. 
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Suppose that in the absence of competition the environment would 
provide each adult individual in the population an amount p of (noncanni- 
balistic) food resources per unit time. We assume that adults do compete 
for these resources, however, and consequently that the amount of noncan- 
nibalistic resources consumed by an adult (per unit time) is actually pf(A). 
Here f(A) is the fractional decrease in resource consumption (per adult) 
due to competition. We assume that 

O<f(A)Gl, f(0) = 1, f’(A) < 0, f( fm) = 0. (2.4) 

If we denote the energy derived from one unit of resource by eP, then the 
number of juvenile offspring produced by an adult population from these 
energy sources is le,pf( A)A, where 5 is the conversion factor that gives 
the number of offspring produced by adults per unit energy. 

In addition to affecting juvenile survival, cannibalism affects adult fertil- 
ity by providing an additional source of energy. Suppose that e, is the 
energy accrued to the adult population for each juvenile cannibalized. Then 
the number of juveniles produced per unit time due to cannibalism is 

le,cq(A)@(J). Thus, for t = 0,1,2,. . ., 

J(t +l> = ie,Pf(A(t))A(t) + le,c~(A(t>>@(J(t>). (2.5) 

Equations (2.3) and (2.5) determine the dynamics of the juvenile and 
adult classes. In general, the survival probabilities p and s could depend on 
energy consumed, as we have assumed that fertility does. We will not 
consider this more general case here, however, but instead concentrate on 
the positive feedback loop formed by the effect of cannibalism on adult 
fertility and by the negative effect of cannibalism on juvenile survival. 
Toward this end we take p and s to be constants. Thus, we ignore 
intraspecific competitive effects on juvenile survival and assume that juve- 
nile food resources are always in ample supply. We will also assume for 
simplicity (as in Ebenman [7, 81) that s = 0, that is, that adults do not 
survive longer than one unit of time. [Equations (2.3) and (2.5) can be 
viewed as a modification, to include cannibalism, of a simple version of 
Ebenman’s intraspecific competition model, namely of Ebenman’s model 
when juvenile survival is density-independent.] 

Under the assumptions above, Equations (2.3) and (2.. 
ten as 

5) can be rewrit- 

J(t+l)=;[f(A(t))++qt))Q(J(t)) 1 ACtI 

4t + 1) = ~[l- c~(A(t>)~(J(t>)lJ(t>, 
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where we have introduced the notation 
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r = de,p, P = ec/ep, G(A) = WA)/A 

We assume that $(A) is a continuously differentiable function of A E 

[O, +w). The assumptions previously made on ? imply that 0 G $(A), 
$( + ml = 0. The coefficient r is the inherent net reproductive number, the 
expected number of offspring per adult per lifetime at low population levels 
or, in other words, in the absence of competition and cannibalism. The 
coefficient p is the ratio of the energy obtained by an individual adult from 
one cannibalized juvenile to the energy obtained from one unit of noncan- 
nibalistic food resource. 

These model equations can be further simplified by specifying certain 
units. If one unit of noncannibalistic food resource is defined in such a way 
that it supplies the same energy as one cannibalized juvenile, then p = 1. 
Furthermore, p can effectively be set equal to 1 by assuming that the adult 
population is measured in units according to the number of juveniles 
necessary to result in one adult (in the absence of cannibalism). That is to _ - -- 
say, if we define x(t)= Ait)/p and f(A)= f<p&, W(A)= W(px), then 
the model equations become (upon dropping the bars) 

J(t + 1) = r[ f(A(t)) + $g(4t)P(J(r))] A(t), (2.6a) 

A(t +l) = [l-cqA(t))qJ(t))]J(t). (2.6b) 

The new functions f(A), WA), and +(A) satisfy all of the conditions given 
above that the original functions do. 

In the next section we study the asymptotic dynamics implied by Equa- 
tions (2.6) as they depend upon the parameters r, c, and p and the 
nonlinearities determined by f, q, and @. 

3. ANALYSIS OF THE MODEL 

3.1. EQUILIBRL4 

Equations (2.6) clearly have the trivial equilibrium J = A = 0. Positive 
equilibria must satisfy the equations 

J=r[_f(A)+z$(A)@(J)]A, (3.la) 

‘4 = [l- cV(A)4(J)]J. (3.lb) 

For each J > 0, the right-hand side of (3.lb) is a monotonically decreasing 
function of A that equals J > 0 at A = 0. Thus, (3.lb) has a unique solution 



A SIMPLE MODEL OF CANNIBALISM 53 

A = A(J) > 0, continuous in J > 0. Clearly, A(0) = 0 and A(+m) = foe. 
Equation (3.la), which can be rewritten 

1= m(J,A), (3.2a) 

n(J, A) = [f(A) + ;+(A)@(J)] [l- CWAM(J)l> (3.2b) 

can then be used to define uniquely an r = r(J) = l/n(J, A(J)) > 0 for 
which Equations (2.6) have the positive equilibrium (J, A(J)). Equation 
(3.2a) says biologically that at equilibrium the net reproductiue number 
r&J, A) must be equal to 1. Note that n(J,A) satisfies n(O,O) = 1, as is 
consistent with r being the inherent net reproductive number (technically, 

the net reproductive number at J = A = 0). Clearly, r(J) is continuous for 
J z 0, r(O) = 1, and r( + m) = + 00. Let rm = min, >a r(J), which clearly satis- 
fies 0 < r,,, < 1. These observations are summarized in the following 

theorem. 

THEOREM I 

There is a real number r, satisfying 0 < r,,, < 1 such that Equations (2.6) 

haue a positive equilibrium J > 0, A > 0 for and only for r > r,,,. Both J and 

A tend to +m as r -+ +w, and there are equilibria such that both J and A 
tend to zero as r + 1. 

The set of pairs (r(J), J), where J > 0 is the equilibrium value for the 
juvenile class when the inherent net reproductive number r equals r(J), 

can be viewed as a curve C in the rJ plane that intersects the set of trivial 
equilibria (r, 0) at, or bifurcates from, the point (r, J) = (1,O) corresponding 
to the trivial equilibrium at r = 1. This curve is unbounded in both its r and 
J components. (See Figure 1.) Note that Theorem 1 does not rule out the 
possibility that there could be more than one positive equilibrium for a 
given r > r,,,. Also note that if r, < 1 then there will exist positive equilibria 
for values of the inherent net reproductive number r less than 1. We will 
see below that both of these possibilities can occur. 

The number r,,, will definitely be less than 1 if r’(0) < 0, in which case 
there will exist positive equilibria for r < 1 but close to 1. In this case the 
bifurcation at r = 1 will be referred to as subcritical. In the opposite case, 
when r’(0) > 0, the bifurcation will be referred to as supercritical. Define 
the two quantities A*, A- < A+, by 

p-1 A*=-- p N(O) f f’(0). 

The fact that r’(0) = A+ can be deduced from (3.2a) [note that A’(0) = 1 
follows from (3.lb)l. This yields the following result. 
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(al A+ > 0 

r = inherent net reproductive number 

(bl A+ c 0 

r = inherent net reproductive number 

FIG. 1. If the quantity A+ is positive, then the branch of positive equilibria of (2.6) 

bifurcates “supercritically” from the zero state at the critical value r = 1 of the inherent 

net reproductive number as schematically shown in (a), in which the juvenile components 

J of the equilibria are plotted against r. If A+ < 0, then the bifurcation is “subcritical” as 

shown in (b), and there exist positive equilibria for values of r < 1. 
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THEOREM 2 

The curve C bifurcates supercritically from the point (r, J) = (1,O) if 
A+ > 0 and subcritically if A+ < 0. 

Note that since by assumption we have 9!‘(O) > 0, it follows that the 
bifurcation will be subcritical if cannibalism is practiced (i.e., c > 0) and if 
the environmental resource supply rate p is sufficiently small. In this event, 
since there exist positive equilibria for all r > rm, the bifurcating branch 
must “turn around,” and hence at least two positive equilibria must exist 

for r values less than 1. See Figure 1 for a schematic representation of this 
theorem (also Figure 4). 

It can also happen that multiple positive equilibria exist for some r > 1 
as well. One result in this direction, for strong nonlinearities in the adult 
intraspecific competition term f, is contained in the following theorem (a 
proof of which appears in the Appendix). 

THEOREM 3 

Assume c > 0 (i.e., cannibalism is practiced) and, in addition to (2.4), that 
f ‘(A)A + 0 as A + + 00. Given any constant J > 0 sufficiently small, then 

r’(J) < 0 and r’(0) > 0 prouided - f ‘(0) > 0 is sufficiently large. 

Since r(0) = 1, r’(0) > 0, and r( + m> = + m, the inequality r’(J) < 0 im- 
plies that Equations (2.6) have several positive equilibria for r = r(J) with 
juvenile component J and that the supercritically bifurcating branch C has 
an S-shaped bend or hysteresis loop in it. (See Figure 10.1 

3.2. SYNCHRONOUS 2-CYCLES 

There is another bifurcation from the trivial solution that occurs at 
r = 1. A straightforward investigation of the first composite of (2.6) shows 
that a bifurcating branch of “synchronous” 2-cycles exists for each r > 1 as 
is described in the following theorem. By “synchronous” is meant a cycle in 
which juveniles appear only at every other time interval (as do the adults, 
but at alternating time intervals). 

THEOREM 4 

For each r > 1, Equations (2.6) possess a synchronous 2-cycle given by the 
formulas 

0 
J(t) = 

fort=1,3,5,... 

J,,(r) fort=2,4,6 ,..., 

A(t) = 
J,(r) fort = 1,3,5,... 
o fort=2,4,6 ,..., 

where Jo(r) = f-‘(l/r) > 0. 
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Theorems l-4 show that Equations (2.6) can possess, in addition to the 
trivial equilibrium, one or more positive equilibria and also, at least in the 
case when r > 1, a synchronous 2-cycle. We now consider the stability of 
these various solutions. 

3.3. STABILITY OF EQUILIBRU AND SYNCHRONOUS 2-CYCLES 

The Jacobian of (2.6) evaluated at J = A = 0 is the matrix 

0 r 

[ 1 1 0 

whose eigenvalues are + r ‘I2 Thus the trivial equilibrium loses stability at . 
the critical value r = 1; that is, it is stable for r < 1 and unstable for r > 1. 
Note that at r = 1 the eigenvalues are f 1, which accounts for the simulta- 
neous bifurcation of the positive equilibria of Theorem 1 and the 2-cycles 
of Theorem 4. 

In order to determine the stability of the positive bifurcating equilibria, 
at least for r close to 1, we consider the two eigenvalues A + and A - (near 
+ 1 and - 1, respectively) of the Jacobian of the right-hand sides of 
Equations (2.6) evaluated at such an equilibrium. The equilibria are stable 
if both eigenvalues have absolute value less than 1. In the Appendix it is 
shown that 

h+=l-+(r-l)+O(r-l)2, (3.3a) 

h-=-l-(A-/2A+)(r-l)+O(r-1)2. (3.3b) 

These expressions together with Theorem 2 yield the following result. 

THEOREM 5 

The trivial equilibrium J = A = 0 of (2.6) is stable for r < 1 and unstable 

for r > 1. If A+ < 0, then the bifurcation of positive equilibria at r = 1 is 
subcritical and unstable; that is, the positive equilibria near the trivial equilib- 
rium exist and are unstable for r less than but close to 1. On the other hand, if 
A+ > 0, then the positive equilibiria that bifurcate supercritically are stable 
when A- < 0 and unstable when A- > 0, at least for r greater than but close 
to 1. 

In the case A+ < 0, when locally near the bifurcation point (r, J> = (1,O) 
the subcritically bifurcating positive equilibria are unstable, we know that 
the branch C must “turn around” and that there must be multiple positive 
equilibria for r < 1. Although we have no proof, we anticipate that the 
positive equilibrium with the larger juvenile component J, on the “upper 
part of the branch,” is in general stable. Evidence from computer-gener- 
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ated orbit diagrams seem to indicate that this is in general true; see Figure 
5 for an example. 

The bifurcating positive equilibria are also unstable when the bifurcation 
is supercritical (A’ > 0) but A- > 0. In this case, as we will now see, the 
bifurcating 2-cycles are stable. 

The point J = J”(r), A = 0 associated with the 2-cycle in Theorem 4 is a 
fixed point of the first composite of Equations (2.6). In order to investigate 
the stability of the bifurcating 2-cycles we need to calculate the eigenvalues 
of the Jacobian matrix of this first composite at this point. The 2-cycles are 
stable if both of these eigenvalues have absolute value less than 1. This 
matrix is an upper triangular matrix whose eigenvalues are 

which, near r = 1, can be written 

A,=l-(r-l)+O(r-l)*, 

&=lff.& -(r-l)+O(r-l)*. 

Note that A, + +m as r + +m. We can now state the following theorem. 

THEOREM 6 

For r close to 1, the synchronous 2-cycles in Theorem 4 are unstable if 

A- < 0 and stable if A- > 0. In any case they are unstable for r sufficiently 

large. 

In summary, we have found that there are three possible bifurcation 
scenarios near the critical value r = 1: stable supercritically bifurcating 
equilibria accompanied by unstable supercritically bifurcating synchronous 
2-cycles; unstable supercritically bifurcating equilibria accompanied by sta- 

ble supercritically bifurcating synchronous 2-cycles; or unstable subcritically 
bifurcating equilibria and unstable super critically bifurcating synchronous 
2-cycles. These different cases, which are determined by the signs of the 
quantities A’, are schematically illustrated in Figure 2. Treating these 
quantities as functions of c and p, one can easily sketch the regions in the 
cp plane where each of these bifurcation cases occurs. This is done in 
Figure 3, where the importance of the magnitude of the resource supply 
rate p can be seen. If p < 1, then the bifurcating synchronous 2-cycles are 
never stable, whereas if p > 1, they will bifurcate stably if the cannibalism 
coefficient c is sufficiently large. The inequaiity p > 1 (p < 1) means that 
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FIG. 2. The three possible local bifurcation and stability scenarios near r = 1 illus- 

trated schematically by plotting both the juvenile components .I of the bifurcating positive 

equilibria and the maximum component of the bifurcating synchronous 2-cycles against 

the inherent net reproductive number r. The dashed lines indicate instability. The graphs 

are drawn only schematically and are not meant to imply any general geometric details 

(such as relative magnitudes, slopes, etc.). Also see Figure 3. 

the amount of energy supplied to each adult per unit time is more (less) 
than that derived from the cannibalism of one juvenile individual. 

From Figure 3 we see that in the absence of cannibalism (c = 01 the 
positive equilibria bifurcate stably, but that the introduction of cannibalism 
(i.e., an increase in c) can change the stability properties of the bifurcating 
branches near r = 1. It is also interesting to note that the introduction of 
cannibalism can change the equilibrium levels of J and A. The following 
theorem is proved in the Appendix. 
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(2) 

p=l 
I 

P 

1.0 

C 

0.0 

FIG 

p=l 

I 

P 

3. Regions in the pc parameter plane that correspond to the three different local 

bifurcation diagrams in Figure 2 are shown schematically. These regions appear as in (a) 

when -f’(O)/+(O)> 1 and as in (b) when - f’(O)/$,(O) < 1. Thus, (a) occurs when 

intraspecific adult competition for the environmental resource is strong, whereas (b) 

occurs when this competition is weak. In the regions labeled (1) a subcritical bifurcation 

of unstable equilibria occurs as shown in Figure 2a. In regions labeled (2) a supercritical 

bifurcation of stable equilibria occurs as in Figure 2b, whereas in the region labeled (3) 

stable 2-cycles bifurcate as in Figure 2c. 
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THEOREM 7 

For c = 0 and for r > 1 but close to 1, 

J. M. CUSHING 

dJ 
(l-P)po, 

a!A 
(l-p)JpO. 

Consequently, for fixed r > 1 near 1, equilibrium levels for both J and A 
increase or decrease with the introduction of cannibalism (c > 0, but small) 
provided p < 1 or p > 1, respectively. 

4. DISCUSSION 

That self-regulation, stability, and increased resilience can be benefits 
derived from the practice of cannibalism is a major point in the survey 
article of Polis [18]. On the other hand, cannibalism cannot be expected to 
be stabilizing under all environmental and demographic conditions. Oscilla- 
tions in some populations have been attributed to cannibalism-for exam- 
ple, in Tribolium species. In extreme cases, cannibalism can result, in fact, 
in oscillations in which an entire age class is lost [18]. 

The possibility of these various dynamical consequences of cannibalism 
is predicted by our model equations (2.6). If we restrict our attention for 
the moment to the possible bifurcation scenarios that can occur at the 
critical value r = 1, as are summarized in Figures 2 and 3, we can see that 
the effect that cannibalism has on our simple two-age class model popula- 
tion depends on the amount p of environmental resource made available to 
an adult per unit time and on the degree of cannibalism practiced, as 
measured by the magnitude of c. We first consider the case when the 
environmental resource supply rate is low, specifically when p < 1 and the 
amount supplied to each adult in one unit of time has less energetic value 
than does one cannibalized juvenile. 

If p < 1, then an increase in the degree of cannibalism will increase 
equilibrium levels (Theorem 71, ultimately raising the bifurcating branch of 
equilibria and (possibly) causing it to “bend over” and result in a subcritical 
bifurcation (Figure 3). See Figure 4 for an illustration. Although this latter 
case destabilizes the low-level positive equilibria near the bifurcation point 
when r < 1 (Theorem 51, it in general leads to higher level stable equilibria 
even in this case, when extinction would have otherwise occurred (i.e., 
without cannibalism). We have no proof of this assertion, but numerical 
evidence points to its general validity. See Figure 5 for an example. For 
these reasons, cannibalism can be viewed as beneficial when p < 1 (al- 
though there is the danger of a catastrophic collapse of the population 
should r be decreased to far below 1). 
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FIG. 4. The effect of increasing the cannibalism coefficient c on the bifurcating 

branch of equilibria is illustrated by plotting the juvenile components J of the equilibria 

against the inherent net reproductive number r for several values of c. Note the increase 

in equilibrium levels with increasing c and the subcritical bifurcation for sufficiently large 

c. These graphs are from Equations (2.6) with nonlinearities (4.1). Parameter values are 

p = l/2, d = -f’(O) = 1, a = l/$(O) = l/5. The increasing values of c = 0, l/4, l/2, 3/4, 

and 1 correspond to moving vertically from region (2) into region (1) in Figure 3a. See 

Figure 5 concerning the stability properties of these equilibria. 

The graphs in Figures 4 and 5 were computed for 

1 
f(A)=ew(-a), - 4(J)= l+J’ WI=& (4.1) 

in Equations (2.6). Here d > 0 and a > 0 are constants. 
The occurrence of stable positive equilibria for r < 1 when a subcritical 

bifurcation occurs under the practice of cannibalism implies the possibility 
of survival for parameter values that would otherwise lead to extinction. 
This feature has been used by van den Bosch et al. [20] as theoretical 
support for what is termed a lifeboat mechanism or strategy. Under such a 
strategy, a species that is threatened with extinction because of periods of 
resource or prey scarcity survives such a crisis by practicing cannibalism 
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FIG. 5. In order to discover their stability properties, the equilibria for (2.6) with (4.1) 

were dynamically computed for the same parameter values as in Figure 4 but with 

maximal cannibalism coefficient c = 1. Again the juvenile components J of the computed 

equilibria are plotted against the inherent net reproductive number r. Here the stability 

of the upper portion of the subcritically bifurcating branch can clearly be seen. Note 

particularly the stability of the positive equilibria on this branch corresponding to values 

of r less than 1 (for which the stability of the trivial equilibria can also be seen). 

(see [18] and references cited therein). The occurrence of subcritical 
bifurcations in our model when the environmental resource supply rate 
p < 1 similarly lends theoretical support to this survival mechanism, particu- 
larly when it is noted that, all other parameters being held fixed, r = p(e,p 

will also be small when p is small. 
For large values of r, Equations (2.6) in the absence of cannibalism 

(c = 0) readily exhibit equilibrium destabilization, repeated bifurcations, 

FIG. 6. These graphs illustrate the effect of introducing the practice of cannibalism 

into a population when the environmental resource supply rate p is low. The juvenile 

components J of the attractors of (2.6) with (4.1) were dynamically computed and then 

plotted against the inherent net reproductive number r for three increasing values of the 

cannibalism coefficient: (a) c = 0, (b) c = l/20, and (cl c = l/10. Parameter values are 

p = l/2, d = -f'(O)= 1, a = l/$,(O)= 1. These parameter values lie in region (2) of 

Figure 3a with p = l/2 < 1. Note that in (a), that is, in the absence of cannibalism, stable 

equilibria bifurcate at r = 1 and are followed by the familiar period-doubling cascade to 

“chaos” and aperiodic oscillations. In (b), where only a moderate level of cannibalism has 

been introduced, restabilized equilibria occur for large values of r, and oscillations are 

confined to a finite interval of r values. In (c), where only a slightly larger cannibalism 

coefficient is used, the range of r values for which there are oscillations has almost totally 

disappeared, with the result that the branch of equilibria has nearly completed stabilized. 
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FIG. 7. The stabilizing effect of increased cannibalism is illustrated by plotting the J 

component of the dynamically computed attractors against the cannibalism coefficient 

c E [O,l]. Parameter values in (2.6) with (4.1) are p = l/2, d = - f’(0) = 1, a = l/$(O) = 1, 

and r = 75. This corresponds to moving vertically along a path in region (2) in Figure 3a 

with p = l/2 < 1. Note that the oscillations occurring for c less than a critical value, 

roughly equal to 0.4, are equilibrated for c larger than this value. 

and “chaotic” dynamics (see Figure 6a, for an example). When p < 1, the 
introduction of cannibalism will significantly stabilize these dynamics by 

restricting (if not eliminating) the oscillatory and chaotic parameter range 
and by stabilizing and increasing equilibrium levels (see Figures 6b, 6~). 
Figure 7, in which the attractors are plotted against the cannibalism 
coefficient c, clearly demonstrates this stabilizing property. These results 
lend further support to the conclusion that cannibalism can be stabilizing 
when the environmental resource supply rate p is small. 

Consider now the case when p > 1. Referring to Figure 3b, we see that, 
insofar as small values of the inherent net reproductive number r are 
concerned, there are two possibilities. Either stable positive equilibria 

bifurcate at r = 1 for all values of the cannibalism coefficient c (Figure 3a) 
or the stable bifurcating equilibria lose their stability to synchronous 
2-cycles for values of c sufficiently greater than 0 (Figure 3b). The latter 
case, which points to a kind of destabilizing property of cannibalism, occurs 
if the intraspecific competition between adults for the environmental re- 
source is weak (If’(O)1 is small). This is illustrated by Figure 8, where this 
exchange of stability from the equilibrium to the 2-cycle as c is increased 
from 0 to 1 is clearly seen. The stability of the bifurcating 2-cycles does not 
persist as r is increased, however (Theorem 6). In Figure 9 can be seen an 
example in which the equilibria, which bifurcate unstably, restabilize as r is 
increased, whereas the 2-cycles, which bifurcate stably, destabilize. Numeri- 
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FIG. 8. The juvenile components J of the attractors of (2.6) with (4.1) were dynami- 

cally computed and plotted against the cannibalism coefficient c with parameter values 

p = 5, d = -f'(O) = l/10, a = l/$(O) = l/10, and r = ll/lO. This corresponds to moving 

vertically from region (2) to region (3) in Figure 3b and hence moving from the 

occurrence of a bifurcating stable equilibrium to the occurrence of a bifurcating syn- 

chronous 2-cycle (as in Figures 2b and 2c, respectively). The equilibrium loses stability as 

c increases from 0 to 1, where a stable synchronous 2-cycle is seen. 
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FIG. 9. The juvenile components J of the attractors of (2.6) with (4.1) were dynami- 

cally computed and plotted against the inherent net reproductive number r. Parameter 

values are p = 5, d = -f'(O) = l/10, a = l/t,k(O) = l/10, and c = 3/4. These parameter 

values lie in region (3) of Figure 3b, and hence stable synchronous 2-cycles are observed 

bifurcating at T = 1. However, these 2-cycles lose stability, and the equilibrium (which 

bifurcated unstably at r = 1) is stabilized for larger values of r. 
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FIG. 10. In (a) the effect of increasing the cannibalism coefficient c on the bifurcating 

branch of equilibria is illustrated by plotting the juvenile components J of the equilibria 

against the inherent net reproductive number I for several values of c. Parameter values 

in (2.6) with (4.1) are p = 3/2, d = - f’(O) = 20, a = l/$(O) = 1 with c = 0, l/4, l/2, 3/4, 

and 1. This corresponds to moving vertically through region (2) in Figure 3a with 

p = 3/2 > 1. Note the increase in equilibrium levels (for large r) and the development of 

hysteresis loops with increasing c. In (b) the same graph is shown with c = l/2, but for 

equilibria that were dynamically computed to demonstrate the stability of the upper and 

lower portions of the hysteresis loop. 
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cal simulations suggest in this case (in region 3 of Figure 3b) that the 
dynamics when r is large is quite complicated, involving many different 

kinds of attractors and even multiple attractors. 
On the other hand, strong intraspecific adult competition for the envi- 

ronmental resource (Figure 3a) has a stabilizing influence on the dynamics. 
In this case, however, multiple stable, positive equilibria can readily occur 
(Theorem 3). Figure 10a shows an example of the evolution of an S-shaped 
bend in the equilibrium branch C as the cannibalism coefficient c is 
increased. Figure 10b shows the stability of the lowermost and uppermost 
branches of this bend. The importance of this configuration and the 
implied hysteresis for exploited aquatic (and cannibalistic) populations is 
discussed at length by Botsford [l]. A population equilibrating at the higher 
equilibrium state will suddenly “crash” to the lower equilibrium state if 
some disturbance, such as intense exploitation, reduces r below the critical 
value defined by the bend at which the upper branch exists. Moreover, if 

exploitation ceases and r is increased to its former level, the population, 
now equilibrating on the lower branch, can fail to return to its former 
higher equilibrium state. Botsford [l] references several instances of such 
occurrences involving a variety of fish and crab species (which, in fact, 
practice cannibalism). 

5. CONCLUDING REMARKS 

We have studied the dynamics of the difference equations (2.6) as a 
model of an age-structured population whose nonreproducing juveniles are 
cannibalized by the adults. It was shown how the interplay between the 
negative and positive feedback mechanisms implied by this cannibalism, 
even in this simplest of models, can account for several unique features that 
have been observed in natural and laboratory organisms that practice 
cannibalism. 

First, if the supply rate of environmental resource is low (as measured in 
units corresponding to the energetic content of one cannibalized juvenile), 
then the practice of cannibalism has a “stabilizing” influence on the 
dynamics of our model population (in addition to significantly raising 
equilibrium levels); otherwise cannibalism can, at least for low inherent net 
reproductive rates, result in severe sustained oscillations in which both age 
classes are alternately wiped out. 

Second, the practice of cannibalism can allow a population to survive 
under circumstances when it would otherwise go extinct. In particular, this 
can occur if the environmental resource supply rate is low and the inherent 
net reproductive number is below replacement (this is the so-called lifeboat 
strategy). 

Finally, cannibalism can result in a hysteresis effect caused by the 
occurrence of multiple, stable positive equilibrium states. This in turn can 
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account for sudden population crashes to lower equilibrium levels as crucial 
parameters are changed (e.g., if the inherent net reproductive number is 
decreased) and a failure to return to previous equilibrium levels when 
parameters are returned to previous values. 

The presence of these dynamical features in such a simple model of 
cannibalism as that considered here suggests that their presence might also 
be expected in more complicated models of cannibalism. It would be of 
interest, for example, to consider a model with more than two age classes 
and adults that reproduce possibly more than once (iteroparity). A more 
sophisticated model would also include resource dynamics because the 
intensity of cannibalism is often inversely related to noncannibalism 
resource availability [18]. Also, as cannibalism usually correlates with 
body size (rather than age), the study of these dynamical phenomena 
in a size-structured model of cannibalism would be of interest (see 
van den Bosch et al. [20]). 
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APPENDIX 

Proof of Theorem 3. Define d = - f’(O) > 0 and g(A) = f (A /d). Then 
g(0) = 1, g’(O) = - 1, and both g(A) and Ag’(A) + 0 as A + + 00. With 
A = A(J) and f(A)= g(dA), we can compute from (3.2a) the derivative 
r’(J) = - r”dn(J, A(J))/&, and from (3.2b) the factor dn(J, A(J))/&, 
whose sign determines that of r’(J). The terms in the latter derivative can 
be placed into two categories: those that depend upon d and those that do 
not. Note that the adult equilibrium component A = A(J), and hence its 
derivative A’(J), are independent of f and hence of d (see the discussion 
preceding Theorem 1). The two stated asymptotic facts about g imply that 
the terms involving d will tend to 0 as d + +m, all other parameters being 
held fixed, including J > 0. The terms independent of d, when evaluated at 
J = 0, turn out to equal cW’(O)@‘(O)/p > 0 and hence are positive for J > 0 
sufficiently small. Thus d&J, A(J))/& > 0, and hence r’(J) < 0, for d 
sufficiently large provided J > 0 is sufficiently small. Note that 

-1 
r’(0) = A+ = ycV(O) + d > 0 

for d large. 
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Proof of Theorem 5. The formulas in (3.3) can be derived by standard 
regular perturbation (or Liapunov-Schmidt) techniques in which the bifur- 
cating equilibria, and the Jacobian of the right-hand sides of (2.6) and its 
eigenvalues A’, are all expanded in Taylor series in E = r - 1 centered at 
E = 0. Thus, if the bifurcating equihbria are given by 

J= JIE +0(c2), A = A$ + O(E2) 

for E > 0 small, then we can expand the Jacobian 

and its eigenvalues 
eigenvectors 

Q = PO + (21~ + WE*) 

and associated right (column) and left (row) 

A+ = A; + A+ + O(G), 

v + = l$+ Llrfe + O(E2), (A.1) 

kv*=w$+Wr%+O(E2). 

Then from (Q - AI)v = 0, w(Q - AZ) = 0, and the Fredholm alternative, it 
can easily be shown from lower order terms that 

A; = wo'Q,v,'/ wo+ ~0’. (A-2) 

Placing the expansions (A.l) into the equilibrium equations (3.1) and into 
Equation (3.2a), one easily finds from the resulting terms of lowest order in 
E that J, = A, = l/A+. With these coefficients in hand, one can straightfor- 
wardly calculate from the Jacobian 

‘r$W(J)+(A)A r f(A)+ ~@(J)+(A) 1 1 \ 
Q= f’(A)+ $@(J)+‘(A) A 

\ 1 - c@‘( J)q( A) - c@( J)W’( A) 
1 , 

the lowest order matrix 

whose eigenvalues A$ = _+ 1 and associated eigenvectors 

1 
$= +L 7 ( 1 wo’=(l,*l) 
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are easily calculated. In order to use (A.2) to obtain (3.3) we need only 
calculate Q,. This is done by calculating the first-order O(E) terms in each 
entry of Q, which results in 

Q,=-& P 
i 

“w f’(O) + crcr(O) 

-N(O) I -c4(0) . 

(A.2) now easily yields A[ = -l/2 and A[ = - A-/2A+, which in turn 

yield the desired expressions (3.3). 

Proof of Theorem 7. The positive equilibria satisfy Equation (3.2a) and 
are functions of c. A differentiation of (3.2a) with respect to c, together 
with the facts that A = J and 1 = rf(I> when c = 0 [cf. (3.1)], yields 

A differentiation of (3.lb) with respect to c, when evaluated at c = 0, yields 

dI/dc - dA/dc = @(J)WJ), and hence 

$=[l-rp-‘+rJf’(J)] ‘$!;“J’,I’. 

Since f’ < 0, the signs of these derivatives are the opposite of those of the 
parenthetical expressions, which at r = 1 reduce to 1- p-l. This proves 
Theorem 7. 
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