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Some Stability Criteria for Linear
Systems of Volterra Integral Equations

By J. M. BOWNDS and J. M. CUSHING
(Rensselaer Polytechnic Institute & IBM Thomas J. Watson Research Center)

Criteria are given for the stability, uniform stability, and asymptotic stability
of a linear system of Volterra integral equations whose kernel is either a
Pincherle-Goursat type kernel (called a $¥mathrm{P}¥mathrm{G}$ kernel), a perturbation of a $¥mathrm{P}¥mathrm{G}$

kernel, or a kernel dominated by a $¥mathrm{P}¥mathrm{G}$ kernel. The approach taken depends
on a representation formula for the fundamental matrix of a linear system with
$¥mathrm{P}¥mathrm{G}$ kernel which involves the fundamental solution of ’ a certain associated
ordinary differential equation. The stability criteria all are related directly to
the given kernel of the system, either explicitly so, or implicitly through the
associated ordinary differential equation.

1. Introduction.
In a previous paper [1] we have indicated some parallels and distinctions

which may be drawn between the classical theory of Liapunov stability for
systems of ordinary differential equations and a similar theory for systems of
Volterra integral equations. As indicated in that paper, stability theory for
such integral equations has been approached in various ways in the literature,
and one finds important contributions, for example, in [2?13] and [20-23].
The primary distinction made in [1] was the introduction of a concept of uni-
form stability in studying perturbed linear systems which, together with a
characterization of various stabilities on suitable normed spaces of initial func-
tions for linear systems, leads to a natural generalization of the standard stability
results for perturbed systems of ordinary differential equations. Knowing con-
ditions under which stability is preserved under perturbations (see [1]) is, of
course, not sufficient for deciding the stability of a given perturbed system;

one must know in advance the stability properties of the unperturbed linear
system. Consequently, for this reason as well as a matter of interest concern-
ing linear systems in and of themselves, it is seen to be important to establish
as many results or techniques as possible which imply the stability of linear
systems or provide a means of studying their stability properties. The purpose
of this paper is to offer some results along these lines. For other results on
linear equations see [7, 8, 10, 12, 13]. Our approach and results seem to be
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completely independent of those found in the literature; the significant features
here are that the stability properties are related directly to the kernel of the
integral equation itself and not to the resolvent kernel or to the fundamental
matrix (see [1] and below) and that use is made of what seems to be a new
representation formula for integral equations having kernels which are of Pin-
cherle-Goursat type. Although we restrict ourselves to continuous Kernels,
our results apply to continuous iterates of singular kernels.

We mention that for the basic existence, uniqueness, continuity, and
comparison theorems, reference is made to [14].

We consider systems of the form

(I) $u(x)=¥varphi(x)+¥int_{a}^{x}K(x, t)u(t)dt$

where $K$ is a $k¥times k$ matrix which is assumed continuous for $ x_{0}¥leqq t¥leqq x<+¥infty$, $a¥geqq x_{¥dot{0}}$,
and $¥varphi$ , $u$ are-vectors which are at least continuous on [$x_{0},$ $+¥infty)$ . For com-

pleteness the definitions of the three types of stability to be considered will be
repeated here. The significant features of these definitions are as follows : the
inclusion of the possibility for different norms on the initial function $¥varphi$ and a
definition of uniform stability which plays a major role’in any stability preserva-

tion under perturbation [15,1]. Let $||u||0.a=¥sup_{x¥geqq a}|u(x)|$ and suppose $N$ is a

normed space of functions defined on $x¥geqq x_{0}$ with norm $||¥cdot||$ . If to any $¥epsilon>0$ there
exists a $¥delta=¥delta(a, ¥epsilon)>0$ such that $||¥varphi||¥leqq¥delta$ , $¥varphi¥in N$, implies that the solution of (I)
exists for all $x¥geqq a$ and $||u||_{0.a}¥leqq¥epsilon$ , then (I) is called stable on $N$. If $¥delta$ can be found
independently of $a¥geqq x_{0}$, then (I) is called uniformty stable (A. S.) on $N$. If
(I) is stable on $N$ and in addition has the property that for every $a¥geqq x_{0}$ there
exists a $¥delta=¥delta(a)>0$ such that $||¥varphi||¥leqq¥delta$ , $¥varphi¥in N$, implies $|u(x)|¥rightarrow 0$ as $ x¥rightarrow+¥infty$ , then
(I) is called asymptoticalfy stable (A. S.) on $N$.

It is to be emphasized that the solution $u(x)$ need not necessarily be a
member of the space $N$.

In [1] stability theorems are proved for (I) on the normed spaces
$N_{0}=¥{¥varphi¥in C[x_{0}, +¥infty) : ||¥varphi||=||¥varphi||¥mathrm{o}.x_{0}¥}$

$N_{1}=¥{¥varphi¥in C^{1}[x_{0}, +¥infty) : ||¥varphi||=||¥varphi||0,x_{0}+||¥varphi^{¥prime}||¥mathrm{o},x_{0}¥}$

$N_{2}=¥{¥varphi¥in C^{1}[x_{0},$ $+¥infty$) : $||¥varphi||=||¥varphi||0.x_{0}+¥int_{x_{0}}^{+¥infty}|¥varphi^{¥prime}|ds¥}$

$N_{¥theta}=$ $¥{¥varphi : ¥varphi¥equiv ¥mathrm{c}¥mathrm{o}¥mathrm{n}¥mathrm{s}¥mathrm{t}¥mathrm{a}¥mathrm{n}¥mathrm{t}, ||¥varphi||=|¥varphi|¥}$.

All of these spaces arise naturally by our approach. The space $N_{0}$ would seem
to be the most interesting space since it is the largest and, hence, stability on
$N_{0}$ implies stability on any of the other spaces. In so far as the preservation
of stability under $¥mathrm{p}¥mathrm{e}¥dot{¥mathrm{r}}¥mathrm{t}¥mathrm{u}¥mathrm{r}¥mathrm{b}¥mathrm{a}¥mathrm{t}¥mathrm{i}¥mathrm{o}¥mathrm{n}¥mathrm{s}$ is concerned, it was shown in [1] that uniform
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stability on $N_{3}$ is very important for (I). Moreover, in [1] it was shown that
uniform stability for (I) is equivalent on $N_{3}$ and $N_{2}$ . For these reasons (and
the fact that similar results to those below for the other spaces $N_{2}$ and $N_{1}$ can
easily and obviously be derived using our approach) we study stability only on
$N_{0}$ .

It was shown in [1] that if $U(s, x)$ is a $k¥times k$ continuous matrix which
solves the matrix equation

(U) $U(s, x)=I+¥int_{s}^{x}K(x, t)$ $U(s, t)dt$ ,

for $ a¥leqq s¥leqq x<+¥infty$ , then the solution to (I) has the “variation of constants”
representation

(VC) $u(x)=U(a, x)¥varphi(a)+¥int_{a}^{x}U(s, x)¥varphi^{J}(s)ds$

or, if $¥partial U/¥partial s$ is continuous,

$u(x)=¥varphi(x)-¥int_{a}^{x}¥frac{¥partial U}{¥partial s}(s, x)¥varphi(s)ds$ .

The matrix $U(s, x)$ is called the “fundamental matrix” for (I). The relation-
ship between this equation and the representation formulas found in the literature
is described in [1]. This particular representation will be significant below.

The main approach to be taken here is via a consideration of the so-called
Pincherle-Goursat (PG) kernels [16]; that is, kernels which have one or more
decompositions of the form

(PG) $K(x, t)=¥sum_{n=1}^{p}A_{n}(x)B_{n}(t)$ .

These kernels, in the theory of Fredholm integral equations, are also referred
to as degenerate [17] or kernels of finite rank [18]. In particular, for such
kernels, it is shown in §2 that the solution $U(s, x)$ of the fundamental equation
(U) has a representation in terms of a fundamental matrix for an associated
system of ordinary differential equations. This in itself is of interest and, as
indicated below, allows for a closed form solution to (I) to be exhibited when-
ever the associated ordinary differential equation can be solved explicitly; for
example, in the special case of a scalar equation with a multiplicative kernel.
From the point of view of establishing stability results, this representation for
$U(s, x)$ is important for the obvious reason that we may explicitly utilize known
stability criteria for differential equations to establish similar results for (I).
This is done in §2 for $¥mathrm{P}¥mathrm{G}$ kernels. More generally, in §3, theorems are
stated for what we will call $¥mathrm{P}¥mathrm{G}$ dominated kernefs; that is, kernels which are
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bounded in norm by a scalar $¥mathrm{P}¥mathrm{G}$ kernel. The fourth part of this paper gives
some results assuming the kernel in (I) is actually only a perturbation of a $¥mathrm{P}¥mathrm{G}$

kernel; these results are immediate applications of theorems from [1], but are,
unfortunately, quite restrictive. An attempt to ease these restrictions will be
the topic of future work by the authors.

2. PG kernels.
(A) A representation formula and preliminary lemmas. Recall that $K(x, t)$

is a $k¥times k$ continuous matrix on $ x_{0}¥leqq t¥leqq x<+¥infty$ , and assume that there exist
$¥mathit{2}p$ , $k¥times k$ continuous matrices $A_{n}(x)$ , $B_{n}(t)$ , $n=1,2$, $¥cdots,p$ , such that (PG) holds.

It will be shown below that for such kernels, the solution to (U) may be
expressed in terms of a fundamental matrix for what we will call the associated
system of differential equations. Depending on the nature of the actual decom-

position, the associated system will, in general, be larger in dimension than
the original system of integral equations. We denote the associated system by

(ADE) $y^{¥prime}(x)=M(x)y(x)$ , $x¥geqq x_{0}$,

where

$M(x)=(^{B_{1}(x)A_{1}(x)B_{1}(x)A_{p}(x)}B_{p}(x)¥dot{.}.A_{1}(x)¥cdots¥cdots¥cdots¥cdots B_{p}(x)..¥dot{A}_{p}(x))$ .

Notice that $y(x)$ is a $¥mathrm{k}¥mathrm{p}$-vector and $M(x)$ is of dimension $kp¥times kp$. Let $Y(x, t)$

denote the fundamental matrix $(kp¥times kp)$ of (ADE) for which $Y(t, t)=I$. We
may then write
(Y) $Y(x, t)=(¥overline{¥mathrm{Y}}_{nm}(x, t))$ , $n$ , $m=1,2$, $¥cdots,p$,

where $¥overline{Y}_{nm}(x, t)$ is the $nm^{¥underline{¥mathrm{t}¥mathrm{h}}}$ , $k¥times k$ block matrix.
Lemma 2. 1. The solution of (U) (the “fundamental matrix ” for the system

$(¥mathrm{I}))$ , is given by

(RU) $U(s, x)=I+¥sum_{n.m=1}^{p}¥int_{s}^{x}A_{n}(x)¥overline{¥mathrm{Y}}_{nm}(x, t)B_{m}(t)dt$,

where $¥overline{¥mathrm{Y}}_{nm}$ is defined by (Y).
Proof. The proof proceeds by directly verifying that (RU) is the solution

to (U) subject to the assumption in (PG). Hence, substituting (RU) into the
right-hand side of (U), we obtain

(2. 1) $¥left¥{¥begin{array}{l}I+¥int_{=I+}x¥int^{x}¥sum_{si=1}^{p}A_{i}(X)B_{i}(¥sum_{si=1}^{p}A_{i}(x)B_{i}(t)[t)dtI+¥sum_{m.n=1}^{p}¥int_{z=s}^{t}A_{m}(t)¥overline{¥mathrm{Y}}_{mn}(t,z)B_{n}(z)dz]dt¥¥+¥sum_{i.m.n=1}^{p}¥int_{t=s}^{x}¥int_{z=s}^{t}A_{i}(x)B_{i}(t)A_{m}(t)¥overline{¥mathrm{Y}}_{mn}(t,z)B_{l},(z)dzdt.¥end{array}¥right.$
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Changing the order of integration, we find that the double integral becomes

(2. 2) $¥int_{z=s}^{x}¥int_{t=z}^{x}A_{i}(x)B_{i}(t)A_{m}(t)¥overline{¥mathrm{Y}}_{mn}(t, z)B_{n}(z)dtdz$ .

Also, since $Y(x, t)=(¥overline{¥mathrm{Y}}_{nm}(x, t))$ is a fundamental matrix of (ADE), it follows
that each column is a solution to (ADE). As a consequence, for each $i$ , $k=$

$1$ , $¥cdots,p$,

(2. 3) $¥frac{¥partial}{¥partial x}¥overline{¥mathrm{Y}}_{ik}(x, t)=¥sum_{n=1}^{p}B_{i}(x)A_{m}(x)¥overline{¥mathrm{Y}}_{mk}(x, t)$ ,

with

(2. 4) $¥overline{¥mathrm{Y}}_{ik}(t, t)=¥delta_{ik}I$.

We may, of course, combine (2. 3) with (2. 4) and write

$¥overline{¥mathrm{Y}}_{ik}(x, t)=¥delta_{ik}I+¥int_{z=t}^{x}B_{i}(z)¥sum_{m=1}^{p}A_{n},(z)¥overline{¥mathrm{Y}}_{mk}(z, t)dz$.

Now we observe that

$¥sum_{¥mathrm{i}.m.n=1}^{p}¥int_{t=s}^{x}¥int_{z=s}^{t}A_{i}(x)B_{i}(t)A_{m}(t)¥overline{¥mathrm{Y}}_{mn}(t, z)B_{n}(z)dzdt$

$=¥sum_{i,n=1}^{p}¥int_{z=s}^{x}A_{i}(x)[¥int_{t=z}^{x}B_{i}(t)¥sum_{m=1}^{p}A_{m}(t)¥overline{¥mathrm{Y}}_{mn}(t, z)dt]B_{n}(z)dz$

$=¥sum_{i,n=1}^{p}¥int_{z=s}^{x}A_{i}(x)[¥overline{¥mathrm{Y}}_{in}(x, z)-¥delta_{in}I]B_{n}(z)dz$

$=¥sum_{i.n=1}^{p}¥int_{z=s}^{x}A_{i}(x)¥overline{¥mathrm{Y}}_{in}(x, z)B_{n}(z)dz-l¥sum_{=1}^{p}¥int_{z=s}^{x}A_{i}(x)B_{i}(z)dz$.

Returning to (2. 1), we have using (RU),

$I+¥int_{s}^{x}¥sum_{¥iota=1}^{p}A_{i}(x)B_{i}(t)dt$

$+¥sum_{i,n=1}^{p}¥int_{z=s}^{x}A_{i}(x)¥overline{¥mathrm{Y}}_{in}(x, z)B_{n}(z)dz-¥sum_{i=1}^{p}¥int_{s}^{x}A_{i}(x)B_{i}(z)dz$

$=I+¥sum_{i,n=1}^{p}¥int_{z=s}^{x}A_{i}(x)¥overline{Y}_{in}(x, z)B_{n}(z)dz$

$=U(s, x)$ .

This completes the proof of Lemma 2. 1.
Remark. In the scalar case $(k=1)$ and for a scalar, multiplicative kernel

$(p=1)$ , the scalar representation formula (RU) becomes

$U(s, x)=1+¥int_{s}^{x}A(x)Y(x, t)B(t)dt$,
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where $Y(x, t)$ is the fundamental (scalar) solution to the scalar equation $y^{¥prime}(x)=$

$B(x)A(x)y(x)$ which satisfies $Y(t, t)=1$ . But in this simple case

$Y(x, t)=¥exp(¥int_{t}^{x}B(z)A(z)dz)$.

Hence,

$U(s,x)=1+¥int_{s}^{x}A(x)B(t)¥exp(¥int_{t}^{x}B(z)A(z)dz)dt$ .

Consequently, the scalar equation (I) has the solution

$u(x)=¥varphi(x)+A(x)¥int_{a}^{x}¥varphi(s)B(s)¥exp(¥int_{s}^{x}B(z)A(z)dz)ds$.

We will require all or part of the following lemmas. The proof of Lemma
2. 2 may be found in Coppel [15], Lemmas 2. 3 and 2. 4 are found in [1]
(Theorems 2. 1 and 4. 3 respectively), and Lemma 2. 5 is due to Sato [14]. We
always assume $U(s, x)$ is the continuous solution to (U) and $Y(x, t)$ is the
fundamental matrix for (ADE) for which $Y(t, t)=I$. Also, if $M$ is a matrix,
we use the norm

$||M||=¥sup_{|¥xi|=1}|M¥xi|$ .

Lemma 2.2. The system (ADE) is:
(i) stable if and only if there exists a constant $M(t)>0$ such that

$||Y(x, t)||¥leqq M(t)$ for $x_{0}¥leqq t¥leqq x$ ;

(ii) uniformly stable (U. S.) if and. only if $M$ in (i) is independent of $t$ ;

(iii) asymptotically stable (A. S.) if and only if $||¥mathrm{Y}(x, t)||¥rightarrow 0$ as $ x¥rightarrow+¥infty$

for each $t¥geqq x_{0}$ ;

(iv) uniformly asymptotically stable (U. A. S.) if and only if there exists
positive constants $M$, a such that

$||Y(x, ¥mathrm{t})||¥leqq ¥mathrm{M}¥exp$ $[-¥alpha(x-t)]$ , $x_{0}¥leqq t¥leqq x$.

Lemma 2.3. The system (I) is:
(i) stable on $N_{8}$ if and only if there exists a constant $M(a)>0$ such that

$||U(s,x)||¥leqq M(a)$ , $a¥leqq s¥leqq x$ ;

(ii) U. S. on $N_{3}$ if and $ody$ if $M$ in (i) is independent of $a$ ;
(iii) A. S. on $N_{3}$ if and only if $||U(s, x)||¥rightarrow 0$ as $ x¥rightarrow+¥infty$ for each $s¥geqq a$ .
Lemma 2.4. Suppose $U(s, x)$ possesses a continuous partial in $s$ for $x_{0}¥leqq s$

$¥leqq x$ .

(i) If there exists a constant $M>0$ such that

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial s}(s, x)||ds¥leqq M$ , $x¥geqq x_{0}$ ,
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then (I) is U. S. on $N_{0}$ ;

(ii) If
$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial s}(s, x)||ds¥rightarrow 0$ as $ x¥rightarrow+¥infty$ ,

then (I) is A. S. on $ N_{0}¥cap$ $¥{¥varphi¥in C[x_{0}, +¥infty) : |¥varphi(x)|¥rightarrow 0, x¥rightarrow+¥infty¥}$ .
Lemma 2. 5. If $u(x)$ is the solution to (I) and $w(x)$ satisfies the inequality

$w(x)¥leqq¥varphi(x)+¥int_{a}^{x}K(x, t)w(t)dt$ ,

then $w(x)¥leqq u(x)$ , $a¥leqq x$, provided $K(x, t)¥geqq 0$, $x¥geqq t¥geqq a$ .
(B) Some examples. The stability theorems for (I) in part (C) below will

all require that (ADE) be at least uniformly stable. In additon, certain assump-
tions will be made regarding the nature of the $¥mathrm{P}¥mathrm{G}$ kernel itself. A natural
question arises as to whether there is actually an inherent connection between
the stability of (I) and of (ADE). If such a connection exists, of course,
additional assumptions on $K(x, t)$ could immediately be suspected as being
unnecessary.

In Example 1, we see that (I) may be unstable on $N_{0}$ even though $(¥mathrm{A}¥mathrm{D}¥mathrm{E})$‘

is uniformly stable. On the other hand, in Example 2, we will see that (I)
may be uniformly stable while (ADE) is unstable. Hence, if we assume we
that (ADE) is uniformly stable we must make some additional assumption if
wish to prove that (I) is stable. Finally, in Example 3, we see that the
particular additional assumption which we make is not so strong as to imply
that (ADE) is actually U. S. In fact, we show that the added restriction (ii)
in Theorem 2. 1 may hold while both (ADE) and (I) are unstable. In each
example we consider the scalar case $(k=1)$ with a multiplicative kernel $(p=1)¥_$

Example 1. Consider the equation

(2. 5) $u(x)=¥varphi(x)+¥int_{0}^{x}¥sum_{n=1}^{¥infty}a_{n}(x)u(t)dt$

where, for each positive integer $n$ ,

$a_{n}(x)=¥left¥{¥begin{array}{l}0,0¥leqq x¥leqq n-n^{-1}2^{-n}¥¥n^{2}2^{n}[x-(n-n^{-1}2^{-n})],n-n^{-1}2^{-n}¥leqq x¥leqq n¥¥-n^{2}2^{n}[x-(n+n^{-1}2^{-n})],n¥leqq x¥leqq n+n^{-1}2^{-n}¥¥0,x¥geqq n+n^{-1}2^{-n}.¥end{array}¥right.$

It is clear that $¥sum_{n=1}^{¥infty}a_{n}(x)$ is unbounded on [$0,$ $+¥infty)$ , but

$¥int_{0}^{+¥infty}¥sum_{n=1}^{¥infty}a_{n}(x)dx=¥sum_{n=1}^{¥infty}2^{-n}=1$.
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In this case, the associated (scalar) differential equation is

(2. 6) $y^{¥prime}(x)=¥sum_{n=1}^{¥infty}a_{n}(t)y(t)$,

the fundamental solution for which is given by and satisfies

$||Y(x, t)||=¥exp(¥int_{t}^{x}¥sum_{n=1}^{¥infty}a_{n}(s)ds)¥leqq¥exp(¥int_{0}^{+¥infty}¥sum_{n=1}^{¥infty}a_{n}(s)ds)=e$ ,

which implies, by Lemma 2. 2 (ii), that (2. 6) is U. S.
However, the representation (RU) implies (see Remark following Lemma

2. 1), that the fundamental matrix for (2. 5) satisfies

$U(s, x)=1+¥int_{s}^{x}¥sum_{n=1}^{¥infty}a_{n}(x)¥exp(¥int_{z}^{x}¥sum_{n=1}^{¥infty}a_{n}(s)ds)dz$

$¥geqq 1+¥sum_{n=1}^{¥infty}a_{n}(x)¥int_{s}^{x}1dz=1+¥sum_{n=1}^{¥infty}a_{n}(x)(x-s)$

Since $¥Sigma a_{n}(x)$ is unbounded, Lemma 2. 3 implies that (2. 5) is unstable on $N_{3}$

and hence unstable on $N_{0}$ .
Example 2. Consider the scalar equation

(2. 7) $u(x)=¥varphi(x)+¥int_{a}^{x}x^{-2}tu(t)dt$ , $x¥geqq a¥geqq 1$ .

Then the associated (scalar) differential equation is

(2. 8) $y^{¥prime}(x)=x^{-1}y(x)$ , $x¥geqq 1$ ,

which has as its fundamental solution $Y(x, t)=xt^{-1}$ . The unboundedness of
this solution in $x$ for each $t¥geqq 1$ implies that (2. 8) is unstable. On the other
hand, from the remark in part (A) we find that $U(s, x)=1+x^{-1}(x-s)$ and,
hence, $¥partial U/¥partial s=-x^{-1},1¥leqq s¥leqq x$ . It follows from Lemma 2. 4 and the inquality

$¥int_{1}^{x}||¥frac{¥partial U(s,x)}{¥partial s}||ds=1-x^{-1}¥leqq 1$

that (2. 7) is U. S. on $N_{0}$ .
Example 3. Consider the scalar equation

(2. 9) $u(x)=¥varphi(x)+¥int_{1}^{x}x^{-1}u(t)dt$ , $x¥geqq 1$ .

The associated differential equation is given by (2. 8) so that as in Example 2
this integral equation has an unstable (ADE). Also, (2. 9) is unstable on $N_{3}$

$.${and hence on $N_{0}$), for by the remark in part (A), $U(s, x)=1+¥log xs^{-1}$ which
is unbounded in $x¥geqq s$ for each $s¥geqq 1$ . We notice here that $A_{1}(x)=x^{-1}$ , $B_{1}(t)=1$,

and so
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(2. 10) $|A_{1}(x)|¥int_{s}^{x}|B_{1}(t)|dt=x^{-1}¥int_{s}^{x}dt=x^{-1}(x-s)¥leqq 1$ ,

for all $ 1¥leqq s¥leqq x<+¥infty$ . This observation will have specific meaning below since
(2. 10) corresponds to hypothesis (ii) in Theorem 2. 1.

(C) Stability theorems requiring the uniform stability of (ADE). It will
be seen that with the use of the representation (RU), together with appropriate

additional assumptions, we may relate the uniform stability of (ADE) to the
stability of (I).

Theorem 2.1. Assume that $K(x, t)$ is a $¥mathrm{P}¥mathrm{G}$ kernd, $¥partial U(s, x)/¥partial s$ is conti-
nuous, and that

(i) (ADE) is U. S. ;

(ii) there exists a constant $L>0$ such that

$¥sum_{n=1}^{p}||A_{n}(x)||¥int_{x_{0}}^{x}¥sum_{m=1}^{p}||B_{m}(t)||dt¥leqq L$, $ x_{0}¥leqq x<+¥infty$ .

Then (I) is U. S. on $N_{0}$ .

Remark. Examples 1 and 3 indicate the mutual independence and apparent

necessity of both (i) and (ii) in the sense that the theorem is false if either
assumption is dropped.

Proof. From (RU), we obtain the estimate

$||¥frac{¥partial U}{¥partial t}(t, x)||¥leqq¥sum_{n.m=1}^{p}||A_{n}(x)||||¥overline{¥mathrm{Y}}_{nm}(x, t)||||B_{m}(t)||$ ,

which yields

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq¥sum_{n=1}^{p}||A_{n}(x)||¥int_{x_{0}}^{x}¥sum_{m=1}^{p}||¥overline{¥mathrm{Y}}_{nm}(x, t)||||B_{m}(t)||dt$.

Now, since (ADE) is U. S., there exists a constant $M>0$ such that $||¥overline{¥mathrm{Y}}_{nm}(x, t)||$

$¥leqq||Y(x, t)||¥leqq M$, $t¥leqq x$ . So, using (ii), we have

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq ML$,

which, by Lemma 2. 4, implies that (I) is U. S. on $N_{0}$ .

The assumption in (ii) can be weakened at the expense of a strengthing of

(i). In particular we have the following result.
Theorem 2.2. In Theorem 2. 1 repface (i) and (ii) respectivefy by the

assumptions:
(i) (ADE) is U. A. S. ;

(ii) there exists a constant $L>0$ such that

$¥sum_{n=1}^{p}||A_{n}(x)||e^{-¥beta x}¥int_{x_{0}}^{x}¥sum_{m=1}^{p}||B_{m}(t)||e^{¥beta t}dt¥leqq L$, $x_{0}¥leqq x$ ,
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for some sufficientfy smdf constant $¥beta>0$ .
Then (I) is U. S. on $N_{0}$ .
Proof. Since (ADE) is U. A. S., Lemma 2. 2 implies the existence of

positive constants $M$, a such that $||¥overline{¥mathrm{Y}}_{m}(x, t)||¥leqq||Y(x, t)||¥leqq M¥exp$ $(-¥alpha(x-t))$ , for
$ x_{0}¥leqq t¥leqq x<+¥infty$ . Now, differentiation of (RU) leads to

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq M¥sum_{n=1}^{p}||A_{n}(x)||¥int_{x_{0}}^{x}¥sum_{m=1}^{p}||B_{m}(t)||e^{-a(x-t)}dt$

$¥leqq M¥sum_{n=1}^{p}||A_{n}(x)||¥int_{x_{0}}^{x}¥sum_{m=1}^{p}||B_{m}(t)||e^{-¥beta(x-t)}dt$,

for $ 0<¥beta<¥alpha$ . Hence,

$¥int_{x¥mathrm{o}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq ML$ ,

which, by Lemma 2. 4, proves uniform stability on $N_{0}$ .
For the asymptotic stability of (I) with a $¥mathrm{P}¥mathrm{G}$ kernel, assuming at least the

uniform stability of (ADE), we have the following theorem.
Theorem 2. 3. Assume $K(x,t)$ is a $¥mathrm{P}¥mathrm{G}$ kernel and $¥partial U(s, x)/¥partial s$ is continuous,

(i) If (ADE) is U. S. on if

$¥sum_{n=1}^{p}||A_{n}(x)||¥int_{x_{t}}^{x}¥sum_{m=1}^{p}||B_{m}(t)||dt¥rightarrow 0$ as $ x¥rightarrow+¥infty$ ,

then (I) is A. S. on $ N_{¥mathrm{D}}¥cap$ {$¥varphi¥in C[x_{0},$ $+¥infty)$ : $|¥varphi(x)|¥rightarrow 0$ as $ x¥rightarrow+¥infty$ } $¥alpha$.
(ii) If (ADE) is U. A. S. and if

$¥sum_{n=1}^{p}||A_{n}(x)||e^{-¥beta x}¥int_{x_{0}}^{x}¥sum_{m=1}^{p}||B_{m}(t)||e^{¥beta t}dt¥rightarrow 0$ as $ x¥rightarrow+¥infty$

and sufficientfy and $¥beta>0$ , then (I) is A. S. on $N_{0}¥cap¥{¥varphi¥in C[x_{0},$ $+¥infty$) : $|¥varphi(x)|¥rightarrow 0$

as $ x¥rightarrow+¥infty$}.
Proof. From (RU), as before, we have the estimate

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq M¥sum_{n=1}^{p}||A_{n}(x)||¥int_{x_{0}}^{x}¥sum_{m=1}^{p}||B_{m}(t)||dt¥rightarrow 0$

as $ x¥rightarrow+¥infty$ . So, by Lemma 2. 4, (I) is A. S. on the space asserted in (i).
Part (ii) is proved similarly using the estimates of the proof of the preceding
theorem.

At this point, as a matter of observation, we mention that it possible to
prove stability theorems on the smaller space $N_{3}$ which do not require any
differentiability for $U(s, x)$ and which have slightly weaker hypotheses. One
would use Lemma 2. 3 and methods very similar to those above.

(D) Stability criteria relating directly to the $¥mathrm{P}¥mathrm{G}$ kernel. In his book
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Coppel [15] has stated useful criteria for determining the stability of linear
systems of ordinary differential equations. Since we have the representation
(RU) and the above lemmas, it is natural to attempt to establish similar criteria
for (I). We note here that it is possible to directly generalize these criteria
for Volterra-Stieltjes integral equations in which $K(x, t)=K(t)$ using a recent
inequality of Martin [19]. These results would generalize those for the classical
initial value problem but would not necessarily supply stability criteria for (I).

As in Coppel [15] and Martin [19], for a matrix $A$ , define

(2. 11) $¥mu(A)=¥lim_{h¥rightarrow 0+}¥frac{||I+hA||-1}{h}$ .

It is important to note that $¥mu(A)$ is a continuous function of $t$ if $A$ is, and
$¥mu(A)$ could be negative.

The following lemma extends known results for vectors to corresponding
results for matrices. The proof is a straightforward generalization of the
proof in [15] with vector norms being replaced by matrix norms and so will
not be given here.

Lemma 2. 6. Let $Y(x, t)$ be,the fundamentd note $i,x$ for (ADE) satisfying
$Y(t, t)=I$. Then

(2. 12) $||Y(x, t)||¥leqq¥exp(¥int_{t}^{x}¥mu(M(s))ds)$,

where $¥mu$ is defined by (2. 11).
We use this fact to relate directly boundedness criteria on the kernel in (I)

to the stability of the solution; we no longer assume anything about the as-

sociated differential equation. The theorems below list sufficient conditions for
the stability of the integral equation (I) with a $¥mathrm{P}¥mathrm{G}$ kernel, but do not exclude
the instability of the associated equation (ADE).

Theorem 2. 4. Suppose $U$ has a continuous partid in $s$ and $K(x, t)$ is $a$

$¥mathrm{P}¥mathrm{G}$ kernel. If there exists a constant $L>0$ such that

(2. 13) $¥sum_{n=1}^{p}||A_{n}(x)||¥int_{¥alpha_{0}}^{x}¥sum_{m=1}^{p}||B_{n},(t)||¥exp(¥int_{t}^{x}¥mu(M(z))dz)dt¥leqq L$

then (I) is U. S. on $N_{0}$ .
Proof. From (RU), we have the estimate

$¥int_{x¥mathrm{o}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq¥sum_{m.n=1}^{p}||A_{n}(x)||¥int_{x_{0}}^{x}||¥overline{¥mathrm{Y}}_{nm}(x,t)||||B_{m}(t)||dt$ ;

and, using Lemma 2. 6 together with the obvious fact that $||¥overline{¥mathrm{Y}}_{nm}||¥leqq||Y||$ , we
see that
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$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq¥sum_{m.n=1}^{p}||A_{n}(x)||¥int_{x_{0}}^{x}||B_{nt}(t)||¥exp(¥int_{t}^{x}¥mu(M(z))dz)dt$ .

The assumption in (2. 13) then completes the proof.
The next theorem, concerning asymptotic stability, is to be compared with

Theorem 2. 3 with reference to the remarks in part (B).
Theorem 2. 5. With the same assumptions as in Theorem 2. 4, replace

(2. 13) with the assumption

$¥sum_{n=1}^{p}||A_{n}(x)||¥int_{x_{0}}^{x}¥sum_{m=1}^{p}||B_{m}(t)||¥exp(¥int_{t}^{x}¥mu(M(z))dz)dt¥rightarrow 0$

as $ x¥rightarrow+¥infty$ , then (I) is A. S. on $ N_{0}¥cap$ { $¥varphi¥in C[x_{0},$ $+¥infty)$ : $|¥varphi(x)|¥rightarrow 0$ as $ x¥rightarrow+¥infty$ }.
Proof. This theorem follows immediately from the estimate derived in the

proof of the preceding Theorem 2. 4. and Lemma 2. 4.
We conclude this section by mentioning the fact that our representation

formula (RU) together with our characterization of stability for (I) on $N_{3}$

(Lemma2.3) may be used in an obvious way to establish the instability of (I)
with a $¥mathrm{P}¥mathrm{G}$ kernel provided enough is known about the $¥mathrm{a}¥mathrm{s}¥mathrm{s}¥dot{¥mathrm{o}}$ ciated equation

(ADE). Specifically, we can state the following result.
Theorem 2. 6. If

$¥lim¥inf_{x¥rightarrow+¥infty}||¥sum_{n.m=1}^{p}¥int_{s}^{x}A_{n}(x)¥overline{¥mathrm{Y}}_{nn}(x, t)B_{m}(t)dt||=+¥infty$

for each fixed $s¥geqq x_{0}$ , then (I) is unstabfe on $N_{3}$ and therefore unstable on $N_{0}$ .

Proof. With this assumption, (RU) implies that $||U(s, x)-I||$ is unbounded
in $x$ for each $s¥geqq x_{0}$ . Hence, $||U(s, x)||$ is unbounded in $x$ for each $s¥geqq x_{0}$ for
which the instability of (I) on $N_{3}$ follows by the characterization in Lemma
2. 3.

3. PG-dominated kernels.
We now consider the linear integral $¥mathrm{e}¥mathrm{q}¥mathrm{u}¥mathrm{a}¥mathrm{t}¥check{¥mathrm{i}}¥mathrm{o}¥mathrm{n}$ $(¥mathrm{I})$ in which $K(x, t)$ is not

necessarily a $¥mathrm{P}¥mathrm{G}$ kernel. We say that $K(x, t)$ is $PG$-dominated if there exist
scalar functions $a_{n}(x)$ , $b_{n}(t)$ , $n=1,2$, $¥cdots,p$ , such that

$||K(x, t)||¥leqq¥sum_{n=1}^{p}a_{n}(x)b_{n}(t)$ , $ x_{0}¥leqq t¥leqq x<+¥infty$ .

Clearly, a $¥mathrm{P}¥mathrm{G}$ kernel is also $¥mathrm{P}¥mathrm{G}$ -dominated with $a_{n}(x)=||A_{n}(x)||$ and $b_{n}(t)=$

$||B_{n}(t)||$ for $n=1,2$, $¥cdots,p$ . For this reason, it may appear that the theorems to
follow are generalizations of those stated in §2. This, however, is not the
case as a formal remark later will point out.

We will use the following lemma.
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Lemma 3.1. Suppose $K(X, t)$ is $PG$-dominated and $¥partial U(s, x)/¥partial s$ is continu-
ous. If there exists a constant $L>0$ such that

$¥int_{x_{0}}^{x}||K(X, t)||dt¥leqq L$, $x¥geqq x_{0}$ ,

then

(3. 1) $¥int_{x¥mathrm{o}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq L[1+¥int_{x_{0}}^{x}¥sum_{n,m=1}^{p}a_{n}(x)b_{n}(t)y_{nm}(X, t)dt]$ ,

there $y_{nm}(x,t)$ is the scalar $(n, m)^{¥underline{¥mathrm{t}¥mathrm{h}}}$ entry of the fundamental matrix $Y(X, t)$ ,
$¥mathrm{g}$

$¥mathrm{Y}(t, t)=I$, for the associated system

$(¥mathrm{A}¥mathrm{D}¥mathrm{E}^{*})$ $y^{¥prime}(x)=M^{*}(x)y(x)$

with $M^{*}(x)=(a_{n}(x)b_{m}(x))$ .
Proof. From (U), we obtain

$||¥frac{¥partial U}{¥partial t}(t, x)||¥leqq¥int_{t}^{x}||K(x, z)||||¥frac{¥partial U}{¥partial t}(t, z)||dz+||K(x, t)||$ ,

so that an integration together with an application of Fubini’s theorem yields

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq¥int_{x_{0}}^{x}||K(X, t)||dt+¥int_{z=x_{0}}^{x}||K(x, z)||¥int_{t=x_{0}}^{z}||¥frac{¥partial U}{¥partial t}(t, z)||$dtdz.

Now, using the integrability assumption on $K(X, t)$ , as well as the assumption
that $K(X, t)$ is $¥mathrm{P}¥mathrm{G}$ -dominated, we find

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq L+¥int_{z=x_{0}}^{x}¥sum_{n=1}^{p}a_{u}(x)b_{n}(z)¥int_{t=x_{0}}^{z}||¥frac{¥partial U}{¥partial t}(t, z)||$ dtdz.

According to our variation of constants formula (VC), together with the
representation (RU), the solution to

$w(x)=L+¥int_{x_{0}}^{x}¥sum_{n=1}^{p}a_{n}(x)b_{n}(t)w(t)dt$

is given by

$w(x)=L[1+¥int_{x_{0}}^{x}¥sum_{n,m=1}^{p}a_{n}(x)b_{m}(t)y_{nm}(X, t)dt]$.

Hence, appealing to Lemma 2. 5, we finally obtain the result (3. 1).
We are now in a position to prove stability theorems on $N_{0}$ .
(A) Stability theorems requiring the uniform stability of $(¥mathrm{A}¥mathrm{D}¥mathrm{E}^{*})$ .
Theorem 3.1. Assume that $K(X, t)$ is $PG$-dominated and that $¥partial U(s, x)/¥partial s$

is continuous. Further assume that $(¥mathrm{A}¥mathrm{D}¥mathrm{E}^{*})$ is U. S. If there exists a constant
$L>0$ such that
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$¥sum_{n=1}^{p}|a_{n}(x)|¥int_{x_{0}}^{x}¥sum_{m=1}^{p}|b_{m}(t)|dt¥leqq L$ , $ x_{0}¥leqq x<+¥infty$,

then (I) is U. S. on $N_{0}$ .

Proof. We have

$¥int_{x¥mathrm{o}}^{x}||K(x, t)||dt¥leqq¥int_{x_{0}}^{x}¥sum_{n=1}^{p}|a_{n}(x)||b_{n}(t)|dt$

$¥leqq¥int_{x_{0}}^{x}¥sum_{n.m=1}^{p}|a_{n}(x)||b_{m}(t)|dt¥leqq L$ .

Consequently, the above Lemma 3. 1 implies that

$¥int_{x¥mathrm{o}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq L[1+¥int_{x_{0}}^{x}¥sum_{n,m=1}^{p}|a_{n}(x)||b_{m}(t)||y_{nm}(x, t)|dt]$ .

Since $(¥mathrm{A}¥mathrm{D}¥mathrm{E}^{*})$ is U. S., Lemma 2. 2 implies the existence of a constant $M>0$

such that

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t,x)||dt¥leqq L[1+ML]$ .

An appeal to Lemma 2. 4 then completes the proof.

Theorem 3.2. Suppose $K(x, t)$ is $VG$-dominated, $U(s, x)$ has the usual
differentiability, and $(¥mathrm{A}¥mathrm{D}¥mathrm{E}^{*})$ is U. A. S. If there exist constants $K>0$, $L>0$

and a sufficiently smdl constant $¥beta>0$ such that

(3. 2) $¥int_{x_{0}}^{x}¥sum_{n=1}^{p}a_{n}(x)b_{n}(t)dt¥leqq L$,

and

(3. 3) $¥sum_{n=1}^{p}|a_{n}(x)|e^{-¥beta x}¥int_{x_{0}}^{x}¥sum_{m=1}^{p}|b_{m}(t)|e^{¥beta t}dt¥leqq K$ ,

for $ x_{0}¥leqq x<+¥infty$ , then (I) is U. S. on $N_{0}$ .
Proof. The assumption (3. 2) assures the integrability requirement in

Lemma 3. 1. Hence, we have (3. 1). But, as before, from the U. A. S. of
$(¥mathrm{A}¥mathrm{D}¥mathrm{E}^{*})$ we have

$|y_{nm}(x, t)|¥leqq||Y(x, t)||¥leqq Me^{-¥alpha(x-t)}$,

for some $M$, $¥alpha>0$ , where $Y(x, t)$ is the usual fundamental matrix for $(¥mathrm{A}¥mathrm{D}¥mathrm{E}^{*})$ .
Therefore, for $ 0<¥beta<¥alpha$ , using (3. 3), we find

$¥int_{x_{0}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq L[1+¥sum_{n=1}^{p}|a_{n}(x)|¥int_{x_{0}}^{x}¥sum_{m=1}^{p}|b_{m}(t)|Me^{-¥beta(x-t)}dt]$

$¥leqq L[1+MK]$ .

The conclusions of the theorem then follow from Lemma 2. 4.
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(B) Stability criteria relating directly to the kernd. Here we prove a
theorem which is similar to Theorem 2. 4, but for more general kernels. The
expense is an added restriction.

Theorem 3. 3. Assume $K(X, t)$ is $PG$-dominated, $¥partial U(s, x)/¥partial s$ is continuous,
and that (3. 2) holds. If, in addition, there exists a constant $M>0$ such that

(3. 4) $¥sum_{n,m=1}^{p}|a_{n}(x)|¥int_{x_{0}}^{x}|b_{m}(t)|¥exp(¥int_{t}^{x}¥mu(M^{*}(z))dz)dt¥leqq M$ ,

then (I) is U. S. on $N_{0}$ .
Proof. The assumption (3. 2) implies, by Lemma 3. 1, that (3. 1) holds.

Then (3. 4) leads to

$¥int_{x¥mathrm{o}}^{x}||¥frac{¥partial U}{¥partial t}(t, x)||dt¥leqq L[1+M]$ ,

which, as usual, produces the result.
Remarks. (1) We observe here that if the kernel in (I) is actually of

$¥mathrm{P}¥mathrm{G}$ type, then we have a choice of stability theorems : we may try to use
theorems directly from §2 or we may take $a_{n}=||A_{n}||$ , $b_{n}=||B_{n}||$ , and try to use
the theorems in this section. That there is, in fact, a difference in the two
approaches can be seen by comparing, for example, Theorem 2. 1 with Theorem
3. 1. The system (ADE) in Theorem 2. 1 is of dimension $kp¥times kp$ and its coef-
ficient matrix could contain negative entries which may, of course, have a
profound effect on determining the uniform stability of that system. On the
other hand, if we chose $a_{n}$ , $b_{n}$ as above, then we consider the smaller $p¥times p$

system $(¥mathrm{A}¥mathrm{D}¥mathrm{E}^{*})$ . However, the coefficient matrix of this system has only non-
negative entries which could, of course, make for much different asymptotic
behavior than might be observed for (ADE).

(2) We have not stated any theorems on the A. S. of (I) with a $¥mathrm{P}¥mathrm{G}-$

dominated kernel. However, it is clear how theorems similar to Theorems 2. 3
and 2. 5 could be derived; these would require, in place of the conditions (3. 3)
and (3. 4), that the expressions in (3. 3) and (3. 4) tend to zero as $ x¥rightarrow+¥infty$ .

4. Perturbations.
In the theory of Fredholm integral equations, one major result is that any

$L_{2}$ kernel may be approximated in the $L_{2}$ norm by a $¥mathrm{P}¥mathrm{G}$ kernel [16]. The
proof of this theorem depends heavily on the boundedness of the interval of
integration, a luxury which is not present in $¥mathrm{d}¥mathrm{i}¥mathrm{s}¥mathrm{c}¥mathrm{u}¥dot{¥mathrm{s}}$sing the asymptotic behavior
of a Volterra equation. Of course it still may be possible to approximate uni-
formly $K(x, t)$ by a suitable $¥mathrm{P}¥mathrm{G}$ kernel. One obvious possibility is that $K(x, t)$

be expressible as a series of multiplicative, integrable functions of $x$ and $t$ on
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$ x_{0}¥leqq t¥leqq x<+¥infty$ . If this is the case, then use may be made of the previous
theorems together with the main perturbation result found in [1].

For the purposes of this exposition, we will state our perturbation theorem
from 1] in terms of a kernel which may be approximated by a $¥mathrm{P}¥mathrm{G}$ kernel;

the exact nature of this approximation is fully described in hypotheses $¥mathrm{H}¥mathrm{I}$ and
H2 below.

Theorem 4. 1. Assume that $K(x, t)$ has the representation

$K(x, t)=¥sum_{n=1}^{p}A_{n}(x)B_{n}(t)+R(x, t)$, $ x_{0}¥leqq t¥leqq x<+¥infty$ ,

where $A_{n}(x)$ , $B_{n}(t)$ are as in §2, and $R(x, t)$ satisfies

Hl: $¥int_{x_{0}}^{+¥infty}||R(x, x)||dx<+¥infty$ ;

H2: $¥int_{x_{0}}^{+¥infty}¥int_{x_{0}}^{s}||¥frac{¥partial R}{¥partial s}(s, t)||dtds<+¥infty$ .

Further assume that the unperturbed equation

(4. 1) $u(x)=¥varphi(x)+¥int_{a}^{x}¥sum_{n=1}^{p}A_{n}(x)B_{n}(t)u(t)dt$, $ x_{0}¥leqq a¥leqq x<+¥infty$ ,

is U. S. on $N_{3}$ . Then (I) is stable or uniformly stable on a normed space $N$

of initid functions if the unperturbed equation is respectively stable or uniformly
stable on that space $N$.

Also from [1], we have the following result for A. S.
Theorem 4.2. Assume that $K(x, t)$ , $R(x, t)$ and the unperturbed equation

(4. 1) are as in Theorem 4. 1. Then (I) is A. S. on any space $N¥supseteqq N_{3}$ on which
the unperturbed equation (4. 1) is A. S.

It is clear that theorems similar to Theorems 4. 1 and 4. 2 could be stated
for perturbations of $¥mathrm{P}¥mathrm{G}$ -dominated kernels also.
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