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1 Introduction

Models of competition have played a central role in theoretical population dy-
namics and ecology. The vast majority of mathematical models of competitve
interactions that have been formulated have been done so with regard to highly
aggregate state variables at the total population level and have ignored differ-
ences between individual organisms, in effect treating all individuals of a species
as identical. Biological populations generally consist, however, of individuals with
diverse physiological characteristics, such as age, body size or weight, life cycle
stages, etc., (with intra-species variances that in fact can exceed inter-specific
variances amongst competing species) and it has become widely recognized that
this diversity can have a significant influence upon population level dynamics
(Werner and Gilliam (1984), Ebenman and Persson (1988), Metz and Diekmann
(1986)). Models that ignore individual level physiological variances cannot, ex-
cept in the simplest of cases, adequately account for the mechanisms that result
in competition between individual organisms for limited resources. In particu-
lar, intra-specific competition can be accounted for in such models only in highly
qualitative ways at best.

One common type of intra-specific competition found in species with over-
lapping generations occurs between different age or size classes within the popu-
lation, in particular between (younger or smaller) juveniles and (older or larger)
adults. In species with complex life cycles during which individuals undergo rad-
ical changes in morphology, physiology, or behavior (e.g. holometabolous insects,
amphibians, and many marine invertebrates), there are often significant changes
in resource utilization during the life cycle. For such species, these ontogenetic
niche shifts lessen or even exclude possibility of competition between adults and
juveniles. However, the potential for juvenile vs. adult competition is increased
in species that have simpler life cycles, during which individuals undergo fewer
changes during their life history. This is the case for most fishes, birds, mammals,
many plants, and for hemimetabolous insects (Ebenman (1987, 1988)). Some
questions that arise concerning such species included: what effects do strong
competitive interactions between juveniles and adults have on the dynamics of
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the population? Do such interactions stabilize or destabilize the population and
in what sense?

In an early paper, May et al. (1974) use a simple two-age class difference equa-
tion model to conclude that juvenile vs. adult competition has a destabilizing
effect on population equilibria. This conclusion was also reached by Tschumy
(1982) using a simple differential equation model. Ebenman (1987), however,
uses a simple two-age difference model to argue that destabilization was not
the only possibile effect of strong juvenile vs. adult competition (also see Eben-
man (1988), Ebenman and Persson (1988), Cushing and Li (1989)). Ebenman
distinguishes between suppressed adult fertility due to strong competition from
juveniles and increased juvenile mortality due to competition with adults and
he tabulates “all the studies known to (him), where even crude estimates of rel-
evant parameters can be made” and demonstrates two opposing trends (Table
2, Ebenman (1988)). First, in species that possess adult density dependent ju-
venile survival, population level dynamics progress from “unstable” oscillatory
dynamics to stable equilibrium dynamics as one passes from species with weak
to species with strong juvenile vs. adult competition. Conversely, in species that
possess juvenile density dependent adult fertility, the opposite is true, i.e. pop-
ulation dynamics is destabilized from equilibration to oscillations as one passes
from weak to strong juvenile vs. adult competition. These observations were
commensurate with the conclusions drawn from his simple model.

Cushing and Li (1989) study Eberman’s model in more mathematical detail
and argue, in agreement with Eberman, that strong juvenile vs. adult competi-
tion can be either stabilizing or destabilizing. They point out, however, that it is
difficult to make sweeping conclusions over wide parameter ranges and that any
conclusions drawn depend very much upon what is meant by “stabilization” or
“destabilization”. Different criteria can lead to contradictory conclusions. May
et al. and Eberman study the stabilization/destabilization question with regard
to the relative sizes of stability regions in certain parameter spaces. Tschumy
(1982), on the other hand, uses a criterion based upon linearized eigenvalue
sensitivity or changes in equilibrium levels. Loreau (1990) criticizes Eberman’s
analysis (and implicitly that of May, et al.) and, amongst other things, points
out that if the linearized eigenvalues are analyzed for his model one finds that in-
creaed competition is always destabilizing (also see Cushing and Li (1989)). We
will see here, however, that for more sophisticated continuous time-age variable
models, stabilization can indeed occur under the eigenvalue sensitivity criterion.

In this paper we will study the stabilization/destabilization question by mod-
els derived using the now standard modeling methodology for age-structured
popultion dynamics (Metz and Diekmann (1986)). In Sect. 2 we will derive, un-
der certain simplifying assumptions, differential delay equations for the dynamics
of populations exhibiting the two types of juvenile vs. adult competition distin-
guised by Eberman. These two cases, namely juvenile density dependent adult
fertility and adult density dependent juvenile survivability, will be considered in-
dependently in Sect. 3. The existence and stability of positive equilibrium states
will be studied and eigenvalue sensitivity to changes in competition coefficients
will be used to investigate the stabilization/destabilization question.
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2 Model derivation

Using what is now standard methodology for modeling age-structured poula-
tions (Hoppensteadt (1975), Gurtin and MacCamy (1974), Metz and Diekmann
(1986)), we consider a population described by an age specific density p = p(t,a)
whose dynamics are governed by the equations

8p+ 8ap+pp =0, (2.1a)
p(t,0) = /0 % fpda, (2.1b)
p(0,a) = ¢(a) (2.1¢)

where t > 0 is time, a > 0 is age, u > 0 and f > 0 are the unit density mortality
and fertility rates respectively, and ¢ > 0 is the initial age distribution. To model
the density dependent dynamics of a population one must prescribe how the vital
rates u and f depend on p.

In this paper we are interested in populations which consist of immature
juveniles and mature adults. It will be assumed that maturity is determined
strictly by age, i.e. there exists an age m > 0 such that individuals of age a < m
are immature and individuals of age a > m are mature. We can then structure
the population into two subgroups, namely juveniles and adults whose total
numbers are given by the integrals

m (o o]
J(it) = / p(t,a)da, A(t) = / p(t,a)da,
0 m
respectively. As discussed in Sect. 1, we are interested in the case when competi-
tion between these two subgroups is expressed through either increased juvenile
mortality and/or decreased adult fertility. Therefore we assume

0< p=p(a,W(t),W(t)=J(t)+7A(%)

0< f=rB(a,V(1),V(t)= al(t)+ A(t) (2.2)
dwu(a,W) >0, 0vPB(a,V)<0, B(a,V)=0 for 0<a<m.

It is also assumed that the normalization
00 a
/ ﬂ(a,O)exp(—/ u(s,0)ds)da =1 (2.3)
0 0

is satisfied so that the constant r > 0 is the “inherent net reproductive rate”,
i.e. the expected number of offspring per individual per lifetime in the absence
of density effects (Cushing (1985)). Here the competition coefficient 7 measures
the relative effect that an adult individual has on juvenile survival as compared
to that of a juvenile. Similarly the coefficient a measures the relative effect
that a juvenile individual has on adult fertility as compared to that of an adult
individual. The last line in (2.2) expresses the fact that the death rate increases
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and the fertility rate decreases with increases in population numbers and that
no individual of age less than m is fertile.

In this paper we will be interested in the existence and stability of (non-
negative) equilibrium solutions of equations (2.1) and how equilibrium stability
depends upon the competition coefficients y and a. Obviously these equations
possess the trivial equilibrium p = 0 (J = A = 0). It follows from general results
of Cushing (1985) that there exists an unbounded continuum of equilibrium pairs
(p,r) that bifurcates from the trivial solution pair (0, 1) and consists of positive
equilbria (except for (0, 1)). Moreover, because of conditions (2.2), these positive
equilibria are locally asymptotically stable at least for r greater than, but close
to the critical value 1. In a forthcoming paper, Cushing and Li (1990) study
the sensitivity of the stability of these positive equilibria on the competition
coefficients 4 and a. Here we will study this question for some specializations
of equations (2.1) from which can be derived differential delay equations for A
and J, or more precisely for A and the total population size P = J + A =
Is° p(t,a)da.

We will study the effects of density on juvenile mortality and on adult fertil-
ity separately by considering the following two models. For the case of density
dependent adult fertility we set

_ pr1,0<a<m " 0,0<a<m _
l‘—{p,,,m<a }’ﬂ—{ﬂA(V),m<a}’V_aJ+A (24)

where g4 > 0, us > 0 are constants and f4(V) > 0, dvBa(V) < (0) for all
V > 0. (For technical reasons we define 84(V) = B4(0) for V < 0.) Thus, in
this case, the death rate is assumed independent of weighted population size
V. Moreover the death rates of juveniles and of adults are assumed constant
(independent of an individual juvenile’s or adult’s age), although these two death
rates need not necessarily be the same. The normalization (2.3) requires that

Ba(0) = paexp(psm). (2.5)

For the second case of density dependent juvenile mortality we set

_{;U(W),0<a<m} 8 {0,0<a<m
#=\haym<a ’ Ba,m<a

}, W=J+vA  (26)

where g > 0, 84 > 0 are constants and dwps (W) 2> 0for all W > 0, u;(0) > 0.
(For technical reasons we define puy(W) = p;(0) for W < 0.) In this case the
juvenile death rate is independent of age, but dependent on population size W.
The adult fertility rate is a constant, independent of both age and population
size. The normalization (2.3) requires

Ba = paexp(ps(0)m). (2.7)

Under these assumptions we can derive differential equations for the rates of
change of J(t) and P(t) by integrating (2.1a) with repect to a from 0 to m and
0 to oo respectively. Before doing this we point out that an integration of (2.1a)
along characteristics, when p = u(t,a) and g = B(t,a) yields

..
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(t.a) ¢(a—t)exp(-f;p(s,a—t+s)ds),0Stsa
p(t,a) = )
p(t —a,0)exp(— [y p(a—t+5,8)ds),a<t
which implies for the adult fertility problem (2.4) that

g(m —t) exp(—pst),0 <t < m }

rBa(V(t —m))A(t — m)exp(—pym),m <t (£8)

plt,m) = {
and for the juvenile mortality problem (2.6) that
é(m —t)exp (- ‘us(W(s)ds),0<t<m
p(t,m) = { =)o . ) (2.9)
rBaA(t — m)exp(— [; ps(W(t—-m+ 8))ds), m < t

These formulas describe maturation rates for the two problems, i.e. the rate at
which juveniles reach age m. For example, in (2.8) the maturation rate during
the interval 0 < t < m is simply the initial density ¢(m —1) of individuals of age
m — t times the probability exp(—mt) of surviving t units of time. Afterwards,
for t > m, the maturation rate is the birth rate r84(V(t — m))A(t — m) at time
t — m multiplied by the probability exp(—pusm) of surviving to maturation age
m. (2.9) has a similar interpretation.

Under the assumption that p vanishes at a = oo, integrations of (2.1a) with
respect to a from 0 to oo and from m to oo yield

(e}
P’ — p(t,0) +/ ppda =0, A’ —p(t,m)+paA=0.
0

These equations together with (2.1b) and (2.8)-(2.9) in turn yield the following
system of delay equations

P = —p;P+ pgA+rBa(V)Afor t >0 where pg = py — pa (2.10a)
A' = —ppA+¢(m—t)exp(—pyt) for 0<t<m (2.100)
A'= —psA+rBa(V(t —m))A(t — m)exp(—pym) for t >m  (2.10c)
for the density dependent adult fertility problem and
P'=—p;(W)P+ (rBa—pa+ps(W)A for t>0 (2.11a)

t
A = —psA+¢(m-—1t) exp(—/ pi(W(s)ds) for 0<t<m (2.110)
0
A' = —ppsA+rBaA(t —m)exp(- /m py(W(t—m+s))ds) fort >m (2.11c)
0

for the density dependent juvenile mortality problem. Note that
V(t) = aP(t)+ (1 - @)A(t) and W(t)= P(t)+ (v — 1)A(1).

Both problems have the initial conditions (see (2.1c))
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(=<} (oo}
P(0) =/ #(a)da>0 and A(0) =/ é(a)da > 0. (2.12)
0 m

Equations (b) and (c) in (2.10) and (2.11) have straightforward interpre-
tations. (b) They state that the rate of change of the adult population is de-
termined by the loss —p4 A due to deaths plus the gain due to maturation of
juveniles. On the interval 0 < ¢t < m this maturation rate is given simply by the
survivors, over t units of time, from the initial density ¢(m — t) of juvenile indi-
viduals of age m —t. For times ¢ > m this maturation rate is given by the birth
rate at time ¢ — m multiplied by the probability of surviving the m time units
to maturation. Equations (a) express the net change in population size due to
deaths and births. For example, the right hand side of (2.10a) can be rewritten
as —pjJ — psA+rBa(V)A whereby the change in population size P’ is seen to
be given by the loss of both juveniles and adults due to death plus the gain due
to births from the adult class. A similar interpretation holds for (2.11a).

The problems (2.10)-(2.12) are somewhat nonstandard in that the initial
conditions for the delay equations (a) and (c) for t > m, rather than being given
over the “initial” interval 0 < t < m as is usually the case for delay equations,
are determined by the initial conditions (2.12) at ¢t = 0 and the equations in
parts (a) and (b) over the interval 0 <t < m. We will not dwell on this point
here, but instead turn to the asymptotic dynamics by restricting our attention
tot > m.

3 Equilibria and stability

In this section we will analyze the equilibrium solutions of equations (2.10a,c)
and (2.11a,c) and their stability properties, including the trivial zero state so-
lution P = A = 0. Four theorems will be proved. Theorem 1 shows that if the
inherent net reproductive rate r is less than one then the trivial equilibrium
is globally attracting and consequently the population asymptotically dies out.
The condition r < 1 means that at low population densities, when the adverse
effects on survival and fertility are minimal, individuals do not on average re-
place themselves. This “reasonable” result is a consequence of the monotonicity
assumptions in (2.2) on the death and fertility rates as functions of population
size, assumptions which rule out depensation or Allee effects that in nonlinear
problems can lead to viable populations with r < 1.

Theorems 2-4 deal with the case when r > 1. In this case, the trivial solution
is unstable and there exists, for both problems, a unique positive equilibrium
which at least for r sufficiently close to 1 is locally asymptotically stable (Theo-
rem 2). It is frequently the case in population dynamical models that equilibria
destabilize (usually through a Hopf-type bifurcation to a limit cycle) as r or some
other measure of reproductive output is increased sufficiently. We cannot expect,
in the generality assumed, that the positive equilibria of equations (2.10a,c) and
92.11a,c) remain stable for all r > 1. We do not study this question here, how-
ever, and turn instead in Theorems 3 and 4 to the question of the dependence
of the equilibria and their stability properties on the competition coefficients o
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and v when r is close to 1 (when we are assured by Theorem 2 that they are
indeed stable).

Theorem 3 indicates that increased juvenile vs. adult competition is desta-
bilizing in both models in the sense that equilibrium levels for both the juvenile
and adult classes decreases with increased competition. As Theorem 4 indicates,
however, this is not always the case if the strength of the equilibrium stability
is measured by the effect of the competition on the magnitude of the linearized,
stability-determining eigenvalue A ( often referred to as a measure of the “re-
silience” of the equilibrium). Theorem 4 deals with the change in this eigenvalue
caused by changes in o and 7 by computing the sign of the derivative d,A for
(2.10) and 8, for (2.11). Theorem 2 guarantees that A < 0 for r > 1 sufficiently
close to 1. If the sign of one of these derivatives is positive then an increase
in the strength of the intra-specific competition is represented by an increase
in the corresponding competitive coefficient is destabilizing since the negative
eigenvalue is thereby increased (causing decreased resilience). Similarly a nega-
tive derivative implies a stabilizing effect due to increased competition (due to
an increase in resilience). Theorem 4 shows that the two problems (2.10) and
(2.11) have opposite effects on equilibrium stability. Specifically, in the first case
when adult fertility is dependent on population size, increased competition from
juveniles is destabilizing. On the other hand, in the second case when juvenile
survival is dependent on population size, increased competition is stabilizing.

It is not difficult to see from the equations (2.1)-(2.2) that non-negativity
of the initial age distribution ¢(a) > 0 implies that the density p(t,a) > 0
is non-negative for all time t. Thus the solutions P(t) and A(t) of (2.10) and
(2.11) are non-negative for all time . (A direct proof from equations (2.10) and
(2.11) that non-negative initial conditions imply non-negative solutions for all
time doesn’t appear to be trivial.) Both systems have the trivial zero equilbrium
(P,A) = (0,0) (corresponding to ¢ = 0).

Theorem 1 If r < 1 and P(0) > 0, A(0) > 0, then (P(t), A(t)) — (0,0) as
t — 400 for solutions of (2.10) and (2.11).

Proof. For both problems (2.10) and (2.11) it is easy to see that
A'(t) < —pa(t) +rpaA(t—m), t>m
from which follows that 0 < A(t) < z(t) where z(t) is the solution of
z'(t) = —paz(t) + rpaz(t—m), t>m (3.1)
z(t)= A(t), 0<t<m.

Since r < 1 it follows from a result of Hayes (Theorem 13.8, Chapter 13, of
Bellman and Cooke (1963)) that z(t) — 0 and hence A(t) — 0 as t — +00.
For (2.10) we note that P’ = —uj P + ¢(t) where

$(t) = (ua+rBa(V(1)A() = 0 s t— +oo.
Thus P(t) — 0 as t — +o0.
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For (2.11) we define Q(t) as the solution of
Q = —ps(W)Q+(rBa — pa)4, Q(0)=P(0)>0
and let R(t) = P(t) — Q(t) so that
R = —p;(W)R+ ps(W)A, R(0)=0.

Since ps(W) > ps(0) > 0 and A(t) — 0 we see that Q(t) — 0 as t — +o0.
Using an integrating factor we find from an integration by parts that

R(t) = A®) - AQexp(= [ ws(W)do)-
exp (- ‘/: ps(W)do) /Ot exp (/;' ps(W)do) A'(s)ds.

The first two terms tend to 0 as t — 400 as does the last term since from (2.11c)
we see that A’(t) — 0. Thus R(t) and hence P(t) tend to 0 as t — +c0. ]

Theorem 2 Suppose r > 1. Then (0,0) is unstable for both (2.10) and (2.11) and
both systems have a unique positive equilibrium (P,, A.) which is aysmptotically
stable for at least r close to 1.

Proof. The linearization of part (c) of both (2.10) and (2.11) at the trivial equi-
librium (0,0) yields the scalar delay equation (3.1), all of whose nontrivial so-
lutions are unbounded (again see Theorem 13.8, Chapter 13, of Bellman and
Cooke (1963)) since r > 1. Thus (0,0) is unstable for r > 1.

Next we look at solutions (P.,A.) # (0,0) of (2.10) and (2.11) that are
constant for ¢ > m by looking for nonzero equilibrium solutions of (a) and (c).
(Parts (b) then serve to define the initial equilibrium age distribution ¢.) For
(2.10) this leads to the equations

0= —ps P+ (rBa(Ve) + pa) Ae

0=—pa+rBa(Ve)

where V, = aP. + (1 — a)A.. Using r > 1, the normalization (2.5) and the
monotonicity of 34 we can rewrite these two equations as

pyPe— (»BA(O) st l‘d)Ae =0
aP, + (1= a)P. = B;(Ba(0)/r)
from which follows the existence of the positive equilibria

Ba(0) — pa+ ps
a(Ba(0) = pa)+ps’

for r > 1 where V.(r) = 85" (B4(0)/r).
Similar manipulations with (2.11) lead to the positive equilibria

e (3.2)

Pe = Ve(r) (r)a(ﬂA(O) —pa)+ps

A=V,
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rBa— pa+ pi(W, W

:3/1 HA l‘J( C) i Ae - W,(r) “J( e) (33)
84— pa+vp1(We) rBa — pa+vps(We)

for r > 1 where We(r) = p7' (X Inr + 11(0)).
The calculation of the characteristic functions for (2.10) and (2.11) at these
two respective equilibria is straightforward. This exercise yields equations

p(A;a,r)=0 and g(X;7,r)=0

P. = W,(r)

for complex A where
p(Xar) = (A4 ps) A+ pa = pae™™)
a(A)a + b(A
— V(s B (Ve(r) S

a(A) = (A + pa)(1 — exp(=psm = Am)), b(X) = (A + py) exp(—psm — Am)
c=Pa(0)—pa, d=ps

(3.4)

and where
a7, 7) = A+ ps(We(r)) (A + pa — pae™™™)
' rBa — pa yae=Mm
F #J(We(r))WC(r) rﬁA — pa 5 7#J(We) (’\ + HA HA )
- g=Am a(A,r r
Sy W ra e T IIET) (35

a(\,r) = A+ ps(We(r)), b(A,r) = =A+rBs—pa

or) = S inr s (We(r)), dr) = rBa—ba.

Here we have indicated the dependence of p and ¢ on r and the competition
coefficients o and 7.

The following partial derivatives evaluated at the critical values r = 1 and
A=V, =W, =0 are easily computed:

8ap(0;0,1) = py (14 mpa) >0
0xq(0;7,1) = ur(0)(1+ pa) >0 (3.6)

More tedious calculations show that
8.p(0;a,1) >0, 8rg(0;7,1) >0

and hence in both cases 8, < 0 at r = 1. It follows that A < 0 for r greater
than, but close to 1. u]

The effect of increased juvenile vs. adult competition on the positive total
and adult reproductive levels P, and A, is clear from (3.2) and (3.3). Moreover
from the formulas

Ba(0) — pa
a(Ba(0) = pa) +ps

Jc=Pe"Ae=Ve(r)
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T84 — pa
rBa—pa+v8s(We)

for the juvenile equilibrium levels in the two cases respectively, we obtain, with
a reference to (2.5) and (2.7), the following result.

Je=P.— A. = W(r)

Theorem 3 The unique, positive equilibrium levels for total population size
P., adult population size A., and juvenile population size J., all decrease with
increased competition coefficients a or . The relative proportions A./P. and
J./P., however, remain unaffected.

Finally we consider the stability sensitivity of the positive equilibria guaran-
teed by Theorem 2 for r greater then, but close to 1. This we do by computing
the change in the stability-determining eigenvalue A near 0, or more specifically
by determining the sign of the derivatives

Ba) = =0ap(X;a,1)/0rp(A; a, 1)

Oy A = =0,q(X;7,7)/0rq(A;7,7)

for r greater than, but close to 1. By (3.6) these signs are the opposites of those
of the derivatives 8,p(A; a, ), 8,¢(A;9,r) for r greater than, but close to 1.

Theorem 4 For r greater than, but close to 1, 8, A > 0 for (2.10) and 6,A < 0
for (2.11).

Proof. Consider first (2.10) with the characterisitic equation (3.4). It is not dif-
ficult to see that d,p(0;a,1) = 0 and therefore we must consider p for r close
to but not equal to 1, i.e. for A < 0, but close to 0. To determine the mono-
tonicity of p in the variable a we need to determine that of the linear fractional
expression in (3.4). Because £/, < 0, this linear fractional expression and p have

the same monotonicity, which is determined by the sign of the determinant-like
expression A(A) = a(A)d — b(A)c for A < 0, but near 0. Since A(0) = 0 and

O2A(0) = ps (1 — exp(=psm)) + pa(=1+ mps + exp(—psm)) >0

we find that A()) < 0 for A < 0, but near 0, and hence r > 1, but near 1. This
implies that the linear fractional expression in p and hence p itself is decreasing
in a, i.e. 9op(A;a,r) < 0, for r > 1 near 1.

A similar analysis must be carried out on ¢ defined by (3.5) with respect to
« in order to determine the sign of 8,g(};v,r) for r > 1, but near 1. The first
term in ¢ is independent of ¥ and the second term clearly increases as a function
of 4. The monotonicity of the third term is the opposite of that of the linear
fractional expression appearing there, which is determined by

A(X) = a(A,r)d(r) = b(A, r)e(r)

1 1
= (-';1- Inr+p;—pa(l- rexp(;z,m)))»\ +pa(l- rexp(p;m)); Inr.



Some Delay Models for Juvenile vs. Adult Competition 187

For r > 1, but near 1, and A < 0, but near 0, we see that A(X) < 0 and hence
the third term in g is also increasing in . 0

4 Concluding remarks

From the general model equations (2.1) for age-structured population dynam-
ics, we derived the two model systems of differential delay equations (2.10) and
(2.11) to describe the dynamics of a population whose intra-specific competition
between juveniles and adults leads to juvenile density dependent adult fertility
and adult density dependent juvenile survival respectively. Under the assump-
tion that the density dependencies are monotonic functions of weighted total
population sizes (and that within the juvenile and adult age classes survival and
fertility rates are age independent), it is shown that these model equations pos-
sess a positive equilibria if and only if the inherent net reproductive rate r is
greater than 1, that these positive equilibria are locally asymptotically stable at
least for r near 1, and that all solutions tend to 0 if r < 1.

With regard to the stabilization/destabilization question we reached con-
clusions that in one case disagree and in another agree with those of Eben-
man(1988). First of all, the effect on equilibrium levels of increased juvenile
vs. adult competition is always adverse (Theorem 3) and in this sense such
competition is always destabilizing, in agreement with May et al.(1974) and
Tschumy(1982) and in disagreement with Ebenman. However, the effect of in-
creased competition on the linearized eigenvalue leads us to the same conclusion
as Ebenman, although for different reasons. Namely, Theorem 4 implies that in-
creases in the strength of competition (as measured by the coefficient a) in the
juvenile density dependent adult fertility problem is a destabilizing influence,
while increases in the strength of competition (as measured by the coefficient
v) in the adult dependent juvenile survival problem is a stabilizing influence.
Ebenman reached these same conclusions using stability region arguments, a
procedure criticized by Loreau(1990). To further confuse matters, Ebenman’s
model predicts destabilization in both cases if linearized eigenvalue sensitivity
is used as the criteria. This contradiction between the eigenvalue analysis of
Ebenman’s model and ours here can be explained by the fact that Ebenman’s
model is a 2 X 2 matrix model which is degenerate in the sense that it is not
“primitive”, i.e. does not have a strictly dominant linearized eigenvalue. (In fact,
an unusual double bifurcation of both equilibria and 2-cycles occurs at r = 1
because both +1 and -1 are linearized eigenvalues; see Cushing and Li (1989).)
This peculiarity is purely a mathematical artifact that occurs because Eben-
man’s discrete time and age matrix equation has exactly two age categories,
only one of which is adult, and disallows adult survival after reproduction. The
number of age categories and the time scale is arbitrary as far as the modeling
is concerned and even a similar model that utilizes just two adult age classes
eliminates this degeneracy with the result that an eigenvalue analysis is then in
agreement with those in Theorem 4. Loreau’s conclusion that stabilization is an
unlikely result of juvenile vs. adult competition should perhaps be re-evaluated,
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both in view of our result here and because his arguments are also based upon
Ebenman’s highly simplified model.
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