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In this paper we develop stability and instability criteria for equilibria of nonlinear matrix population
models in which density dependence (i.e. nonlinearity) arises through a dependence of vital rates on a
weighted total population size w. These criteria are based upon the net reproductive number n = n(w)
as a function of w and partially address an earlier conjecture concerning the relationship between sta-
bility and the derivative n =n’ (w) (Cushing 1988a). Under rather general conditions it is shown that
n' (w) > 0 at equilibrium implies instability and hence that 7’ (w) = 0 is necessary for stability. In
general, n' (w) < 0 is not sufficient for stability. Conditions under which n’ (w) < 0 does imply sta-
bility arc also given. A variety of applications is given.

words: nonlinear matrix eqguations: stability: ili
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Classification categories: 92D25, 39A11

1. INTRODUCTION

Difference (or recursion) equations have been extensively used to describe the
dynamics of biological populations since the pioneering work of Lewis [21] and
Leslie [17], {18]. They have been used in a wide diversity of disciplines, includ-
ing demography, ecology, epidemiology, pest control, fishery, forest manage-
ment, resource renewal, and many others. One of the primary applications is to
the dynamics of so-called structured populations, in which individuals are cate-
gorized according lo some speciefied physiological classes (such as age, body
size, life-cycle stages, etc.). In these applications the dynamics over discrete time
intervals (of equal length) are described by a muitiplicative “projection” matrix A
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96 ZHOU YICANG and J.M. CUSHING

. N > > - . .
which maps a distribution vector x = x(¢) of class densities at time ¢ to a distri-
. > > . .
bution vector x = x(¢+ 1)at time ¢ + 1 according to the formula

> >
x(t+1)=Ax(1).

These kinds of equations have become known as matrix population models. The
book by Caswell [2] provides a comprehensive exposition of the theory and
application of matrix models to population dynamics (also see [3], [5], [26], [32]).

As they do in all kinds of dynamical models, equilibria and their stability proper-
ties play important roles in matrix population models. For /inear matrix models in
which A is constant, the theory for the existence and stability of equilibria is well
known. For linear models, the famous Perron-Frobenius theory and the dominant
eigenvalue of the projection matrix A play a central role. For determining stability
properties, an equivalent role is played by the “net reproductive number” (some-
times called the net reproductive “rate” of “value”) (7], [32]. The net reproductive
number, generalized to nonlinear models, will be central to our results in this paper.

When the vital parameters, such as birth, death, and glass transition rates,
depend on population der;sity, the projection matrix A = A(x) is a function of the
class distribution vector x and the matrix model describing the dynamics of the
population becomes nonlinear. The existence and stability of nontrivial equilibria
become in general much more difficult problems. The existence of nontrivial
equilibria for general nonlinear matrix models has been studied using bifurcation
theory techniques by Cushing [3], [S], [32]. In these general results the “inherent”
net reproductive number (the expected number of offspring per individual per life-
time at low, technically zero population density) is used as a bifurcation parameter.

Under general conditions the net reproductive number 7 = n(x ) can be defined
for a matrix population model as a function of the population distribution i
(see [5], [32] and Definition 1 below). Biologically, this number is the expected
number of offspring per individual per lifetime if the population were held fixed
at the constant distribution ¥. When ¥ = 5 is an equilibrium distribution, the net
reproductive number necessarilly equals one, i.e. n(}) = 1, since at equilibrium
each individual exactly replaces itself. In [5] it was conjectured that there is a
relationship between the stability properties of a nontrivial equilibrium %20 and
the gradient Vn(?c) , namely that Va(x) > i implies % is unstable. In other
word, it is conjectured that Vn(x) s G is necessary for (local asymptotic) stabil-
ity of an nontrivial equilibrium x. This conjecture has been proved for the spe-
cial case of nonlinear Leslie age-structured models in which the nonlinearities
arises through a dependence of the Leslie projection matrix A = A(w) on a
weighted total population size w = w % [3]. (Also see [24], [25] for related
results for continuous age-structured models). Our main goal in this paper is
to prove this conjecture for general structured population models in which
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A =A(w). In this case n = n(w) is a function of w and the conjecture is that n' (w)
> ( implies % is unstable. Thus, we will prove that under very general conditions
the inequality n' (w) =< O is necessary for the stability of a nontrivial equilibrium
%= 0. We will also obtain some results concerning the implication that »’ (w) < 0
is sufficient for equilibrium stability. We will also give a counterexample to show
that the more general conjecture that Vn()’c) >0 implies instability is false.

The paper is organized as follows. In Section 2 the definition of the net repro-
ductive number 7 is given for general matrix models. Formulas for the net repro-
ductive number are often available for special types of matrix models [7], [32].
The existence of these formulas illustrate one advantage of the net reproductive
number over the dominant eigenvalue of the projection matrix (for which such
formulas are generally not available). We derive a formula for the derivative of
the net reproductive number of a general nonlinear matrix equation. This formula
provides the basis for the main results of the paper. In Section 3 we study neces-
sary conditions for stability of positive equilibria. The results obtained in this
section confirm the conjecture discussed above for general matrix models. These
results are applied to nonlinear Leslie models, nonlinear Usher models, models
with density dependent fertility, and some other examples. In Section 4 we study
sufficient conditions for stability of a positive equilibrium.

2. THE NET REPRODUCTIVE NUMBER

Throughout this paper a matrix is denoted by a capital letter, a column vector is
denoled by a lower case letter with an arrow over it. The transposc of a matrix or
a vector is denoted by a superscript “t”; for example, AT is the transpose of t‘h—,
matrix A and x is the row vector which is the transpose of the column vector %

Consider a population whose individual members are categorized into m + 1
classes. Let x,(r) denote the number (or the densn;/) in the & class (k = 0, 1 m)
at time ¢ = 0, 1, 2, ... . Then the column vector x(¢) = (x,(z), .. (t)) denotes
the density distribution of the population at time .

Let p;(1), 0 = p,(#) < 1, be the (“transition”) probability that an individual in class
J at time ¢ will survive and move into class 7 at time ¢ + 1. Let f,(¢) = 0 (called the
“per capita fertility rate™} be the number of offspring of class i borne to an individ-
ual of class j that survive to time 7 + 1. The (m + 1) x (m + 1) fertility marrix is
denoted by F(1) = (f(1)) =z 0 and the (m + 1) x (m + 1) transition marrix is denoted
by P(t) = (p,(1)) = 0. If we assume that the populgtion is clossed to immigration and
emigration, then the density distribution vector x(z + 1) at time ¢ + 1 is given by

¥r+1) = A(0)x(1)
A(t) = F(t) + P(1) = 0. (1)
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The nonnegative matrix A is usually referred to as the projection matrz;x. It is
obvious from this recursive formula that the class distribution vector x(7) is
uniquely determineg (and 1; nonnegative) for all ¢ = 1 once an initial nonnegative
distribution vector x(0) = 0 is given. If A remains constant in time, then (1) is an
autonomous linear system. If either the fertility or the transition matrix, and
hence the projectior; matrix, depends on time ¢ only through a dependency on the
distribution vector x(z), then (1) is autonomous and nonlinear and we write

> >
x(t+1) = A(x(¢t))x(t)

> . >
A(X) = F(x) + P(x) 0. )
The equilibrium equation associated with equation (2) is
> > >
= (F(x) + P(x))x. . (3)

Clearly )7c = 6 is a trivial equilibrium. A nontrivial equilibrium X is an eigenvector
associated with the eigenvalue 1 of the projection matrix A( x) F( x) + P( x) In
population problems only nonnegative, nontrivial equilibria x = (J are of interest.

It is assumed that the column sums of the transiton matrix P(x) are strictly less

than one,

> > no-
0= Epij(x)<l, XERy =Rvx..xR, , j=0,1,...,m. “4)

i-0
where R, é [O +00) The biological meaning of this “dissipativ ondition” is
r\& from

nnit of tim
o1t

very clagg over me
Ty Ciass over uni me

[¢]

3 er on (e.g o tality’
tive condition (4) the inverse of the matrix / — P(x) exists for all tE R, and is

nonnegative
> 1 > 2.
(U-P(x)) =1+Px)+P (x)+..=20. (35)

The matrix

1

R(x¥) = (I-P(¥) F(x)=0

>

> > \

= R(x)x. (6)
>

Thus, a nontrivial and nonnegative equilibrium x is also an eigenvector associ-

ated with the eigenvalue 1 of the nonnegative matrix R(w).
The theory of the nonnegative matrices implies the existence of a nonnegative

dominant eigenvalue (and associated nonnegative right and left eigenvectors)

>
[1], {2], [13]. Applied to the matrix R(x) this theory yields a nonnegative domi-
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> >
nant eigenvalue n = n{x) =z 0 for each x € R?. If, as is often the case in appli-
> >
cations, R(x) is irreducible for all x € R?, then the Perron-Frobenius theory
> >
implies n(x) is positive for all x € R” (as are its associated right and left eigen-

vectors). In this case, the nonnegative equilibrium is positive.

DEFINITION 1  For each ;ERf the dominant eigenvalue n = n(;) 20 of the
nonnegative matrix R(x) is called the “net reproductive number” at the class
distribution vector x of the matrix model (2).

The definition of the net reprodug:tive number is a generalization of the “inher-
ent” net reproductive number #(0) for linear matrix models [7]. Biologically
n(x) is the expected number of offspring from an individual over its lifetime if
the class distribution vector were held fixed at x. That is, if class distributign
vector were heid fixed at x, then an individual will produce, on average, n(x)
offspring over its lifetime. A further discussion of the net repro d' ctive number
can be found in [3] and [7]. # is also an eigenvalue of F(I - P)L; see [32].

For our purposes we need an analytical for;nyla for the derlvatlv%s of n(x)
Such a formula can be found as follows. Let v(x) = (vy(x), ... (x)) be the
(nonnegative) eigenvector associated with the dominant eigenvalue n(x) matrix
R(x). Then n(x) and v{x) satisfy the equation

> > > > >
R(x)v(x) = n(x)v(x)
or equivalently
2> > > P> >
F(x)v(x) = n(x)(I - P(x))v(x).

From this equation it follows that

a—rl(l P]v = i1j\>)+n£)1>/

0x; ax; dx;
89 69
v \%

i i
>y .. . . N
Supyose now that x = 0 is a nontrivial, nonnegative cgulhbnum of (2). Then
v = x. Moreover, at this equilibrium #» = 1 and Rv = v. With these relations,

equation (7) becomes

oF oP
_([ P) <8x,- 8x>x
, (8)
_(I-F-P)¥.
0x

i
> >

Assume that A(x)=0 is irreducible. Then A(x) has a dominant positive

eigenvalue with positive eigenvectors and all other eigenvectors (associated with
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all other eigenvalues) have a negative component [13]. Since ; i§ nontrivial and
nonnegative it follows that 1 is the dominant eigenvalue anthhat £ i§ in fact pos-
itive. The matrix A{x) also has a positive left eigenvector # = u (x) associated
with the eigenvalue 1, i.e.

>t > > >1 > -
u (x)A(x) = u (x)>0.

Then
>t >t
W(I-F-P)=0
> >t >
and the inner product of the both sides of (8) with u = u (x) produces the equation
an >t > St/ gF 9P\ ?
a—'x—iu (I-P)X—u(a—x-l+a—x—l)x
or
dn>t__> IT9A ?
2y Fx = u Ly,
souFx=u ax,-x 9

> > >
Note that since u is positive and F(x)x is nonnegative
>t > > >
u{x)F(x)x =0
would imply that

> > > >
F(x)x = ({-Plx))x = 0.

>
This contradicts the invertibility of 1 — P{x}. It follows that

Ea

>
u Fx=0. (i)

Therefore, from (9) we obtain the formula

-)raA?

5 X

n i
= - 11
X Fx ()

5
where all quantities are evaluated at the positive equilibrium x of (2).
In this paper we study the important case in which the density dependence of A
is through a dependence on a weighed total population size. Define the weighted
total population size w = w(t) by

w(t) = Ewixi(t) = t—a)/rjc(t) (12)

i=0



- AAn=
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>
where w is a constant nonnegative, nonzero column vector of weights, i.e.

m
>1
w o= (wy .. .w,)=0, w;20, E w; > 0.
i=0

The entries in the fertility and transition matrices F = (f;) and P = (p;), and
hence in A, are assumed dependent on w, i.e. p; = p;(w) and f; = f;(w). Under
these assumptions we rewrite model (2) as

X(i+1) = Aw(1))x(1)
A(w) = F(w) + P(w). (13)

Assume

Al: f,€C'(R,,R,)and p; € C'(R,, [0, 1])
and the “dissipative condition™:

A2:0 s Epij(w) <lLweR, j=0,1...m

i=0

We also assume that

A3: A(w) is irreducible for w ER,.

In most population models the nonnegative projection matrix A(w) is, in fact,

both irreductible and primitive [2].

For models of the form (13) the net reproductive number n = n(w) is a function
of w. The formula (11) yields the equation

ZTA'(W)WI-;C
n'(w)w, =

>t >
u F(w)x
and since at least one weight w; is nonzero this equation gives formula
-)'(A'( )9
. uA'(w)x
n'(w) = 5——= (14)
u F(w)x

for the derivative of n(w) at a positive equilibrium of (13).

As an illustrative example, consider a nonlinear Usher matrix equation [28],
[29]. [30], [32]. In an Usher model all newborns lie in the first class and during
one time interval a surviving individual either remains in its current class or
advances to the next adjacent class. Thus, Usher models with a nonlinear
dependence on weighted total population size w are characterized by fertility and
transition matrices of the form
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fO()(W)fOJ(W) v fom(W)

Fwa| 00 .0
L R
0 0 0 (15)
Poa(w) 0 |
Piow) py(w) .. 0
P =| . @ : : (16)
0 O pm']‘m,l(W) 0
B 0 0 pm.m—l(w) pmm(wl

with
fo(w)=0, O0spyw)<l, O<p;,(W)=1

Usher models are the simplest kind of “size” structured population model in
which the classes are based upon a measurement of body size and an individual
either remains, after one time unit, in its current size class or grows into the next
size class (i.e., it is assumed that the time unit is chosen so that individuals can-
not skip over the next size class nor shrink to a smaller size class). In its mathe-
matical form, the Usher matrix equation is a generalization of the classical Leslie
age-structured model. In a Leslie matrix model the population is structured by
means of chronological age classes with the same length as the time step of the
equation. Thus, in a Leslie matrix equation all diagonal terms vanish, p,(w) =0
(because a surviving individual necessarily advances to the next age class).

Define the positive quantities

. H;:jpk,k—l(w)

e,»j(w)z ' >0 fori=j=0.
1
szj (1 _ij(W))
For notational convenience p,_,(w) is defined to be identically equal to 1. The
quantity e;; is the amount of time an individual, starting from class j, is expected

thereafter to spend in class i. Thus, €; is the amount of time an individual is
expected to spend in class i over the course of its lifetime. If we denote

rfoo(W)j l—em(w)w
}'(W.) = Jor(w) and Z(W) - ep(w)
f()m.(w) emol(w)

is turns out for an Usher matrix model that
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foo(W)eg(w) for(wleg(w) ... fou(w)eg(w)

R(w) = fow)ew(w) fo(wleg(w) .. fom(w)eo(w)
. . O :

foo(W)é,n(>(W) f01(W).em0(W) fom(W).emo(W)

> >
=e(w)f (w)
Because each row of the matrix R(w) is a multiple of the same column vector
é(w) , 0 is an eigenvalue of multiplicity m. The remaining eigenvalue is

m

>1 >
n(w) = EfOi(W)e,-o(W) = f(w)e(w) (17)
i=0
and Z( w) is an eigenvector.
.. . eer s >
At a nontrivial, nonnegative equilibrium x, we know that n(w) = 1 where
2Ty . N Lo S .
w = w x is the equilibrium total population size. The equilibrium X is an eigen-
\;ector associated with R(w) and is therefore a positive multiple of 2( w), i.e.
X = cé(w) .
Thus, nontrivial equilibria can be found by first finding a positive root w of the

. - > .
equation n(w) = 1 and then determining the value of c so that wx = w. This

value of ¢ is clearly ¢ = —_)T—9W— Thus, for each positive root of the equation
w e(w)
n(w) = 1 there is a positive equilibrium as given by the formula
> w o>
X = TC(W)
w e(w)

Although, as remarked above, we will not study the existence of nonnegative
equilibria here, these calculations show that such a study reduces to a single sca-
lar equation n(w) = 1 for positive w.

A positive left eigenvector corresponding to the eigenvalue 1 of A(w) is given by

1 m
m2k=ﬂf0k(w)ek()(w)

> 1 m , ,
u(w) = mzkzifo,((w)ck[(w)

1
pm,m—](w) om

(W)e,m(w)



A ~EEN

= n *I(W)E,:",fnk W)Lkz w)

pm m_l(w)f()m( )Cmm( )

In the formula (14), the denominator is

n(w)
1 > w >t > w >t 0 w
u (wW)F(w)x = ssu (w)F(w)e(w) = s=u (w) . = 55
we w e : w e
L\ g )
AN Y /

and thus
, 2T , >
n'(w) = u (WA (w)e(w)

1
: . fo+pw - fom1 fom W €00
m !
I Rl Y ,f()k"k! Pio 0 0 €1
= Pii - .
! 0 [ 1
( () pm‘m— 1 pmm JL em()
/}Jm mmi

ability or instability of a positive equilibrium x of the non-
linear matrix model (13) we need to investigate the eigenvalues of the Jacobian
of A(W)?C = A(@T})} evaluated at the equilibrium. The linearized equation is
(asymptotically) stable if all eigenvalue of its coefficient matrix are less than one
in magnitude, and unst;xble if at least one eigenvalues has magnitude larger than
one. The equilibrium x of the original nonlinear matrix equation (13) is corre-
spondingly (locally asymptotically) stable or unstable [16], [32].

Unfortunatcly, in general there is no simple way to study the stability of the lin-
earized ecquation, as it depends on model parametrs, if the dimension m is large.
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There exists no general formula for the eigenvalues of high dimensional matrices
and the necessary and sufficient conditions given by the Schur-Cohn (or Jury)
conditions [16], [15] are too complicated to be of practical use for parameter
studies in high dimensional problems. On the other hand, formulas for the net
reproductive number n and its derivative n’ are often available and results that
relate n' to the stability properties of an equilibrium can therefore be of use. In
this section we will show that the positivity of n’ (w) at a positive equilibrium of
(13) implies that the equilibrium is unstable.

>
Assume that equation (13) has a positive equilibrium x . A routine calculation

>
yields the linearized equation of model (13) at x

> > 21>
zZ(t+1) = J(w)z(t), w=wx (18)

where the Jacobian matrix J(w) is given by

. >
J(w) = A(w) +A"(w)xw
with
A(w) = F(w) + P(w), A'(w)= F'(w)+ P'(w).

The magnitude of eigenvalue of the Jacgbian matrix J(w) determines the stability
properties of the positive equilibrium x. For example, if J(w) has a real eigen-
value A. > 1 then the positive equilibrium is unstable.

As a motivating example, consider the Usher model (15)-(16). A straightfor-

ward (but tedious) calculation of J(w) shows that
m
det(1—=J(w)) = —wn' (W) [T (1=pa(w)). (19)
i=0

If n" (w) > 1, then the characteristic polynomial p(}\) = det(M — J(w)) satisfies
p(1) < 1 and lim,_,,,, p(A) = +o0. It follows that p(A) has a real root A > 1 and the
equilibrium is unstable. This is a generalization of the same result in [3] for the
Leslie model (i.e. when p;(w) = 0).

Our goal is to show that n’ (w) > 0 implies equilibrium instability for the gen-
cral matrix model (13). The proof involves showing that det(/ - J(w)) is a nega-
tive multiple of n' (w), as in the Usher example above. In order to state our main
result we need some additional notation. Let S(w) = (s;(w)) be the cofactor
matrix of the matrix I — A(w). i.e. s (w) = (=1)"* det(S,(w)) where S, (w) is a
m x m matrix obtained by deleting the i row and j* column of the matrix / —
A(w). For example,



Downloaded By: [University of Arizona] At: 09:37 9 November 2007

106 ZHOU YICANG and J.M. CUSHING

1-a;(w) —ap(w) ... —a,(w)
5o = det —ay,(w) l—ayn(w) ... -a,,(w)
: : O
—a,,(w) -a,,(w) .. l-a,,(w)

where A(w) = (a;(w)) = (f;(w) + p;(w)).

THEOREM 1 Assume A1, A2 and A3. Suppose that ; is a positive equilibrium of
the nonlinear matrix equation (13) and that w = v_;r; > 0 is the corresponding
weighted total population size. Assume that s;(w) > 0 for all i, 0 < i = m. Then
n' (w) > 0 implies that ;c is unstable. That is to say, n’' (w) < 0 is necessary for

the (local asymptomatic) stability of the positive equilibrium x .

The proof of this thcorcm appcars in thc Appendix.

In the following two examples it is shown that the asumption s; > 0 is automa-
tically fulfilled for the two and three dimensional cases. It is an open question
whether this is true for m = 3.

Example 1 Consider the general two dimensional structured population model

( xo(t+ 1)) _ ( agy(w) am(w))( xo(t)) (20)

x(t+1) ap(w) ap(w) J\ x,(8)

>
Suppose Al, A2 and A3 hold and suppose that x = (x, x,)" is a positive equilib-

>
rium. Then the positive components of x satisfy the equations

(1 —ag(w))xg—ag (w)x; =0
—a,y(w)xy+ (1 —a;(w))x,= 0.

For this equation sy, = 1 - a;;(w). Clearly sy(w) < 0 and the second equation lead
to the contradiction that x, = 0. If s,,(w) = 0, then either x, = 0, a contradiction, or
a,y(w) = 0, which implies the reducibility of the matrix A(w) in contradiction to
A3. Therefore, the existence of a positive equilibrium and the irreducibility of the
matrix A(w) assure that sy(w) > 0. A similar argument, using the first equation,
shows that s,,(w) > 0. Thus, Theorem 1 implies that n’ (w) < 0 is necessary for
the stability of the equilibrium.

Example 2 Consider the general three dimensional structured population
model (13)
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xy(t+1) ag(w) an(w) ag(w) [ x,(t)
x(t+1) | = apw) ap(w)  ap(w) || x2) (21)
X,(t+1) ay(w) ay(w) ayn(w) )\ x,(1)

>
Suppose A7, A2 and A3 hold and that x = (x, x,, x,)" is a positive equilibrium.

Then the positive components of ; satisfy the equations
(1 —agy(w))xg—ag (w)x, —ag(w)x, = 0
—a,0(W)xg+ (1 —a,;(w))x; —ap(wlxy, = 0 (22)
—a5(W)xg—ay (w)x; + (1 —ayn(w))x, = 0.

A little algebra shows that s,,(w) < 0 and sp(w) < 0 implies sg(w) > 0. Thus, from
the second and third equations, which imply sg(w)x; = 55, (W)xy and sp(w)x, =
Sg2{w)xg, it follows that sq(w) cannot be negative, i.e. soo(w) = 0. If s¢9(w) = O then
it follows that sy;(Ww) = sp»(w) = 0 and hence that a;; = 1 and a,, = I. These ine-
qualities, together with the equations (22), imply that a,,(w) = a,,(w) = a,(w) =
a,;(w) = 0, which contradicts the irreducibility of A(w). Thus, the existence of a
positive equilibrium and the irreducibility of A(w) imply s,,(w) > 0. Similar argu-
ments using other pairs of the equations (22) imply that s;;(w) > 0 and s,,(w) > 0.
Thus, Theorem 1 implies the necessity of n’ (w) < 0 for the stability of the equi-

librium.

For nonlinear Leslie age-structured population modcls and Usher models
(15)-(16), we saw above that n' (w) < 0 is necessary [or the stability of a positive
cquilibrium x (see(19)). In fact, Theorem 1 implies the same result, as it can be
shown that al s;; are positive for an Usher model.

From (19) we see that the inequality n’ (w) < 0 is necessary for stability for
Usher matrix equations even without the irreducibility to the matrix A. Thus,
although the assumption A3 of irreducibility generally holds in aplications, it
may be relaxed at least for some special population models. The following theo-
rem (whose proof appears in the Appendix) describes a class of models for which
this is true. A matrix M is normal if MM*= M*M [27].

>
THEOREM 2 Assume Al and A2. If the Jacobian J at a positive cguilibrium x of
(13) is normal, then n' (w) < 0 is necessary for the equilibrium x to be (locally
asymptotically) stable.
A obvious corollary of this theorem is that »' (w) > 0 implies equilibrium insta-
bility if J =J".
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4. SUFFICIENT CONDITIONS FOR STABILITY

We have seen in Theorem 1 that under rather general conditions the inequality
n'(w) = 0 is a necessary condition for a positive equilibrium of the nonlinear
matrix equation (13) to be (locally asymptotically) stable. If this necessary condi-
tion holds, then is the positive equilibrium stable? Or more strongly, does
n'(w)<1 imply equilibrium stability? The answer usually is no. The
Schur-Cohn Criteria (also called the Jury Criteria) provide necessary and suffi-
cient conditions for the roots of a polynomial to be less than one in magnitude
(see [16]). These criteria consist of more than two inequalities, the first of which
is that p(1) = det(I - J(w)) > 0 where p(A) is the characteristic polynomial associ-
ated with J(w). It turns out that under the conditions of Theorem 1, p(1) is a neg-
ative multiple of n'(w) (see (32) in the proof below). Thus, n'(w) < 1 is
equivalent to the first Schur-Cohn inequality p(1) > 0 and alone cannot, in gen-

eral, be sufficient for stability The following theorem gives an added condition
under which » (u;\ < 1 is sufficient for Stahlhhl Tt is motivated hy the Qfablllhl

results for small amplltude equilibria obtained by bifurcation methods in [3], [5].
The proof appears in the Appendix.

THEOREM 3 Assume Al, A2 and A3. Suppose that 3:( is a positive equilibrium of
the nonlinear matrix equation (13) and that w = w x >0 is the corresponding
welghted total population size. Assume that A(w) = F(w) + P(w) 1s>przmmve If
0<|A’ (w)xl is sufficiently small, then n'(w) <)0 implies that x is (locally
asymptotically) stable and n' (w) > 0 implies that x is unstable.

Remark 1 If A’(w); = 0, then 1 is an eigenvalue of J(w) = A(wg. Therefore,
in this casc the local stability properties of the positive equilibrium x can not be
determined by the linearized model.

In the proof of Theorem 3 the primitivity of the matrix A(w) is used to insure
that any nonzero right eigenvector (left eiger;vector) belonging to the eigenvz;lrue
1 is a multiple of the positive equilibrium x (the positive left eigenvector u ).
This added assumption is not restrictive in most applications, since it is usually
the case that the projection matrix A is irreducible and primitive [2].

An important class of models is one in which the nonlinear density terms
appear only in the fertility rates of model (13) (i.e. the transition matrix P is con-
stant) and all newborns lie in the same class, e.g. without loss of generality in the

> >
first class i = 0. In this case, !A’(w)xb = ‘F’(w)x! = |n'(w)lx,.

COROLLARY 1 Suppose, in addition to the assumptions of Theorem 3, that all
newborns lie in the first class i = 0 and that the transition matrix P is constant. If
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>
0 <|n'(w)lx, is sufficiently small, then n' (w) < 0 implies that x is (locally
asymptotically) stable and n' (w) > 0 implies that x is unstable.

>
The condition that {A’(w)x’ be sufficiently small is met by equilibria of suffi-

ciently small amplitude ‘;l . The conclusion of Theorem 3 in this case yields the
local stability bifurcation results of Cushing [3], [S]. The stability condition
n' (w) < 0 for small amplitude equilibria is equivalent to the supercritical and sta-
ble bifurcation condition n' (0) < 0; the instability condition r’ (w) > 0 for small
amplitude equilibria is equivalent to the subcritical and unstable bifurcation con-
dition a’ (0) > 0.

Here are some examples illustrating the use of Theorem 3 for positive equilib-

rium of not necessarily small amplitude.
Example 3 Liu and Cohen {22] study the nonlinear Leslie model
p L=<} y

(23)
i=0

xp e+ 1) = eqw(f)pkxk(t), k=0,1,...,m-1

m
where r > 0, f;2 0, f,, > 0, and p; > 0 are constants and w(¢) = z , wix (). In
this model the fertility and transition matrices are -

/f[)fl fm\
Loo0 ... 0]
Fw) =¢" ]
a - J
00 ... 0
00 0 0
po 0 0 0
P(W) - e~rw 0 Pi O 0
O
00 .. p,0

_and the projection matrix is A(w) = e”""L where L is the Leslie matrix
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fo fi o fuoi I

Po 0 .. 0 0

L= 0p .. 0 0
O0

00 .. p,_,0

The net reproductive number is

- -2 -3 —(m+ 1)tw
n(w) = e rwfo*’e rwfoo'*e rwfzpopx A fnPoP1-+ Py—1-

Clearly n’ (w) < 0 and lim,,_, ,, n(w) = 0. As a result, the equation n(w) = 1 has
a positive root w > 0 if and only if the “inherent” net reproduction number

ny =.f0+f11’0+f2}’0p1 + oo+ fuDoP 1P (24)
satisfies ny > 1 (in whjch case the root is unique). Thus, model (23) has a uniqu;

positive equilibrium x if and only if n; > 1, in which case the components of x

TEE MUng

are defined by
Xy = CW
i-1
—irw .
x; = cwe npk, i=1,..,m
k=0
where
. -1
c= (wy+wp,+wopp + . AW PP D) - (25)
B > —rw, ? . . .
From A'(w)x = —re " Lx we obtain the inequality

A" (w)xl s @)L

=2rw_o “2mrw_ o

. —rw 172
Q(w)=rcwe "(1+e ""pi+..+e pgpt-pi_1) .

Note that ©(0) = 0 and lim,, .., Q(w) = 0. As a result we see that |4’ (w)xl is
small for equilibria of either small or sufficiently large magnitude (i.e. for n,
close to 1 or sufficiently large). The conditions of Theorem 3 hold and we con-
clude that all positive equilibria are (locally asymptotically) stable for either
ngy > 1 sufficiently large or sufficiently near 1.

Perhaps the most common assumption in nonlinear dynamics models is that
increased population density results in decreased survivability and/or fertility.
Mathematically, this means that the derivatives f:(w)and p;.j(w) are negative
(or at least nonpositive). This in turn generally implies that n' (w) < 0 for all
w > 0, as in the previous example. Not all important models have this property,
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however, the most common example being those that involve a so-called “Allee
effect” [4], [5], [9]- These models are built on the assumption that fertility and
survivability are decreasing functions of population density only at high densities
and that, on the contrary, some or all of these vital rates can be increasing func-
tions of population density at low density levels. Here is an example.

Example 4 In [31] the nonlinear Leslie model

1+a°
1
xXo(t+1) = o a)ZEf, (1)

X (t+ 1) =px,(t) k=0,1,..,m-1

was studied. Here a > 0 and the parametcrs f; and p; satisfy the same conditions as
those in model (23). In this model only fertility rates are density

( f() f] m )
2
F(w) = l+a
1+(w-a)
and the transition matrix
00 0 0
py 0 0 0
P = 0 p 0
O
00 .. p,_10
1+ a2
is constant. Note that the nonlinear term ————— increases for 0 < w < a and
1+(w-a)

decreases for a < w. The net reproductive number is

2
l+a -
n(w) = —— o+ fipo + fapopy + - F [P0l - Pr) (26)
1+(w-a) ,
For each positive root of n(w) = 1 there exists a positive equilibrium x whose

components are given by

Xy = cw
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i-1
x; = CWHPk, i=1,...,m (27)
k=0

where ¢ is given by (25). For any positive equilibrium
|’(w)lx, = 2eng(1 + aZ)M’W—— >0 (28)
2.2
(1+(w—a)’)
Hence |n'(w)|x, can be made arbitrarily small for equilibria of sufficiently small
or sufficiently large magnitude.
The positive roots of n(w) = | are

O<w, = a+,/n0(1+a2)—] for ! 5 < 1y

l+a

- VN N "
O<wy, = a—ny(i+a)~-1 for - 5 <ng<i
a

where the inherent net reproductive number n, is given by (24). Each of these
?
positive roots defines a positive equilibrium by (27) which we denote by x; and

respectively x2.

>
Consider first the positive equilibrium x> when the inherent net reproductive

L . 1 . .
number lies in the interval 5 <ng < 1. A straightforward calculation shows
1+a

that

n'(w,) = —22——A',;10(1+a2)—1 >0.
(1+a)ng

>
Thus, by Theorem [ the positive equilibrium x2 is unstable.

. e L 1
For the positive equilibrium x:, when ny > —— , we have the necessary con-
1+a

dition

~

n'(w)) = ——'/‘2—«/n0(1+a2)—1<0
(L+a")n,

for stability holds. The total population size w;, which is larger than a > 0 for all

ny> 5 » cannot be made arbitrarily small, but it can be made aribtrarily large
1+a

by choosing n, sufficiently large. Thus, by (28) the quantity |#'(w)lx,, can be
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made arbitrarily small by taking n, sufficiently large. By Corollary 1 the positive
>
equilibrium x; is (locally asymptotically) stable for n, sufficiently large.

>
The next ex)ample was constructed to show that ‘A’( w)x‘ can be made small
even if both ‘x and |A'(w)| are not small.

Example 5 Consider the two dimensional matrix equation

xo(t+ 1) = fo(w)xo(1) + f,(w)x, (1)
x((t+1) = poxo(t) + px,(¢)
where
1-p, —(+e)pyw-2)
A S
L—p;  (1-ppw-2)
= T

0<py pr <1, €€ (-0, +o), w=x, + x,.

This matrix equation has fertility and transition matrices

F(w) = (fn(w)fl(w)), p=( 00 )
0 0 Po P1

>
There is only one positive equilibrium x with components given by

X = 2(1-pp
I-pi+py

X = 2py
L-pi+py

which are independent of the parameter €. From

A'(w) =
l-p (1+€)py(w=2) 1-p (1-p;) 2>\
- —th+e)pylw - — P —ppw=
—(1+¢) — 1l (1-p;)————e
p”l—pl+p0 Yl-p+p,
0 0

>
we see that neither ‘xl nor ||[A'(w)| can be made small by choosing |¢| small.
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By direct calculation

1-p; / -(+elpyw=2) Py (1-p)(w-2)
n(w) = ———(e + e )
I-pi+pg I-p,
, P()(1 ‘P1)
n(w) = —g ———
1-p,+p
2po(1-p;)?
|n'(w)lx, = |.slo—l2 >0
(1-p,+po)
>
and we see that lA’(w)x' = |n'(w)lx, can be made arbitrary small by taking ||

small. By Corollary 1 the equilibrium is (locally) asymptotically stable if € > 0 is
sufficiently small.

By Theorem 1 the Eq'liﬂi
n'(w)>0.

Our last example shows that the primitivity assumption on A(w) cannot be
dropped in Theorem 3.

Example 6 In his study of juvenile-versus-adult competition Ebcnman [10],
[11] introduced the age-structured population model (also see [6], [23])

xo(t+ 1) = bf(w)x,(¢) (29)
x,(t+1) = sxy(2)

where w = oy, + x;. The constant o = 0 measures the effect that juvenile density
has on adult fertility (relative to the effect of adult density). Here b > 0, s € (0, 1)
and f: R, — R, satisfies f' <0, f(0) = 1 and lim,,._, , , fiw) = 0. The net reproduc-
tive number is n(w) = shf{iw) and the equation n(w) = 1 has a positive root w > 0 if
and only if the inherent net reproductive number r, = sb > 1 (in which case the
root is unique). For n, > 1 the unique positive equilibrium x has components

Xy = W sand X; = Sg-

The necessary condition stability condition n' (w) = sbf'(w) < 0 is satisfied. The
Schur-Cohn Criteria applied to the linearization at this positive equilibrium yield
the following necessary and sufficient conditions for (local asymptotic) stability:

0>n'(w)x,> -f—:‘

s>Q.

>
Thus, stability requires that /A’(w)x# = |n'(w)x,| be sufficiently small. Note,
however, that this requirement is not sufficient in this example; also needed is the
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inequality s > a. (In fact, if s < o the matrix Ji (w) has a real eigenvalue A < —1 and
the equilibrium is unstable.) This is not in contradiction to Theorem 3 (or Corol-

lary 1), however, because

is not primitive.

5. SOME APPLICATIONS

Some applications to populaiion models found in the literature are made in this sec-

tion. In ali applications the nonlinearities will satisfy the following conditions:
‘ f e’ (R Fiand R +)
f'<0, flo)y=1 (30)

lim fiw) = lim wf'(w) = 0.

w o +o w40

5.1 Competition among newborns

DeAngelis et al. [8] studied a nonlinear Leslie age-structured model for fish pop-
ulations. They assumed a birth-pulse population with the census immediately fol-
lowing breeding. In this case, the fertility terms are given by f, = pu,. They
assumed that competition occurs only among the first age class, so that p, = f(x)

1

is density dependent. In [8] f(x,) = TH e ¢ >0, and w = x;, but we will
0

consider the more general case when f{iw) satisfies (30) and w is an arbitrary

weighted total population'size. The fertility and transition matriccs are
fWug piuy . iy, )
| 0o 0 .. 0
F(w) =
‘ 0
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0 0 .. 0 0
flw) 0 .. 0 0
0 0 0
P(w) = P
J
0 0 - Pmy P

where ;= 0 and 0 < p; < 1. To insure irreducibility, it is also assumed that p,u,, > 0.
The net reproductive number is
n(w) = ny Aw)

where

[, L . . lplpf,’ "'pm”
Hy= ot P+ o #0100 o P b1 T —1—~_p__”'”
m

is the inherent net reproductive number. There exists a positive oot

~i ’ JI N

w = —| >0
of n(w) = 1 if and only if n, > 1 (in which case it is unique). Note, under the
assumption made on f, that

Iim w=0 and lim w= +o0 (31)
ny—>1 ny >+
The comnaneante of the nositive eauilibrium are then oiven by
T'he components of the posiitve equriibrium are then given by
X 1
Xy = -
v .
wy + cf(w)
xp = flw)x,
X, = flwipx,
Xy = WD Py 0%y
I
X = f(W)pl "'pm~ll_ X0
Pm
where
o Pi - Pm-1
CEWIHWop AW, Dy Py W, >0

1 —Pu
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Since n' (w) = nyf' (W) < 0, the necessary condition for stability is met. By a

A w)al = xolf W) fug T 1
- [——M”)w[f’(w)l

direct calculation

Wy + cpo(w)

k4
From (30) we see thatLA ’(w)x‘ is small if w > 0 is either small or large. By (31)
and Theorem 3 it follows that the positive equilibrium is (locally asymptotically)
stable for n, > 1 sufficiently close to 1 and for n, sufficiently large.

5.2. Density dependent fertility

Levin and Goodyear [19], [20] studied a two dimensional Leslie age-population
mode! with density-dependent fertility. The fertility and transition matrices of
this model have the form

\

b,flw) bzf(W)J
0 0

P ( 00 )
p0
where 0 < p < 1, b, > 0, and f{w} satisfies (30). In the Levin and Goodyear model

fw)y=e®, pg>0.
The net reproductive number

F(w) = (

n(w)=ngf(w)

ny = (b, + pb,y)
satisfies the necessary condition n' (w) = nyf (w) < O for the stability of positive
equilibria. The equation n(w) = 1 has a unique positive solution

w =f‘1(nl><0 for  ny>1.
0

The components of the positive equilibirum are
1

Xy = W————o
WO+‘r‘v‘1p
X, = w—L

Wo+ W p

A simple calculation yields

WOy = () Wi )
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Corollary 1 implies that the positive equilibirum is (localy asymptotically) stable
for ny > 1 sufficiently close to 1 and for n, sufficiently large.
5.3 Adult-juvenile competition

Silva and Hallam [26] studied nonlinear Leslie model with fertility and transition
matrices of the form

00 .. bfilw)

00 .. 0
F(w) =

- O

L 00 0 )

00 .. 00

- N nn

VY . \VERV)
P(w) = Op 00

g

00 .. pp

where b > 0, and 0 < p < 1. The density term f(w) is assumed 1o satisfy (30). This

is a generalization of Ebenman’s model [10], [11] (see Example 29) in which

there are m juvenile classes and the adult class is iteroparous (adults can live and

reproduce for more than one time unit). Silva and Hallam take w = Zm X;,

but we will take a general weighted total population size. =0
The net reproductive number of model is

n(w) = nyf(w)
110¥ blp_—mp.

There exists a positive equilibrium if and only if n, > 1 in which case

Xg=cw

X =plew (i=1,2,..,m-1)
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where
[ m-—1 m 1 J-l
cE={watwpt+ . +w, p +w,.p
L-p

and

1

w =f‘1(——>.
ny

Since n’ (w) = nyf "(w) < 0, Corollary 1 implies that the positive equilibrium is

(locally asymptotically) stable if
)l

is sufficiently small, i.e. if w is sufficiently Snlall or {by (30)) sufficiently large. (In
[26] it is proved that the positive equilibirum x  is stable if 0 > #'(w*) x%) > —p.)

[n'(w)lx, = bc p

6. DISCUSSION

The magnitude of the “inherent” net reproductive number n (6) (often denoted R,
in the literature) determines the (local) stability properties of the trivial equilib-
rium x = O of the nonlinear matrix equation (13) [5], [7] {32]. At a nontrivial
equilibrium x however, the net reproductive number n(x) always equals one
and therefore its magnitude cannot be used to determine the stability propertics
of the equilibrium. In this paper we have investigated the relationship between
nontrivial equilibrium stability and the variation of n near the equilibrium. In our
main result we showed in Theorem [, for models in which the nonlincag (igpend-
ence is through a dependence on a weighted total population size w = w x, that
the inequality n’ (w) = 0 is necessary for the (local asymptotic) stability of a pos-
itive equilibrium. Although the converse of this result is false, Theorem 3 gives
conditions under which »n’ (w) < 0 implies (local asymptotic) stability of a posi-
tive equilibrium.

The nonlinearities in most matrix population models appearing in the literature
do in fact arise through a dependence on a weighted total population size w.
Some, however, do not and it is natural to ask whether our main result in Theo-
rem 1 can be generalized to the matrix equation (2) when F = F (;) and
P = P(;c); One natural conjecture for a generalization of Theorem 1 1s thz;t
V.n(x) <0 is a necessary condition for the stability of a pusitive equilibrium x
Ofxequation (2). The following example shows that this conjecture is, however,

false.
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Consider the two dimensional, nonlinear Leslie matrix equation with fertility
and transition matrices

9 x“+x|—2 1
e 2
F(xg.x)=1| 10 10
0 0
0 0
Plxg, X)) =| 1 70p-1 1 -4(x;-1)
2¢ 2¢

This matrix equation has the positive equilibrium (x,x,) = (1,1). The Jacobian
evaluated at this equilibrium

( \
N
J(1,1) =
3
3 -2
J
has eigenvalues A = itli 111 whose magnitudes |A| = ’i:li 111’ =
20 20 20 20

%)A/IS_O are less than one. Thus, the positive equilibrium (1,1) is locally asymp-
totically stable. The net reproductive number is given by

9 xp+x; -2

m(‘

T(xg=1) 1

-4(x, - 1)

¢ Lo
10
I-e¢

n(xyx,) =

from which the gradient at the equilibrium can readily be calculated to be

Van(1,1) = (é%)

>
Thus, it is seen that V,n <0 is, in general, not necessary for (local asymptotic)
X
stability.

It would be interesting to determine additional conditions under which
>

V,n <0 is a necessary condition for equilibrium stability.
X

As a final remark, we point out a connection between the net reproductive
number 7 and the “population growth rate” A= }»(;‘), defined as the dominant
eigenvalue of the (nonnegative and irreducible) projection matrix A(;). If
;: 5(;) is the associated eigenvector, a partial differentiation of
A(X)G(X)= Mx)q(x) yields
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> >
s Aaq = %9+ka—q

+AL = )
w0 T T

l

> > > > >
When x is an equilibrium, A(x) =1 and g(x) = x, and this equation, after an

) . >T 5T > > .
inner product by the left eigenvector u = u (x) of A(x), yields

>
91:6,4()()9
U ——Xx
on 0x;
a_x_ - >T>
! ux

This formula, together with (11), gives

>7T > >
A u F(x)xan

x, 2T 9x,’
H u x 1

(o5}

In the case of dependence on weighted iotal population size A= A(w), this for-
mula in turn yields the relationship

>T >
N(w) = L%:v)xn’(w)

ux

between the derivatives A'(w) and n'(w) at equilibrium. Thus, these two deriv-
atives have the same sign and A'(w) can replace n'(w) in our theorems. For
example, by Theorem 1, A'(w) = 0 is a necessary condition for equilibrium sta-
bility. One advantage of working with the nct reproductive rate # is that explicit
formulas can often be obtained for it in terms of the entries in the fertility and
transition (e.g. see (17) for nonlinear Usher models) | 7]; such formulas for A are
unavailable.

7. APPENDIX

7.1 The proof of Theorem 1

>
The positive equilibrium x is a right eigenvector to the eigenvalue 1 of the irre-
> >
ducible projection matrix A(x). Thus, 1 is dominant and simple; thus, if v satis-
> > > > > >
fies A(x)v = v=0,then v = cx for some constant ¢ = 0. The irreducibility of

>T
the matrix A also implies that there exists a positive left eigenvector u , such that
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ZIA= Zt. If a vector ;T = 6 satisfies the equation ;TA = ;T , then there exists a
nonzero constant d, such that ;t = d;tt.

Define the column vectors ;),: (Sip Sits -» i) fori =0, 1, ..., m. The vector
;),- is the transpose of the i™ row vector of the cofactor matrix . By using the
properties of determinants it is readily verified that, if nonzero, the vector Z isa
right eigenvector belonging to eigenvalue 1 of the matrix A. Similarly, if
nonzero, the row vectors Z: (st, Stjs +ees smj) forj=0,1,..,m gre left eigen-
vectors belonging to the eigenvalue 1 of the matrix A. The vector /; is the trans-
pose of the jth column vector of the matrix S.

By the assumption that s; > 0 for all i it follows that both 1—7>, and Ij are nonzero
and are eigenvectors. Thus, Z = Ci; and Z = de. From the first components,

_ s; So;
we obtain ¢; = * and d; - 7/ and hence

)
-> S:n> > Sq:d
T, = v , lj = Yy
xO uO
Thus,
>t w
WT; = —5;.

X0

By using appropriate column operations a straight forward calculation shows

det(I-J) = det(/-A) + 2 widetA,
k=10
where A; isa (fg +1)x gm + 1) matrix / - A with its k& column replaced by the

column vector —h = —A'x . Using the fact that at equilibrium, det(/ - A) = 0 and
by expanding the determinant det A; by its K" column, we obtain

m m m m
det(I-J) = —2 wkE hysy= —2 2 WiSik hj
k=0 k=0 j=0\k=0
m m
St w
=—-NwTih = — N s,h;
2 7 xuz jo%i
j=0 j=0
w>t> w?,
=—I/lh=—-—IA
X0 Xo
wSUU‘) >
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From the formula in (14) we obtain finally that

>
det(I-J) = — n'(w) (32)

Xolo
The characteristic equation det(Af —J) of the linearized model (18) is a polyno-
mial of degree m + 1, and the coefficient of the highest term A”*! is 1. Therefore,
if n’(w) >0, (32) implies that det( — J) < 0 and consequently there exists at least
one real eigenvalue A which is larger than 1. This proves that the positive equilib-
rium x of (13) is unstable.

7.2 Proof of Theorem 2

Assume that n'(w) > 0. Then the dominant eigenvalue n((1+¢)w) of the matrix
R(¢) = (I - P((1 + e)w))™! F((1 + &)w) is greater then 1 if ¢ > 0 is sufficiently
small. Therefore, the dominant eigenvalue A(g) of A(g) :F((]t)c)w) + P((1+g)w)
is also greater than 1 when ¢ > 0 is sufficiently small [7]. Let v(¢) be the corre-
sponding eigenvalue to A(g), i.e.

> >
A(e)v(e) = Me)v(e).
If in this equation we substitute the expansions
Ae) = 1+he+ ...

> > >
v(g) = x+vie+ ...

A(e) = A(w)+wA (w)e + ...
and equate the first order € coefficients, we obtain
(A(W)=1)v1 = hyx - wA'(w)x
which has a solutlon if and only if the right hand side is orthogonal to the left
eigenvector u of A(w). Without loss in generality we assume that u is a unit
?T7
vector, i.e. uru = 1. Thus,
u A (w)x

1>
ux

The fact that A(e) > 1 for small £> 0 implies that 0= u A’ (w)x > 0. From the
formula J(w)= A(w) +A’ (w)xw for the Jacobian we obtain

A=w

>t >t >>T 2T 271
ul = uA+quw =u +06w

and

>t .[-) >t 2T>
uJdJu=1+2wu+0ww>1 (33)



Downloaded By: [University of Arizona] At: 09:37 9 November 2007

124 ZHOU YICANG and J.M. CUSHING

The normality of the matrix J implies that the matrix J%/ is symmetric and there-
fore has real eigenvalues (and a complete set of orthogonal eigenvectors) [12]. It
follows form (33) that the matrix JJ* has at least one eigenvalue A, > 1. If we let
z(O) be the eigenvector correspondmg to A, of matrix J%J, then the resulting solu-
tion of the linearized equation z(t +1) = J;(t) is exponentially unbounded;
specifically

hm z(t) z(t) = hm}\ z (O)Z(O)

Thus, the positive equilibrium of (13) is unstable.

7.3. Proof of Theorem 3

0 genvecto corresponding to eigenvalue 1 of
matrix A(w) and define ¢ = IA’ w)xl Recall from (14) that
27
n'(w) = L;—TA (w)x

u F(w)x

The positive equilibrium ; is an eigenvector of A(w) associated with eigenvalue
1. The irreducibility and primitivity of matrix A(w) implies that 1 is a strictly
dominant, simple eigenvalue [13]. From the formula for J it follows that if e}its
sufficiently small J has a strictly dominant, simple eigenvalue A, near 1. Let v

3 ~ - ing tn A o thaot 1o
be the left unit eigenvector of matrix J corresponding to A,; that is

>t >T > T
yAW)+y Awhxw = Ay .

>T T
As ¢ — 0, note thatJ —> A and y — u . From this equation subtract

21

>T
uAw) = u
to obtain

i TS SR & SO e > 1t 1 >
(y —u JA(w)+y Al(w)xw = Ay —y +y —u

or
2T 271 2T Ot , >1
(y —u)Aw)=I) = (A,= 1)y —y A'(w)xw .
The singularity of A(w) — I requires that the right hand side b;f orthogonal to the
right nullspace of A(w) - [, i.e. orthogonal to the equilibrium x . This yields

>T1> 271 >o1>
(Ay=1)yx = y A'(w)xw x
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>t >>1>
_yAwhwx

Ay—1 575
yXx
Thus, for ¢ sufficiently small
> > > >>1>
uTA'(w)xwrx . uIF( w)wax
Ap—1 N ”(W)T'
ux ux

and the sign of )y, — 1 is the same as that of n'(w). If n'(w) > 0 then A, > 1 and
the equilibrium x is unstable. On the other hand if n'(w) <0 then t?e dominant
eigenvalue A, of the Jacobian J is less than 1 and the equilibrium x is (locally
asymptotically) stable. This proves the theorem.
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