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1. Introduction.

The purpose of this paper is to extend the results of an earlier paper [5] which
dealt with the existence of solutions of the operator equation

(E) $Lx=g+p(x)$

in a Banach space. Under a certain admissibility assumption on the linear operator
$L$ and a higher order assumption (near $x=0$) on the perturbation operator $p$ the
main result in [5] describes the solution set of (E) (as a function of $g$) as it is related
to that of the linear equation

(L) $Ly=g$

by means of a homeomorphism near $x=0$ . Our goal here is to weaken the assump-
tions made on $p$ in [5], which we will do at the expense of losing some of this
structure on the solution set as well as of having to require some additional hypo-
theses on $L$ .

The motivation for our approach and results can be found in the study of stable
manifolds for perturbed differential [1, 8, 9] and integrodifferential [6, 7] systems.
The concept of admissibility, which was originally used in the theory of differential
equations to study the solutions of such systems in various function spaces, was
soon also used in the theory of integral equations [2, 3, 4, 12] and integrodifferential
equations [6, 7, 11]. It was in turn generalized to an abstract setting concerned
with linear operators and abstract Banach spaces and many of the results for integral
equations are in fact special cases of more general theorems for operator equations
on Banach spaces [3, 10, 12]. These latter abstract results and the results for
integral equations out of which they developed do not, however, include some of
the fundamental results for differential systems which deal with manifolds of solu-
tions in certain function spaces, even though differential systems can be converted
by integration to an equivalent integral equation. The reason for this is that the
concept of admissibility as defined for integral equations [2] and abstracted to linear
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operators on Banach spaces [3] does not lend itself to a study of the full structure
of the solution space within a given Banach space.

To be a little more specific, in [3] Corduneanu defined $L$ to be $(B_{1}, ¥mathrm{B}_{2})$ -admis-
sible for two Banach spaces $B_{1}$ , $B_{2}$ if $B_{2}¥subseteq L(B_{1})$ . If one is interested in solving (E)
for $x$ in a given Banach space $B_{1}$ for $g$ in a given Banach space $B_{2}$ , if $L$ is $(B_{1}, B_{2})-$

admissible in this sense and if $p(B_{1})¥subseteq B_{2}$ then this definition of admissibility is use-
ful and one can procede as is done in the above references (see particularly [3, 10]).
We are interested here, however, (as we were in [5]) in the case of solving (E) in
$B_{1}$ when $L$ is not $(B_{1}, ¥mathrm{B}_{2})$ -admissible in this sense. While it is true that one could
study (E) on $B_{1}$ as in the above cited references for $g$ in the Banach space $B_{3}=$

$L(B_{1})¥cap B_{2}$ (with the norm $|L^{-1}g|_{1}+|g|_{2}$ , $g$ $¥in B_{3}$), in which case $L$ is trivially $(B_{1}, B_{3})-$

admissible, this approach would demand that $p(B_{1})¥subseteq B_{3}$ , a restriction we do not wish
to make on $p$ since it again would spoil our hopes of generalizing certain manifold
theorems from the theory of differential and integrodifferential equations.

Our approach in [5] was to define a different concept of admissibility which
ultimately led not only to the desired generalizations but to generalizations of
the abstract results mentioned above. In [5] the main tool was the contraction
principle. Here we wish to use instead the Tychonoff-Schauder fiixed point
theorem, a change which necessitates a stronger admissibility concept from that
defined and used in [5].

2. Results.

Let $B_{1}$ , $B_{2}$ be normed linear subspaces of a Frechet space $F$ with norms $|¥cdot|_{1}$ ,
$|¥cdot|_{2}$ respectively both of which yield topologies stronger than or equivalent to that
induced from the metric on $F$ . Throughout this paper we will use the notation
$‘‘(¥Omega_{1}, ¥Omega_{2})$ -continuous (or closed or compact)’’ to mean that the operator concerned
is continuous (or closed or compact) with respect to the topologies induced on the
domain and range by topological spaces $¥Omega_{1}$ and $¥Omega_{2}$ respectively. The following two
hypotheses on $L$ will be needed:

Hl: $L$ is a closed, one-one linear operator from $F$ onto $F$ ;

$¥mathrm{H}2$ : $¥left¥{¥begin{array}{l}¥mathrm{T}¥mathrm{h}¥mathrm{e}¥mathrm{r}¥mathrm{e}¥mathrm{e}¥mathrm{x}¥mathrm{i}¥mathrm{s}¥mathrm{t}¥mathrm{c}¥mathrm{o}¥mathrm{m}¥mathrm{p}¥mathrm{l}¥mathrm{e}¥mathrm{m}¥mathrm{e}¥mathrm{n}¥mathrm{t}¥mathrm{a}¥mathrm{r}¥mathrm{y}¥mathrm{s}¥mathrm{u}¥mathrm{b}¥mathrm{s}¥mathrm{p}¥mathrm{a}¥mathrm{c}¥mathrm{e}¥mathrm{s}B_{2}^{1}¥mathrm{a}¥mathrm{n}¥mathrm{d}B_{2}^{2}¥mathrm{o}¥mathrm{f}B_{2}(¥mathrm{i}.¥mathrm{e}.,B_{2}=B_{2}^{1}¥oplus B_{2}^{2})¥¥¥mathrm{s}¥mathrm{u}¥mathrm{c}¥mathrm{h}¥mathrm{t}¥mathrm{h}¥mathrm{a}¥mathrm{t}¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{r}¥mathrm{y}h¥in B_{2}^{2}¥mathrm{t}¥mathrm{h}¥mathrm{e}¥mathrm{r}¥mathrm{e}¥mathrm{e}¥mathrm{x}¥mathrm{i}¥mathrm{s}¥mathrm{t}¥mathrm{s}¥mathrm{a}g¥in B_{2}^{1}¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{w}¥mathrm{h}¥mathrm{i}¥mathrm{c}¥mathrm{h}g+h¥in L(B_{1}).¥end{array}¥right.$

Here $L(B_{1})$ denotes the range of $L$ restricted to $B_{1}$ . Note that by the closed graph
theorem both $L$ and $L^{-1}$ are $(F, ¥mathrm{F})$-continuous.

If $C$ is any subspace of $B_{2}^{1}$ complementary to the subspace $B_{2}^{1}¥cap L(B_{1})$ , then it
was shown in [5] that under $¥mathrm{H}¥mathrm{I}$ and H2 there corresponds to each $h¥in B_{2}^{2}$ a unique
$g=Ah$ $¥in C$ for which $h+g¥in L(B_{1})$ and that the operator $A:B_{2}^{2}¥rightarrow C$ so defined is
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linear. $¥overline{¥mathrm{A}}¥mathrm{s}$ in [5] we say that $L$ is $(B_{1}, B_{2})-$admissible (with respect to the decom-
position $B_{2}=B_{2}^{1}¥oplus B_{2}^{2}$) if $¥mathrm{H}¥mathrm{I}$ and H2 are satisfied and if the linear operator $A$ is
$(B_{2}, ¥mathrm{B}_{2})$ -continuous. For our work here we will need a slightly stronger property:
$L$ is called strongly $(B_{1}, ¥mathrm{B}_{2})$ -admissible (with respect to the decomposition $B_{2}=$

$B_{2}^{1}¥oplus B_{2}^{2})$ if it $(B_{1}, ¥mathrm{B}_{2})$ -admissible and if in addition the restriction of $A$ to some $B_{2}^{2}$

neighborhood $N$ of 0 is $(F, ¥mathrm{F})$ -continuous on $N(¥mathrm{i}.¥mathrm{e}.$ , if $g_{n}$ and $g_{0}¥in N$ are such that
$g_{n}¥rightarrow g_{0}$ in $F$ then $Ag_{n}¥rightarrow Ag_{0}$ in $F$).

The motivation for these definitions are found in applications to differential
equations where, roughly speaking, $L$ is the Volterra integral operator obtained
from the equivalent integral equation, $¥mathrm{H}¥mathrm{I}$ is the admissibility concept defined and
studied by Massera and Schaffer [9] (with $B_{2}^{1}=R^{n}$) and the smoothness assumptions
on the operator A follow from the continuity of solutions with respect to initial con-
ditions and forcing terms. These points will be made more explicit in§3.

Let $S(r)=¥{x¥in B_{1} : |x|_{1}¥leq r¥}$ . Concerning the perturbation operator $p$ in (E) we
make the assumption:

$¥mathrm{H}3$ : $¥left¥{¥begin{array}{l}p(x)¥mathrm{i}¥mathrm{s}¥mathrm{d}¥mathrm{e}fi ¥mathrm{n}¥mathrm{e}¥mathrm{d}¥mathrm{o}¥mathrm{n}S(r)¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{s}¥mathrm{o}¥mathrm{m}¥mathrm{e}0<r¥leq+¥infty,¥mathrm{h}¥mathrm{a}¥mathrm{s}¥mathrm{r}¥mathrm{a}¥mathrm{n}¥mathrm{g}¥mathrm{e}¥mathrm{i}¥mathrm{n}B_{2}^{2},¥mathrm{i}¥mathrm{s}(F,F)-¥¥¥mathrm{c}¥mathrm{o}¥mathrm{n}¥mathrm{t}¥mathrm{i}¥mathrm{n}¥mathrm{u}¥mathrm{o}¥mathrm{u}¥mathrm{s}¥mathrm{a}¥mathrm{n}¥mathrm{d}¥mathrm{s}¥mathrm{a}¥mathrm{t}¥mathrm{i}¥mathrm{s}fi ¥mathrm{e}¥mathrm{s}¥¥|p(x)-p(0)|_{2}¥leq¥theta|x|_{1}^{q}¥¥¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{s}¥mathrm{o}¥mathrm{m}¥mathrm{e}¥mathrm{r}¥mathrm{e}¥mathrm{a}¥mathrm{l}¥mathrm{s}0<q¥leq 1¥mathrm{a}¥mathrm{n}¥mathrm{d}¥theta ¥mathrm{a}¥mathrm{n}¥mathrm{d}¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{r}¥mathrm{y}x¥in S(r).¥end{array}¥right.$

Our goal here is to describe the set $¥Sigma(p;r)=¥{x¥in S(r):Lx-p(x)¥in B_{2}^{1}¥}$ as it is
related to the corresponding set $¥Sigma(r^{*})=¥{y¥in S(r^{*}):Ly¥in B_{2}^{1}¥}$ for $r^{*}$ small.

The following theorem contains our main result.

Theorem 1. Assume that $p(x)$ satisfies H3 and that $L$ is strongly $(B_{1}, B_{2})-$

admissible with respect to the decomposition $B_{2}=B_{2}^{1}¥oplus B_{2}^{2}$ where $B_{2}^{2}$ is complete.
Further, assume that $L^{-1}$ restricted to $B_{2}^{2}$ is $(B_{2}, F)$-compact. Then there exist
positive constants $p_{0}$ , $r^{*}and$ $¥theta_{0}$ such that if $¥theta<¥theta_{0}$ and $|p(0)|_{2}<p_{0}$ then corresponding
to each $y¥in¥Sigma(r^{*})$ there is at least one $x=x(y)¥in¥Sigma(p;r)$ such that $y$ , $y^{¥prime}¥in¥Sigma(r^{*})$ ,
$y¥neq y^{¥prime}$ implies $x(y)¥neq x(y^{¥prime})$ .

Remark 1. Under assumptions on $p(x)$ stronger than those in H3 it was shown
in [5] that the mapping $y¥rightarrow x$ thus defined is a one-one, bicontinuous map. The
compactness of $L^{-1}$ however is not needed in [5]. Under the weaker assumption
H3 we cannot guarantee this much structure.

Proof. Consider the linear operator $L^{*}:$ $B_{2}^{2}¥rightarrow B_{1}$ defined by $L^{*}=L^{-1}(A+I)$

where I is the identity operator on $F$ . First we claim that $L^{*}$ is $(B_{2}, ¥mathrm{B}_{1})$ -continuous.
To see this suppose $g_{n}¥rightarrow g_{0}$ in $B_{2}^{2}$ and $L^{*}g_{n}¥rightarrow g^{*}$ in $B_{1}$ (and hence in $F$). Then since
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$B_{2}^{2}$ is closed we have that $g_{0}¥in B_{2}^{2}$ and hence that $Ag_{0}$ is defined; moreover, since
$A$ is $(B_{2}, ¥mathrm{B}_{2})$ -continuous we have that $(A+I)g_{n}¥rightarrow(A+I)g_{0}$ in $B_{2}^{2}$ and hence in $F$ . We
conclude from the $(F, ¥mathrm{F})$-continuity of $L^{-1}$ that $L^{*}g_{n}¥rightarrow L^{*}g_{0}$ in $F$ which implies that
$L^{*}g_{0}=g^{*};$ i.e., $L^{*}$ is $(B_{2}, ¥mathrm{B}_{1})$ -closed. The closed graph theorem implies that $L^{*}$

is $(B_{2}, ¥mathrm{B}_{1})$ -continuous.
Let $|L^{*}|>0$ denote the norm of $L^{*}$ and set $¥theta_{0}=|L^{*}|^{-1}r^{1-q}>0$ . Assume $¥theta<¥theta_{0}$

in H3. We take $r$ in H3 smaller (if necessary) so that $A$ is $(F, ¥mathrm{F})$-continuous on
$p(S(r))$ ; this is possible by the strong $(B_{1}, ¥mathrm{B}_{2})$-admissibility of $L$ and by H3.

Given any $y¥in B_{1}$ define the operator $T_{y}$ : $S(r)¥rightarrow B_{1}$ by $T_{y}(¥cdot):=y+L^{*}p(¥cdot)$ . We
first argue that for $|y|_{1}$ sufficiently small $T_{y}$ has a fixed point $x¥in S(r)$ .

The estimates

$|T_{y}x|_{1}¥leq|y|_{1}+|L^{*}||p(x)|_{2}¥leq r^{*}+|L^{*}|$ $(|p(x)-p(0)|_{2}+|p(0)|_{2})$

$¥leq r^{*}+|L^{*}|(¥theta r^{q}+p_{0})$

are valid for $x$ $¥in S(r)$ and $y¥in¥Sigma(r^{*})$ . Using this estimate one easily finds that $|T_{y}x|_{1}¥leq r$

for $x$ $¥in S(r)$ provided that $r^{*}$ and $p_{0}$ are so small that

$r^{*}+|L^{*}|p_{0}<r(1-|L^{*}|¥theta r^{q-1})$ ,

which is possible since $¥theta<¥theta_{0}$ . This means that each of the operators $T_{y}$ , $y¥in¥Sigma(r^{*})$ ,
maps $S(r)$ into itself. The ball $S(r)$ is, of course, a convex subset of the Frechet
space $F$ .

The operator $p(x)$ is $(F, ¥mathrm{F})$-continuous as an operator defined on $S(r)$ . Thus,
using the strong admissibility of $L$ we find that $T_{y}$ is an $(F, ¥mathrm{F})$-continuous operator
from $S(r)$ into $S(r)$ .

Finally the $(B_{2}, ¥mathrm{F})$ -compactness of $L^{-1}$ implies that the $¥mathrm{F}$-closure of the image
under $T_{y}$ of $S(r)$ is $¥mathrm{F}$-compact. Thus, the Schauder-Tychonofi: fixed point theorem
[13, p. 32] implies that $T_{y}$ has a fixed point $x¥in S(r)$ for each $y¥in¥Sigma(r^{*})$ .

Now $T_{y}x=x$ implies that $y+L^{*}p(x)=x$ or $Ly+(A+I)p(x)=Lx$ or finally $Lx$

$=g+p(x)$ where $g=Ly+Ap(x)¥in B_{2}^{1}$. Thus $x=x(y)¥in¥Sigma(p;r)$ .
Finally, suppose that $y$ , $y^{¥prime}¥in¥Sigma(r^{*})$ . Then $x(y)=x(y^{¥prime})=x$ implies $T_{y}x=T_{y},x$

which in turn implies $y=y^{¥prime}$ by the definition of $T_{y}$ and $T_{y},$ . $¥blacksquare$

Remark 2. If $p(x)$ is higher order in $x$ near $x=0(¥mathrm{i}.¥mathrm{e}.$ , if $|p(x)-p(0)|_{2}/|x|_{1}¥rightarrow 0$

as $|x|_{1}¥rightarrow 0$) then the hypotheses on $p$ in Theorem 1 are fulfilled with $q=1$ provided
that $r>0$ is taken small enough. To see this simply take $r>0$ so small that
$|p(x)-p(0)|_{2}/|x|_{1}¥leq¥theta<¥theta_{0}$ all $x$ $¥in S(r)$ ; this is possible since $¥theta_{0}=|L^{*}|^{-1}$ in the proof
of the theorem is independent of $p$ when $q=1$ . Thus, $q¥leq 1$ is no loss in generality
in H3.

The following two theorems can be of use in applications ($¥mathrm{e}.¥mathrm{g}.$ , see§3) with
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regard to verifying the continuity requirements on $A$ demanded by the admissibility
assumption on $L$ .

Theorem 2. Assume $¥mathrm{H}¥mathrm{I}$ and H2 hold. The linear operator $A$ is $(B_{2}, B_{2})-$

continuous if both $B_{1}$ and $B_{2}$ are Banach spaces and both $B_{2}^{2}$ and $C$ are closed sub-
spaces of $B_{2}$ .

Proof. This theorem is simply a restatement of Theorem 1 in [5].

Theorem 3. Assume that $¥mathrm{H}¥mathrm{I}$ and H2 holds and that $A$ is $(B_{2}, B_{¥mathit{2}})$ -continuous.
Assume further that $C$ is finite dimensional and that every $B_{l}$-ball $S(r)$ is an $F$-closed
subset of F. Let $N$ be a $B_{2}^{2}$ neighborhood of 0. If $g_{n}$ and $g_{0}¥in N$ are such that
$g_{n}¥rightarrow g_{0}$ in $F$ , then $Ag_{n}¥rightarrow Ag_{0}$ in $F$ .

Proof. By the definition of $A$ the sequence $x_{n}=Ag_{n}$ lies in the finite dimen-
sional subspace $C$ of the normed space $B_{2}^{1}$ . Since $A$ is $(B_{2}, ¥mathrm{B}_{2})$ -continuous and
$g_{n}¥in N$ it follows that $x_{n}$ is a $¥mathrm{B}_{2}$-bounded sequence in $C$ which implies it has at least
one $¥mathrm{B}_{2}$-accumulation point in $C$ . Let $x_{0}¥in C$ be an arbitrary but fixed accumulation
point of $x_{n}$ and select a subsequencex $n(i)$ such that $x_{n(i)}¥rightarrow x_{0}$ in $B_{2}$ . Then $x_{n(i)}=$

$Ag_{n(i)}¥rightarrow x_{0}$ in $F$ and hence, by $¥mathrm{H}¥mathrm{I}$ , $y_{n(i)}=L^{*}g_{n(i)}=L^{-1}(g_{n(i)}+Ag_{n(i)})¥rightarrow L^{-1}(g_{0}+x_{0})$

$=y_{0}$ in $F$ . By the way $A$ was defined we know that $y_{n(i)}¥in B_{1}$ ; moreover, $L^{*}$ is
$(B_{2}, ¥mathrm{B}_{1})$ -continuous (see the proof of Theorem 1) and consequently $y_{n(i)}¥in S(r)$ for
some $r>0$ . Since $S(r)$ is assumed to be $¥mathrm{F}$-closed we conclude that $¥mathcal{Y}¥mathrm{o}¥in B_{1}$ . Thus,
$Ly_{0}=g_{0}+x_{0}$ and $¥mathcal{Y}¥mathrm{o}¥in B_{1}$ which means that $Ag_{0}=x_{0}$ . This implies that the sequence
$x_{n}$ has one and only one $¥mathrm{B}_{2}$-accumulation point (namely $Ag_{0}$) and as a result we
conclude that $Ag_{n}¥rightarrow Ag_{0}$ in $B_{2}$ (and consequently in $F$). $¥blacksquare$

Corollary. If $¥mathrm{H}¥mathrm{I}$ and H2 hold then $L$ is strongly $(B_{1}, B_{¥mathit{2}})$ -admissible with
respect to the decomposition $B_{2}=B_{2}^{1}¥oplus B_{2}^{2}$ if all of the following conditions are met:
the spaces $B_{1}$ , $B_{2}$ and $B_{2}^{2}$ are complete, $C$ is finite dimensional and every $B_{l}$-ball $S(r)$

is $F$-closed.

3. An application to Volterra integral equations.

Our purpose in this last section is to illustrate the use of the results in §2 in
studying the existence of manifolds of bounded solutions of Volterra integral
equations. We make no attempt to investigate this question in depth or even to
obtain the most general results possible using Theorem 1. We wish only to show
how an application can be made in a specific case and for specifically chosen Banach
spaces; other choices can obviously be made to result in further applications.

Let $F$ be the Frechet space of functions continuous for $t¥geq 0$ under the topology
of uniform convergence on compact intervals. Let $BC¥subseteq F$ denote the Banach space,
under the supremum norm $|¥cdot|_{0}$ , of those functions in $F$ which are bounded for $t¥geq 0$ .
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Let $C^{1}$ denote the Banach space of continuously differentiate functions on $t>0$ for
which $|f|_{1}=|f(0)|+|f^{¥prime}|_{0}<+¥infty$ and let $C_{0}^{1}$ denote the Banach subspace of those func-
tions in $C^{1}$ vanishing at $t=0$ . Let $R^{n}$ denote $¥mathrm{n}$-dimensional Euclidean space. In
the notation of§2 we take $B_{1}=BC$ , $B_{2}=C^{1}$ and $B_{2}^{1}=R^{n}$ , $B_{2}^{2}=C_{0}^{1},$ .

We consider the problem of finding bounded solution $y(t)¥in BC$ of the system

(3.1) $y(t)+¥int_{0}^{t}A(t, s)y(s)ds=f(t)$ , $t¥geq 0$

for $f(t)¥in C^{1}$ . We assume that (3.1) is well posed; that is

H4: $¥left¥{¥begin{array}{l}¥mathrm{t}¥mathrm{h}¥mathrm{e}¥mathrm{m}¥mathrm{a}¥mathrm{t}¥mathrm{r}¥mathrm{i}¥mathrm{x}A(t,s)¥mathrm{i}¥mathrm{s}¥mathrm{s}¥mathrm{u}ffi ¥mathrm{c}¥mathrm{i}¥mathrm{e}¥mathrm{n}¥mathrm{t}¥mathrm{l}¥mathrm{y}¥mathrm{s}¥mathrm{m}¥mathrm{o}¥mathrm{o}¥mathrm{t}¥mathrm{h}¥mathrm{s}¥mathrm{o}¥mathrm{t}¥mathrm{h}¥mathrm{a}¥mathrm{t}(3.1)¥mathrm{h}¥mathrm{a}¥mathrm{s},¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{e}¥mathrm{a}¥mathrm{c}¥mathrm{h}f¥in F,¥mathrm{a}¥¥¥mathrm{u}¥mathrm{n}¥mathrm{i}¥mathrm{q}¥mathrm{u}¥mathrm{e}¥mathrm{s}¥mathrm{o}¥mathrm{l}¥mathrm{u}¥mathrm{t}¥mathrm{i}¥mathrm{o}¥mathrm{n}y¥in F¥mathrm{w}¥mathrm{h}¥mathrm{i}¥mathrm{c}¥mathrm{h}¥mathrm{d}¥mathrm{e}¥mathrm{p}¥mathrm{e}¥mathrm{n}¥mathrm{d}¥mathrm{s}¥mathrm{c}¥mathrm{o}¥mathrm{n}¥mathrm{t}¥mathrm{i}¥mathrm{n}¥mathrm{u}¥mathrm{o}¥mathrm{u}¥mathrm{s}¥mathrm{l}¥mathrm{y}¥mathrm{o}¥mathrm{n}f¥mathrm{o}¥mathrm{n}fi ¥mathrm{n}¥mathrm{i}¥mathrm{t}¥mathrm{e}¥mathrm{i}¥mathrm{n}¥mathrm{t}¥mathrm{e}¥mathrm{r}¥mathrm{v}¥mathrm{a}¥mathrm{l}¥mathrm{s}¥¥(¥mathrm{i}.¥mathrm{e}.,¥mathrm{i}¥mathrm{f}f_{n}¥rightarrow 0¥mathrm{i}¥mathrm{n}F¥mathrm{t}¥mathrm{h}¥mathrm{e}¥mathrm{n}y_{n}¥rightarrow 0¥mathrm{i}¥mathrm{n}F).¥end{array}¥right.$

Certainly H4 holds for example if $A(t, s)$ is continuous on $t¥geq s¥geq 0$ . Many other
conditions on $A(t, s)$ which are sufficient to guarantee the validity of H4 can be
found in standard references (e.g., see [12]; also see H5 below).

We will say that the Volterra integral system (3.1) is $(BC, C^{l})$ -admissible with
respect to the decomposition $C^{1}=R^{n}¥oplus C_{0}^{1}$ if for each $g(t)¥in C_{0}^{1}$ there corresponds at
least one initial condition $¥mathcal{Y}¥mathrm{o}¥in R^{n}$ such that the solution of (3. 1) with $f(t)=y_{0}+g(t)$

lies in $BC$ . The connection with the work in §2 is made via the lemma below.
Define the linear operator $L:F¥rightarrow F$ by

(3.2) $Ly¥equiv y(t)+¥int_{0}^{t}A(t, s)y(s)ds$ .

Then H4 implies $¥mathrm{H}¥mathrm{I}$ .
Lemma 1. If H4 holds and the system (3. 1) is $(BC, C^{1})-$admissible with respect

to the decomposition $C^{1}=R^{n}¥oplus C_{0}^{1}$ then the operator $L$ defined by (3.2) is strongly
$(¥mathrm{B}¥mathrm{C}, C^{l})$ -admissible with respect to the same decomposition as was defined in §2.

Proof. The spaces $B_{1}=BC$ , $B_{2}=C^{1}$ and $B_{2}^{2}=C_{0}^{1}$ are Banach spaces and $B_{2}^{1}=R^{n}$

(and hence $C$ as defined in§2 above) is finite dimensional. Suppose $y^{*}$ is in the
$¥mathrm{F}$-closure of some ball $¥mathrm{S}(¥mathrm{r})$ in $BC$ . Then there exists a sequence of functions $y_{n}¥in BC$ ,
$|y_{n}|_{0}¥leq r$ such that $y_{n}¥rightarrow y^{*}$ in $F$ ;i.e., $y_{n}(t)¥rightarrow y^{*}(t)$ uniformly on every compact sub-
interval of $t¥geq 0$ . Thus, $|y^{*}(t)|¥leq r$ on every compact subinterval of $t¥geq 0$ which im-
plies that $|y^{*}(t)|¥leq r$ for all $t¥geq 0$ or in other words that $y^{*}¥in S(r)$ . This means that
every ball $S(r)$ in $BC$ is $¥mathrm{F}$-closed. The Corollary in§2 now implies the lemma. $¥blacksquare$

As a final property of $L$ as defined by (3.2) we need the necessary $(C^{1}, F)¥rightarrow$

compactness of $L^{-1}$ restricted to $C_{0}^{1}$ .

Lemma 2. Assume that the matrix $A(t, s)$ satisfies the hypothesis



Strongly Admissible Operators 243

$¥mathrm{H}5$ : $¥left¥{¥begin{array}{l}A(t,s)ismeasurablein(t,s)for0¥leq s¥leq t<+¥infty and,forreveryT>0,¥¥satisfi es¥¥¥int_{t}^{t^{¥prime}}|A(t,s)|ds¥rightarrow 0,¥int_{0}^{T}|A(t^{¥prime},s)-A(t,s)|ds0¥¥ast,¥rightarrow t,t^{¥prime}¥geq tuniformlyfort,t,¥in[0,T].¥end{array}¥right.$

Then the inverse $L^{-1}$ restricted to $C_{0}^{1}$ is $(C^{1}, F)-$compact.

Remark 3. That H5 implies H4 follows from the general results in [12,
Chapter 2]. In particular H5 holds if $A(t, s)$ is continuous in $t¥geq s¥geq 0$ .

Proof. Let $g_{n}¥in C_{0}^{1}$ and $|g_{n}|_{1}¥leq r$ . We have to show that $y_{n}=L^{-1}g_{n}$ has a con-
vergent subsequence in $F$ . This we will do by means of the Ascoli-Arzela theorem
applied on an arbitrary, but fixed interval $[0, T]$ .

Firstly, we show that the sequence $y_{n}(t)¥in BC$ is uniformly bounded in $n$ and
$t$ $¥in[0, T]$ . Let $BC(T)$ (or $C^{1}(T)$) denote the Banach space of functions continuous
(or continuously differentiable) on $[0, T]$ under the norm $|y|_{T}=¥sup_{[0,T]}|y(t)|$ (or
$|y|_{T}^{1}=|y(0)|+|y^{¥prime}|_{T})$ . If we restrict $L$ defined by (3.2) to $BC(T)¥rightarrow BC(T)$ , then by
H4 this restriction $L_{T}$ is one-one, onto and continuous. As a result Banach’s well
known theorem implies that $L_{T}^{-1}$ is bounded. Since a sequence bounded in $C_{0}^{1}$ is
necessarily bounded in $BC(T)$ we see that $y_{n}=L^{-l}g_{n}$ is bounded in $BC(T)$ uniformly
in $n$ ; i.e., $|y_{n}(t)|_{T}¥leq|L_{T}^{-1}|Tr¥equiv K(T)$ for all $n$ .

Finally, we prove that the sequence $y_{n}(t)$ is equicontinuous on $[0, T]$ . For
$t$ $¥in[0, T]$ and every $n$

$y_{n}(t)=g_{n}(t)-¥int_{0}^{t}A(t, s)y_{n}(s)ds$

and hence

$|y_{n}(t)-y_{n}(t^{¥prime})|¥leq|g_{n}(t)-g_{n}(t^{¥prime})|$

$+K(T)¥int_{0}^{T}|A(t^{¥prime}, s)-A(t, s)|ds+K(T)¥int_{t}^{t^{¥prime}}|A(t, s)|ds$ .

Since the derivatives of $g_{n}(t)$ are uniformly bounded, the equicontinuity of $y_{n}(t)$ on
$[0, T]$ follows from this inequality and H5. $¥blacksquare$

Suppose now we consider the perturbed Volterra system

(3.3) $x(t)+¥int_{0}^{t}A(t, s)x(s)ds=¥int_{0}^{t}h(t, s, x(s))ds+f(t)$, $t¥geq 0$ .

In order to apply our main result Theorem 1 above to this system we need the
following hypotheses on the perturbation kernel $h$ :



244 J. M. CUSHING

$¥mathrm{H}6$ : $¥left¥{¥begin{array}{l}h(t,s,z)¥mathrm{i}¥mathrm{s}¥mathrm{c}¥mathrm{o}¥mathrm{n}¥mathrm{t}¥mathrm{i}¥mathrm{n}¥mathrm{u}¥mathrm{o}¥mathrm{u}¥mathrm{s}¥mathrm{a}¥mathrm{n}¥mathrm{d}¥mathrm{c}¥mathrm{o}¥mathrm{n}¥mathrm{t}¥mathrm{i}¥mathrm{n}¥mathrm{u}¥mathrm{o}¥mathrm{u}¥mathrm{s}1¥mathrm{y}¥mathrm{d}¥mathrm{i}ff ¥mathrm{e}¥mathrm{r}¥mathrm{e}¥mathrm{n}¥mathrm{t}¥mathrm{i}¥mathrm{a}¥mathrm{b}¥mathrm{l}¥mathrm{e}¥mathrm{i}¥mathrm{n}t¥mathrm{f}¥mathrm{o}¥mathrm{r}0¥leq s¥leq t<¥¥+¥infty ¥mathrm{a}¥mathrm{n}¥mathrm{d}|z|¥leq r<+¥infty ¥mathrm{a}¥mathrm{n}¥mathrm{d}¥mathrm{s}¥mathrm{a}¥mathrm{t}¥mathrm{i}¥mathrm{s}fi ¥mathrm{e}¥mathrm{s}|h(t,t,z)-h(t,t,0)|¥leq¥alpha|z|^{q}¥mathrm{a}¥mathrm{n}¥mathrm{d}¥¥|h_{t}(t,s,z)-h_{t}(t,s,0)|¥leq¥beta(t,s)|z|^{q}¥mathrm{f}¥mathrm{o}¥mathrm{r}|z|¥leq r,0<q¥leq 1¥mathrm{a}¥mathrm{n}¥mathrm{d}0¥leq s¥leq t¥mathrm{w}¥mathrm{h}¥mathrm{e}¥mathrm{r}¥mathrm{e}¥¥¥alpha ¥mathrm{i}¥mathrm{s}¥mathrm{a}¥mathrm{c}¥mathrm{o}¥mathrm{n}¥mathrm{s}¥mathrm{t}¥mathrm{a}¥mathrm{n}¥mathrm{t}¥mathrm{a}¥mathrm{n}¥mathrm{d}¥beta ¥mathrm{i}¥mathrm{s}¥mathrm{a}¥mathrm{f}¥mathrm{u}¥mathrm{n}¥mathrm{c}¥mathrm{t}¥mathrm{i}¥mathrm{o}¥mathrm{n}¥mathrm{s}¥mathrm{a}¥mathrm{t}¥mathrm{i}¥mathrm{s}¥mathrm{f}¥mathrm{y}¥dot{¥mathrm{m}}¥mathrm{g}¥¥¥sup_{¥iota¥geq ¥mathrm{o}}¥int_{0}^{t}¥beta(t,s)ds=¥beta_{0}<+¥infty.¥end{array}¥right.$

Let $¥theta=¥alpha+¥beta_{0}$ and define the constant

$h_{0}=|h(t, t, 0)|_{0}+¥sup_{t¥geq 0}¥int_{0}^{t}|h_{t}(t, s, ¥mathrm{O})|ds$.

From Theorem 1 in§2 and Lemmas 1 and 2 we obtain the following result.

Theorem Suppose that $A(t, ¥mathrm{s})$ satisfies H5 and that the linear system (3.1)
is {$¥mathrm{B}¥mathrm{C}$ ,$ C^{1})-$admissible with respect to the decomposition $C^{1}=R^{n}¥oplus C_{0}^{1}$ . Suppose that
the perturbation kernel $h$ satisfies H6 with $¥theta$ and $h_{0}$ sufficiently small. Let $g(t)¥in C_{0}^{1}$

be a given function with $|g|_{1}$ sufficiently small. Then corresponding to each small
initial condition $¥mathcal{Y}¥mathrm{o}¥in R^{n}$ for which (3.1) has a solution in $BC$ with $f(t)¥equiv y_{0}$ there
exists at least one initial condition $x_{0}=x_{0}(y_{0})¥in R^{n}$ for which the perturbed system
(3.2) has a solution $x=x(y_{0})¥in BC$ with $f(t)¥equiv x_{0}+g(t)$ ; moreover, $y_{¥mathrm{o}^{1}}¥neq y_{0}^{2}$ implies
that $x(y_{0}^{1})(t)¥not¥equiv x(y_{0}^{2})(t)$ .

Proof. This result follows immediately from Lemmas 1 and 2 and Theorem 1
of §2. The operator $p(x)$ in H3 is defined by

$p(x)¥equiv¥int_{0}^{t}h(t, s, x(s))ds+g(t)$ . $¥blacksquare$
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