Mirror couplings of reflecting Brownian motions and applications

Mihai N. Pascu
Transilvania University of Brașov, Romania

May 25, 2010

Queen Dido Conference

on the isoperimetric problem of queen Dido and its mathematical ramifications

24 – 29 May 2010, Carthage, Tunis
Abstract

Rodrigo Bañuelos, Krzysztof Burdzy et. al. ([BaBu], [Bu], [AtBu1], [AtBu2], [BuKe]) introduced the \textit{mirror coupling} of reflecting Brownian motions in a smooth domain $D \subset \mathbb{R}^d$ and used it in order to derive properties of Neumann eigenvalues/eigenfunctions of the Neumann Laplaceian on D.

In the present talk we will show that the coupling can be extended to the case when the two reflecting Brownian motions live in different domains $D_1, D_2 \subset \mathbb{R}^d$. As an application of the construction, we will derive a unifying proof of the two most important results on Chavel's conjecture on the domain monotonicity of the Neumann heat kernel ([Ch], [Ke]).
Abstract

Rodrigo Bañuelos, Krzysztof Burdzy et. al. ([BaBu], [Bu], [AtBu1], [AtBu2], [BuKe]) introduced the mirror coupling of reflecting Brownian motions in a smooth domain $D \subset \mathbb{R}^d$ and used it in order to derive properties of Neumann eigenvalues/eigenfunctions of the Neumann Laplaceian on D.

In the present talk we will show that the coupling can be extended to the case when the two reflecting Brownian motions live in different domains $D_1, D_2 \subset \mathbb{R}^d$.

As an application of the construction, we will derive a unifying proof of the two most important results on Chavel's conjecture on the domain monotonicity of the Neumann heat kernel ([Ch], [Ke]).
Rodrigo Bañuelos, Krzysztof Burdzy et. al. ([BaBu], [Bu], [AtBu1], [AtBu2], [BuKe]) introduced the mirror coupling of reflecting Brownian motions in a smooth domain $D \subset \mathbb{R}^d$ and used it in order to derive properties of Neumann eigenvalues/eigenfunctions of the Neumann Laplaceian on D.

In the present talk we will show that the coupling can be extended to the case when the two reflecting Brownian motions live in different domains $D_1, D_2 \subset \mathbb{R}^d$.

As an application of the construction, we will derive a unifying proof of the two most important results on Chavel’s conjecture on the domain monotonicity of the Neumann heat kernel ([Ch], [Ke]).
A 1-dimensional Brownian motion starting at \(x \in \mathbb{R} \) is a continuous stochastic process \((B_t)_{t \geq 0}\) with \(B_0 = x \) a.s for which \(B_t - B_s \) is a normal random variable \(\mathcal{N}(0, t-s) \), independent of the \(\sigma \)-algebra \(\mathcal{F}_s = \sigma(B_r : r \leq s) \), for all \(0 \leq s < t \).
Definitions

Definition

A 1-dimensional Brownian motion starting at \(x \in \mathbb{R} \) is a continuous stochastic process \((B_t)_{t \geq 0}\) with \(B_0 = x \) a.s for which \(B_t - B_s \) is a normal random variable \(N(0, t - s) \), independent of the \(\sigma \)-algebra \(\mathcal{F}_s = \sigma(B_r : r \leq s) \), for all \(0 \leq s < t \).

Definition

A \(d \)-dimensional Brownian motion starting at \(x = (x^1, \ldots, x^d) \in \mathbb{R}^d \) is a stochastic process \(B_t = (B^1_t, \ldots, B^d_t) \), where the components \(B^i_t \) are independent 1-dimensional Brownian motions starting at \(x^i \), \(1 \leq i \leq d \).
Definitions

Definition

A 1-dimensional Brownian motion starting at $x \in \mathbb{R}$ is a continuous stochastic process $(B_t)_{t \geq 0}$ with $B_0 = x$ a.s for which $B_t - B_s$ is a normal random variable $\mathcal{N}(0, t - s)$, independent of the σ-algebra $\mathcal{F}_s = \sigma(B_r : r \leq s)$, for all $0 \leq s < t$.

Definition

A d-dimensional Brownian motion starting at $x = (x^1, \ldots, x^d) \in \mathbb{R}^d$ is a stochastic process $B_t = (B^1_t, \ldots, B^d_t)$, where the components B^i_t are independent 1-dimensional Brownian motions starting at x^i, $1 \leq i \leq d$.

Definition

Reflecting Brownian motion in a smooth domain $D \subset \mathbb{R}^d$ starting at $x_0 \in \overline{D}$ is a solution of the stochastic differential equation

$$X_t = x_0 + B_t + \int_0^t \nu_D(X_s) \, dL^X_s, \quad t \geq 0,$$

(1)

where B_t is a d-dimensional BM starting at $B_0 = 0$ on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$, L^X_t is the local time of X on the boundary of D, X_t is \mathcal{F}_t-adapted and almost surely $X_t \in \overline{D}$ for all $t \geq 0$.

M. N. Pascu (Transilvania Univ) Mirror couplings of reflecting Brownian motion 25.5.2010 3 / 17
Skorokhod map

Remark

It can be shown ([LiSz]) that there exists a unique \mathcal{F}_t-semimartingale which solves (1). In fact, there exists a map (Skorokhod map)

$$\Gamma : C \left([0, \infty) : \mathbb{R}^d\right) \rightarrow C \left([0, \infty) : \bar{D}\right)$$

such that $X = \Gamma (x + B)$ a.s.

For each $T > 0$ fixed, $\Gamma|_{[0,T]}$ is Hölder continuous of order 1/2 on compact subsets of $C \left([0, T] : \mathbb{R}^d\right)$.
Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).
Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- **Synchronous coupling**: \((B_t, B_t + v)\)

The above can be extended to the case of reflecting Brownian motion.
Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- **Synchronous coupling:** \((B_t, B_t + v)\)
- **Mirror coupling:** \((B_t, S_\theta B_t)\)

The above can be extended to the case of reflecting Brownian motion.
Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- **Synchronous coupling**: \((B_t, B_t + v)\)
- **Mirror coupling**: \((B_t, S_\theta B_t)\)
- **Scaling coupling**: \((B_t, cB_t/c^2)\)
Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- **Synchronous coupling**: \((B_t, B_t + v)\)
- **Mirror coupling**: \((B_t, S_\theta B_t)\)
- **Scaling coupling**: \((B_t, cB_t/c^2)\)

The above can be extended to the case of reflecting Brownian motion.
Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- **Synchronous coupling**: $(B_t, S_\theta B_t)$ (Burdzy, Atar, Kendall)
- **Mirror coupling**: $(B_t, S_\theta B_t)$
- **Scaling coupling**: $(B_t, cB_t/c^2)$

The above can be extended to the case of reflecting Brownian motion.
Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- **Synchronous coupling**: (Burdzy, Atar, Kendall)
- **Mirror coupling**: (Bañuelos, Burdzy, Atar, Kendall, P.)
- **Scaling coupling**: \((B_t, cB_t/c^2)\)

The above can be extended to the case of reflecting Brownian motion.
Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- **Synchronous coupling**: (Burdzy, Atar, Kendall)
- **Mirror coupling**: (Bañuelos, Burdzy, Atar, Kendall, P.)
- **Scaling coupling**: (P.)

The above can be extended to the case of reflecting Brownian motion.
Mirror coupling of Brownian motions

Given a hyperplane \mathcal{H} (the mirror) and a Brownian motion X_t, we define the Brownian motion Y_t as the mirror image of X_t with respect to \mathcal{H} until the coupling time

$$\xi = \inf \{ s > 0 : X_s = Y_s \} ,$$

after which the processes X_t and Y_t evolve together.

Figure: The mirror coupling of Brownian motions.
If m is a unit normal to \mathcal{H}, then Y_t is given explicitly by

$$Y_t = X_t - 2 (X_t \cdot m) m, \quad t \leq \xi.$$ \hfill (2)
If m is a unit normal to \mathcal{H}, then Y_t is given explicitly by

$$Y_t = X_t - 2(X_t \cdot m)m, \quad t \leq \xi.$$ \hfill (2)

Introducing the $d \times d$ matrix H by

$$H(m) = I - 2mm^T = (\delta_{ij} - 2m_im_j)_{1 \leq i,j \leq d},$$ \hfill (3)

(Reflection in the hyperplane \mathcal{H} through the origin and perpendicular to m)
If m is a unit normal to \mathcal{H}, then Y_t is given explicitly by

\[Y_t = X_t - 2 (X_t \cdot m) m, \quad t \leq \xi. \]

(2)

Introducing the $d \times d$ matrix H by

\[H (m) = I - 2m m^T = (\delta_{ij} - 2m_i m_j)_{1 \leq i,j \leq d}, \]

(3)

(reflection in the hyperplane \mathcal{H} through the origin and perpendicular to m)

since for $t \leq \xi$ we have $m = \frac{Y_t - X_t}{|Y_t - X_t|}$ and for $t \geq \xi$ we have $Y_t = X_t,$
Equation of the mirror coupling of Brownian motions

If \(m \) is a unit normal to \(\mathcal{H} \), then \(Y_t \) is given explicitly by

\[
Y_t = X_t - 2 (X_t \cdot m) m, \quad t \leq \xi.
\]

(2)

Introducing the \(d \times d \) matrix \(H \) by

\[
H (m) = I - 2m m^T = (\delta_{ij} - 2m_i m_j)_{1 \leq i, j \leq d},
\]

(3)

(reflection in the hyperplane \(\mathcal{H} \) through the origin and perpendicular to \(m \))

since for \(t \leq \xi \) we have \(m = \frac{Y_t - X_t}{|Y_t - X_t|} \) and for \(t \geq \xi \) we have \(Y_t = X_t \),

the above relation can be written in the form

\[
Y_t = G (Y_t - X_t) X_t, \quad t \geq 0,
\]

(4)

where

\[
G (u) = \begin{cases}
H \left(\frac{u}{|u|} \right), & u \neq 0 \\
I, & u = 0
\end{cases}
\]

(5)
If m is a unit normal to \mathcal{H}, then Y_t is given explicitly by

$$Y_t = X_t - 2 (X_t \cdot m) m, \quad t \leq \xi.$$ \hspace{1cm} (2)

Introducing the $d \times d$ matrix H by

$$H (m) = I - 2m m^T = (\delta_{ij} - 2m_i m_j)_{1 \leq i,j \leq d},$$ \hspace{1cm} (3)

(reflection in the hyperplane \mathcal{H} through the origin and perpendicular to m)

since for $t \leq \xi$ we have $m = \frac{Y_t - X_t}{|Y_t - X_t|}$ and for $t \geq \xi$ we have $Y_t = X_t$,

the above relation can be written in the form

$$Y_t = G (Y_t - X_t) X_t, \quad t \geq 0,$$ \hspace{1cm} (4)

where

$$G (u) = \begin{cases}
H \left(\frac{u}{|u|} \right), & u \neq 0 \\
I, & u = 0
\end{cases}.$$ \hspace{1cm} (5)
Consider $D_{1,2} \subset \mathbb{R}^d$ smooth bounded domains with $\overline{D_2} \subset D_1$ and D_2-convex.
Mirror coupling of reflecting Brownian motions

Consider $D_{1,2} \subset \mathbb{R}^d$ smooth bounded domains with $\overline{D_2} \subset D_1$ and D_2-convex.
Given a d-dimensional BM $(W_t)_{t \geq 0}$ with $W_0 = 0$, consider the following system of SDEs:

\begin{align}
X_t &= x + W_t + \int_0^t \nu_{D_1}(X_s) \, dL_s^X \\
Y_t &= y + Z_t + \int_0^t \nu_{D_2}(Y_s) \, dL_s^Y \\
Z_t &= \int_0^t G(Y_s - X_s) \, dW_s
\end{align}

where ν_{D_1} and ν_{D_2} represent the inward unit normal vector fields on ∂D_1, respectively ∂D_2.

Remark: In the particular case when $D_1 = D_2$, (6) – (9) above reduces to the case considered by Burdzy et al. (i.e. mirror coupling of reflecting Brownian motions in D).
Consider $D_{1,2} \subset \mathbb{R}^d$ smooth bounded domains with $\overline{D_2} \subset D_1$ and D_2-convex. Given a d-dimensional BM $(W_t)_{t \geq 0}$ with $W_0 = 0$, consider the following system of SDE:

\begin{align*}
X_t &= x + W_t + \int_0^t \nu_{D_1}(X_s) \, dL^X_s \quad (6) \\
Y_t &= y + Z_t + \int_0^t \nu_{D_2}(Y_s) \, dL^Y_s \quad (7) \\
Z_t &= \int_0^t G(Y_s - X_s) \, dW_s \quad (8)
\end{align*}

where ν_{D_1} and ν_{D_2} represent the inward unit normal vector fields on ∂D_1, respectively ∂D_2. Considering Γ and $\tilde{\Gamma}$ the corresponding Skorokhod maps (i.e. $X = \Gamma(x + W)$, $Y = \tilde{\Gamma}(y + Z)$), the above system is equivalent to

\begin{equation}
Z_t = \int_0^t G \left(\tilde{\Gamma}(y + Z)_s - \Gamma(x + W)_s \right) \, dW_s \quad (9)
\end{equation}
Consider $D_{1,2} \subset \mathbb{R}^d$ smooth bounded domains with $D_2 \subset D_1$ and D_2-convex. Given a d-dimensional BM $(W_t)_{t \geq 0}$ with $W_0 = 0$, consider the following system of SDE:

\[X_t = x + W_t + \int_0^t \nu_{D_1}(X_s) \, dL_s^X \] \hspace{2cm} (6)

\[Y_t = y + Z_t + \int_0^t \nu_{D_2}(Y_s) \, dL_s^Y \] \hspace{2cm} (7)

\[Z_t = \int_0^t G(Y_s - X_s) \, dW_s \] \hspace{2cm} (8)

where ν_{D_1} and ν_{D_2} represent the inward unit normal vector fields on ∂D_1, respectively ∂D_2. Considering Γ and $\tilde{\Gamma}$ the corresponding Skorokhod maps (i.e. $X = \Gamma(x + W)$, $Y = \tilde{\Gamma}(y + Z)$), the above system is equivalent to

\[Z_t = \int_0^t G\left(\tilde{\Gamma}(y + Z)_s - \Gamma(x + W)_s\right) \, dW_s \] \hspace{2cm} (9)

Remark

In the particular case when $D_1 = D_2$, (6) – (9) above reduces to the case considered by Burdzy et. al. (i.e. mirror coupling of reflecting Brownian motions in D).
Main result

Theorem

Let $D_{1,2} \subset \mathbb{R}^d$ be smooth bounded domains with $\overline{D}_2 \subset D_1$ and D_2 convex domain, and let $x \in \overline{D}_1$ and $y \in \overline{D}_2$ be arbitrarily fixed points.

Then there exists a strong solution X_t, Y_t to (6) – (9) above, referred to as a mirror coupling of Reflecting Brownian motions in D_1, respectively D_2, starting from $(x, y) \in \overline{D}_1 \times \overline{D}_2$ with driving Brownian motion W_t.
Some remarks

Remark

In the case $D_1 = D_2 = D$, the solution to (9) can be essentially constructed by Picard iterations, since outside of the origin G satisfies

$$\| G(u) - G(u') \| \leq c |u - u'|,$$

where $\| (g_{ij})_{i,j} \| = \left(\sum_{i,j} g_{ij}^2 \right)^{1/2}$.
In the case $D_1 = D_2 = D$, the solution to (9) can be essentially constructed by Picard iterations, since outside of the origin G satisfies

$$\|G(u) - G(u')\| \leq c|u - u'|,$$

where $\|g_{ij}\| = (\sum_{i,j} g_{ij}^2)^{1/2}$.

It can also be shown that in this case the solution is pathwise unique.
Some remarks

Remark

In the case $D_1 = D_2 = D$, the solution to (9) can be essentially constructed by Picard iterations, since outside of the origin G satisfies

$$||G(u) - G(u')|| \leq c|u - u'|,$$

where $|| (g_{ij})_{i,j} || = \left(\sum_{i,j} g_{ij}^2 \right)^{1/2}$.

It can also be shown that in this case the solution is pathwise unique.

Remark

In the general case this method cannot be used. The reason is that once the processes X_t and Y_t have coupled, it is possible for them to decouple: for example if $X_t = Y_t \in \partial D_2$, the solutions will split.

The behaviour of G at the origin becomes therefore essential – we have to show the existence of a degenerate SDE (G is discontinuous at the origin).

Surprisingly, the existence of the solution comes from the convexity of the smaller domain!
Idea of the proof

- Reduce the problem to the case $D_1 = \mathbb{R}^d$ (hence $X_t = X_0 + W_t$)
Idea of the proof

- Reduce the problem to the case $D_1 = \mathbb{R}^d$ (hence $X_t = X_0 + W_t$)
- Construct the solution in the case D_2 is a half space in \mathbb{R}^d
Idea of the proof

- Reduce the problem to the case $D_1 = \mathbb{R}^d$ (hence $X_t = X_0 + W_t$)
- Construct the solution in the case D_2 is a half space in \mathbb{R}^d
- Extend the construction to the case of when D_2 is a convex polygonal domain in \mathbb{R}^d
Idea of the proof

- Reduce the problem to the case $D_1 = \mathbb{R}^d$ (hence $X_t = X_0 + W_t$)
- Construct the solution in the case D_2 is a half space in \mathbb{R}^d
- Extend the construction to the case of when D_2 is a convex polygonal domain in \mathbb{R}^d
- Approximate $D_2 = D$ by an increasing sequence of convex polygonal domains $D_n \nearrow D$
Idea of the proof

- Reduce the problem to the case $D_1 = \mathbb{R}^d$ (hence $X_t = X_0 + W_t$)
- Construct the solution in the case D_2 is a half space in \mathbb{R}^d
- Extend the construction to the case of when D_2 is a convex polygonal domain in \mathbb{R}^d
- Approximate $D_2 = D$ by an increasing sequence of convex polygonal domains $D_n \nearrow D$
- Show the solution Y^n_t for D_n converges to the solution Y_t for D, that is

$$Z^n_t = \int_0^t G(Y^n_s - X_s) \, dW_s \xrightarrow{n \to \infty} \int_0^t G(Y_s - X_s) \, dW_s = Z_t, \quad t \geq 0,$$

where Z^n_t, Z_t are the driving Brownian motions for Y^n_t, respectively Y_t.
Applications

Consider $D_{1,2} \subset \mathbb{R}^d$.

The Dirichlet heat kernel $\tilde{p}_{D}(t, x, y)$ is an increasing function of the domain: if $D_1 \subset D_2$ then $\tilde{p}_{D_1}(t, x, y) \leq \tilde{p}_{D_2}(t, x, y)$, $t > 0$ and $x, y \in D_1$ (one feels warmer in bigger rooms with refrigerated walls than in smaller ones).

Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_1 \subset D_2$ are convex domains then for all $t > 0$ and $x, y \in D_2$ we have $p_{D_1}(t, x, y) \geq p_{D_2}(t, x, y)$.

(one feels warmer in smaller insulated rooms than in bigger ones)

Chavel proved the conjecture in the case D_2 is a ball centered at x (or y) and D_1 is convex (integration by parts).

Wilfried Kendall proved the conjecture in the case when D_1 is a ball centered at x or y and D_2 is convex (coupling arguments).

Using the mirror coupling we can give a unifying proof of Chavel conjecture in the case $D_1 \subset B \subset D_2$ where B is a ball centered at either x or y.

M. N. Pascu (Transilvania Univ)
Consider $D_{1,2} \subset \mathbb{R}^d$. The Dirichlet heat kernel $\tilde{p}_D(t, x, y)$ is an increasing function of the domain: if $D_1 \subset D_2$ then

$$\tilde{p}_{D_1}(t, x, y) \leq \tilde{p}_{D_2}(t, x, y), \quad t > 0 \text{ and } x, y \in D_1$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).
Consider $D_{1,2} \subset \mathbb{R}^d$.

The Dirichlet heat kernel $\tilde{p}_D (t, x, y)$ is an increasing function of the domain: if $D_1 \subset D_2$ then

$$\tilde{p}_{D_1} (t, x, y) \leq \tilde{p}_{D_2} (t, x, y), \quad t > 0 \text{ and } x, y \in D_1$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).

Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_1 \subset D_2$ are convex domains then for all $t > 0$ and $x, y \in D_2$ we have

$$p_{D_1} (t, x, y) \geq p_{D_2} (t, x, y).$$

(one feels warmer in smaller insulated rooms than in bigger ones)
Consider $D_{1,2} \subset \mathbb{R}^d$.

The Dirichlet heat kernel $\tilde{p}_D(t, x, y)$ is an increasing function of the domain: if $D_1 \subset D_2$ then

$$\tilde{p}_{D_1}(t, x, y) \leq \tilde{p}_{D_2}(t, x, y), \quad t > 0 \text{ and } x, y \in D_1$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).

Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_1 \subset D_2$ are convex domains then for all $t > 0$ and $x, y \in D_2$ we have

$$p_{D_1}(t, x, y) \geq p_{D_2}(t, x, y).$$

(one feels warmer in smaller insulated rooms than in bigger ones)

Chavel proved the conjecture in the case D_2 is a ball centered at x (or y) and D_1 is convex (integration by parts).
Consider $D_{1,2} \subset \mathbb{R}^d$.

The Dirichlet heat kernel $\tilde{p}_D(t, x, y)$ is an increasing function of the domain: if $D_1 \subset D_2$ then

$$\tilde{p}_{D_1}(t, x, y) \leq \tilde{p}_{D_2}(t, x, y), \quad t > 0 \text{ and } x, y \in D_1$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).

Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_1 \subset D_2$ are convex domains then for all $t > 0$ and $x, y \in D_2$ we have

$$p_{D_1}(t, x, y) \geq p_{D_2}(t, x, y).$$

(one feels warmer in smaller insulated rooms than in bigger ones).

Chavel proved the conjecture in the case D_2 is a ball centered at x (or y) and D_1 is convex (integration by parts).

Wilfried Kendall proved the conjecture in the case when D_1 is a ball centered at x or y and D_2 is convex (coupling arguments).
Consider $D_{1,2} \subset \mathbb{R}^d$. The Dirichlet heat kernel $\tilde{p}_D(t, x, y)$ is an increasing function of the domain: if $D_1 \subset D_2$ then

$$\tilde{p}_{D_1}(t, x, y) \leq \tilde{p}_{D_2}(t, x, y), \quad t > 0 \text{ and } x, y \in D_1$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones). Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_1 \subset D_2$ are convex domains then for all $t > 0$ and $x, y \in D_2$ we have

$$p_{D_1}(t, x, y) \geq p_{D_2}(t, x, y).$$

(one feels warmer in smaller insulated rooms than in bigger ones)

Chavel proved the conjecture in the case D_2 is a ball centered at x (or y) and D_1 is convex (integration by parts).

Wilfried Kendall proved the conjecture in the case when D_1 is a ball centered at x or y and D_2 is convex (coupling arguments).

Using the mirror coupling we can give a unifying proof of Chavel conjecture in the case $D_1 \subset B \subset D_2$

where B is a ball centered at either x or y.
Geometry of the mirror coupling

Consider a mirror coupling \((X_t, Y_t)\) of reflecting Brownian motions in \((D_2, D_1)\) starting at \(x \in D_1\).
The proof of Chavel conjecture

If $D_1 \subset B(y, r) \subset D_2$, then the mirror M_t of the coupling cannot separate Y_t and y:

$$|Y_t - y| \leq |X_t - y| , \quad t \geq 0.$$
The proof of Chavel conjecture

If $D_1 \subset B(y, r) \subset D_2$, then the mirror M_t of the coupling cannot separate Y_t and y:

$$|Y_t - y| \leq |X_t - y|, \quad t \geq 0.$$

We obtain

$$P^y (|X_t - x| < \varepsilon) \leq P^y (|Y_t - x| < \varepsilon),$$
The proof of Chavel conjecture

If $D_1 \subset B(y, r) \subset D_2$, then the mirror M_t of the coupling cannot separate Y_t and y:

$$|Y_t - y| \leq |X_t - y|, \quad t \geq 0.$$

We obtain

$$P^y (|X_t - x| < \varepsilon) \leq P^y (|Y_t - x| < \varepsilon),$$

hence

$$p_{D_2} (t, x, y) = \lim_{\varepsilon \searrow 0} \frac{1}{|B(y, \varepsilon)|} P^x (X_t \in B(y, \varepsilon)) \leq \lim_{\varepsilon \searrow 0} \frac{1}{|B(y, \varepsilon)|} P^x (Y_t \in B(y, \varepsilon)) = p_{D_1} (t, x, y).$$
Extensions of the mirror coupling

Same arguments can be used in order to construct the mirror coupling in $D_1, D_2 \subset \mathbb{R}^d$ if:

- D_1 and D_2 have non-tangential boundaries (needed for localization of the construction)
- $D_1 \cap D_2$ is a convex domain (needed for the construction of the solution).

Figure: Generic smooth domains D_1, D_2 for the mirror coupling
The solution is not unique.
The solution is not unique.
In the case $D_1 = D_2 = \mathbb{R}$, with the substitution $U_t = -\frac{Y_t - X_t}{2}$, we obtain the singular SDE:

$$U_t = \int_0^t \sigma(U_s) \, dW_s,$$

where

$$\sigma(u) = \begin{cases}
1, & u \neq 0 \\
0, & u = 0
\end{cases}.$$
The solution is not unique.
In the case $D_1 = D_2 = \mathbb{R}$, with the substitution $U_t = -\frac{Y_t - X_t}{2}$, we obtain the singular SDE:

$$U_t = \int_0^t \sigma (U_s) \, dW_s, \quad (11)$$

where

$$\sigma (u) = \begin{cases}
1, & u \neq 0 \\
0, & u = 0
\end{cases}.$$

The above has the solutions $U_t \equiv 0$ and $U_t = W_t$, and a whole range of intermediate solutions (sticky Brownian motion).
Question of uniqueness

The solution is not unique. In the case $D_1 = D_2 = \mathbb{R}$, with the substitution $U_t = -\frac{Y_t - X_t}{2}$, we obtain the singular SDE:

$$U_t = \int_0^t \sigma (U_s) \, dW_s,$$

where

$$\sigma (u) = \begin{cases} 1, & u \neq 0 \\ 0, & u = 0 \end{cases}.$$

The above has the solutions $U_t \equiv 0$ and $U_t = W_t$, and a whole range of intermediate solutions (sticky Brownian motion). The original equation has solutions $Y_t = X_t = W_t$ (sticky mirror coupling), $Y_t = -X_t = -W_t$ (non-sticky mirror coupling), and a whole range of intermediate solutions (weak/mild sticky mirror coupling).
The solution is not unique.
In the case $D_1 = D_2 = \mathbb{R}$, with the substitution $U_t = -\frac{Y_t - X_t}{2}$, we obtain the singular SDE:

$$U_t = \int_0^t \sigma (U_s) \, dW_s,$$

where

$$\sigma (u) = \begin{cases}
1, & u \neq 0 \\
0, & u = 0
\end{cases}.$$

The above has the solutions $U_t \equiv 0$ and $U_t = W_t$, and a whole range of intermediate solutions (sticky Brownian motion).
The original equation has solutions $Y_t = X_t = W_t$ (sticky mirror coupling), $Y_t = -X_t = -W_t$ (non-sticky mirror coupling), and a whole range of intermediate solutions (weak/mild sticky mirror coupling).

