
A. APPENDICES

You should remember the following piece of advice. There is so little that is
true in mathematics, that anything you make up is likely to be wrong.

There are seven appendices.

1. Background Material. The material in this section is critical for
success in any ordinary di¯ erential equations course. You will have seen
all of this material in previous courses, but, if you are a typical student,
you will have forgotten much of it. In fact, you might even think that
you haven't seen some of it before.

2. Partial Fractions. This material should also be familiar to you. You
will use it extensively when integrating and when applying Laplace
transforms.

3. In� nite Series, Power Series, and Taylor Series. This material
should also be familiar to you, but most students don't really master
series until they use it in di¯ erential equations.

4. Complex Numbers. Much of this material will be new to most stu-
dents.

5. Elementary Matrix Operations. Most students will have seen spe-
cial cases of these results.

6. Least Squares Approximation. This will be new to most students.
It shows how to ± nd the best straight-line approximation, y = mx + b;
to a data set consisting of n points.

7. Proofs of the Oscillation Theorems. This contains the proofs of
the theorems stated in Chapter 8.

A.1 Background Material

Solving Quadratic Equations:
The solutions of the quadratic equation ax2 + bx + c = 0 are

x =
§ b¢

p
b2 § 4ac

2a
:

If the discriminant | that is, b2 § 4ac | is positive, the equation has distinct
real roots. If b2 § 4ac = 0, the roots are real, but repeated. If b2 § 4ac < 0,
the roots are complex, and are complex conjugates.
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Perpendicular Lines:
The two straight lines, y = m1x + b1 and y = m2x + b2; are perpendicular if
m1m2 = § 1.

Properties of Trigonometric Functions:
All angles are measured in radians where 180o = µ radians. Thus, 90o = µ =2
radians, 60o = µ =3 radians, 45o = µ =4 radians, and 30o = µ =6 radians. An
easy way to remember the values of the trig functions at frequently used
angles is to use the following table.

0o 30o 45o 60o 90o

x = 0 µ =6 µ =4 µ =3 µ =2
sinx =

p
0=2

p
1=2

p
2=2

p
3=2

p
4=2

cosx =
p

4=2
p

3=2
p

2=2
p

1=2
p

0=2

;

which simpli± es to

0o 30o 45o 60o 90o

x = 0 µ =6 µ =4 µ =3 µ =2

sinx = 0 1=2 1=
p

2
p

3=2 1

cosx = 1
p

3=2 1=
p

2 1=2 0

:

The graphs of sinx and cosx are shown in Figure A.1.

empty

Graphs of the functions sinx and cosx

Figure A.1

sin (§ x) = § sinx
cos (§ x) = cosx

sin2 x + cos2 x = 1
sin(x + y) = sinx cos y + cosx sin y
cos(x + y) = cosx cos y § sinx sin y

tanx =
sinx

cosx
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tan(x + y) =
tanx + tan y

1 § tanx tan y

d
dx sinx = cosx
d
dx cosx = § sinx
d
dx tanx = sec2 x

R
sinxdx = § cosx + CR
cos dx = sinx + CR

tanxdx = § ln j cosxj + C

sinx = x § x3

3!
+

x5

5!
§ ···, for § 1 < x < 1

cosx = 1 § x2

2!
+

x4

4!
§ ···, for § 1 < x < 1

The Inverse Trigonometric Functions:
If x = sinӍ; and § µ =2 ¸ Ӎ ¸ µ =2; then Ӎ= arcsinx. The function arcsinx
is sometimes written sinÉ 1 x. If x = tanӍ; and § µ =2 < Ӎ < µ =2; then
Ӎ= arctanx. The function arctanx is sometimes written tanÉ 1 x.

d
dx arcsinx = 1=

p
1 § x2

d
dx arctanx = 1=

¢
1 + x2

·

Properties of Exponential Functions:

e0 = 1
ex+y = exey

exÉ y = exeÉ y

eÉ x = 1=ex

eax = (ea)x

ax = ex ln a, for a > 0

d

dx
eax = aeax

Z
eax dx =

1

a
eax + C

ex = 1 + x +
x2

2!
+

x3

3!
+ ···, for § 1 < x < 1

The graphs of ex and eÉ x are shown in Figure A.2.

Properties of Logarithmic Functions:
lnx is de± ned only for x > 0

ln 1 = 0
ln e = 1

ln (xy) = lnx + ln y
ln (x=y) = lnx § ln y

lnxn = n lnx
lnxÉ 1 = § lnx

eln x = x, if x > 0
ln ex = x
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empty

Graphs of the functions ex and eÉ x

Figure A.2

d

dx
lnx =

1

xZ
1

x
dx = ln jxj + C

Z
lnxdx = x lnx § x + C

There are NO general formulas that simplify either ln(x + y) or ln(x § y).

WRONG: ln(x + y) = lnx + ln y

WRONG: ln(x § y) = lnx § ln y

The graphs of ex and lnx are shown in Figure A.3.

empty

Graphs of the functions ex and lnx

Figure A.3
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The Hyperbolic Functions:

sinhx =
1

2

¢
ex § eÉ x

·

coshx =
1

2

¢
ex + eÉ x

·

tanhx =
sinhx

coshx
=

ex § eÉ x

ex + eÉ x

sinh 0 = 0
cosh 0 = 1

d
dx sinhx = coshx
d
dx coshx = sinhx

Properties of Derivatives:

d

dx
[cf(x)] = c

d

dx
f(x)

d

dx
[f(x)¢g(x)] =

d

dx
f(x)¢ d

dx
g(x)

d

dx
[f(x)g(x)] =

d

dx
[f(x)] g(x) + f(x)

d

dx
[g(x)]

d

dx

¸
f(x)

g(x)

࣍
=

f 0(x)g(x) § f(x)g0(x)

g2(x)

If y = f(u(x)); then
dy

dx
=

df

du

du

dx
:

d

dx

Z x

a

f(t) dt = f(x), if f(t) is continuous at t = x:

If f(x) is di¯ erentiable at x = a then f(x) is continuous at x = a:

If f 0(x) > 0 in the interval a < x < b then f(x) is increasing in that interval.

If f 0(x) < 0 in the interval a < x < b then f(x) is decreasing in that interval.

If f 00(x) > 0 in the interval a < x < b then f(x) is concave up in that interval.

If f 00(x) < 0 in the interval a < x < b then f(x) is concave down in that interval.

The function f(x) has a local, or relative, maximum at x0, if f(x0)²f(x) for all x near x0:

The function f(x) has a local, or relative, minimum at x0, if f(x0) ¸ f(x) for all x near x0:

Properties of Integrals:

Z
cf(x) dx = c

Z
f(x) dx

Z
[f(x)¢g(x)] dx =

Z
f(x) dx¢

Z
g(x) dx

Z
f(x)g0(x) dx = f(x)g(x) §

Z
f 0(x)g(x) dx
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Table A.1 Table of derivatives
f(x) f 0(x)
c 0
xn nxnÉ 1

ex ex

sinx cosx
cosx § sinx
tanx sec2 x = 1= cos2 x
cotx § csc2 x = § 1= sin2 x
secx = 1= cosx secx tanx = sinx= cos2 x
cscx = 1= sinx § cscx cotx = § cosx= sin2 x
ln jxj 1=x
sinhx = (ex § eÉ x)=2 coshx
coshx = (ex + eÉ x)=2 sinhx

arcsinx 1=
p

1 § x2

arctanx 1=(1 + x2)

Z
udv = uv §

Z
v du

Z b

a

f(x)g0(x) dx = f(x)g(x)jba §
Z b

a

f 0(x)g(x) dx

Z
f(g(x))g0(x) dx =

Z
f(u) du where u = g(x)

There are NO general formulas that simplify either
R

[f(x)g(x)] dx or
R

[f(x)=g(x)] dx.

WRONG:

Z
f(x)g(x) dx =

Z
f(x) dx

Z
g(x) dx

WRONG:

Z
f(x)

g(x)
dx =

R
f(x) dxR
g(x) dx

A.2 Partial Fractions

We sometimes need to express a rational polynomial | that is, a function of
the type

R(x) =
P (x)

Q(x)
; (A.1)

where P (x) and Q(x) are polynomials | in an alternative form. The standard
technique, known as partial fractions, goes as follows. (We should point out
that this general explanation is much more involved than doing a particular
example.)
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Table A.2 Table of integrals
f(x)

R
f(x) dx

xn xn+1=(n + 1) + C, n 6= § 1
1=x ln jxj + C
ex ex + C
sinx § cosx + C
cosx sinx + C
tanx § ln j cosxj + C = ln j secxj + C
cotx ln j sinxj + C
secx = 1= cosx ln j secx + tanxj + C
cscx = 1= sinx ln j cscx § cotxj + C
sec2 x tanx + C
csc2 x § cotx + C
lnx x lnx § x + C
sinhx = (ex § eÉ x)=2 coshx + C
coshx = (ex + eÉ x)=2 sinhx + C
1=[(x § a)(x § b)] (ln jx § aj § ln jx § bj)=(a § b) + C, a 6= b
1=(1 + x2) arctanx + C

1=
p

1 + x2 ln(x +
p

x2 + 1) + C

1=
p

1 § x2 arcsinx + C

1=
p

x2 § 1 ln(x +
p

x2 § 1) + C
eax sin bx eax(a sin bx § b cos bx)=(a2 + b2) + C
eax cos bx eax(b sin bx + a cos bx)=(a2 + b2) + C

1. If the degree of the polynomial Q(x) is less than or equal to the degree
of P (x); then divide Q(x) into P (x), obtaining a polynomial plus a term
similar to R(x) in (A.1), but where the degree of the new Q(x) is greater
than the degree of the new P (x). From now on we concentrate on this
new R(x).

2. Factor Q(x) into linear factors and quadratic factors (that cannot be
written as the product of linear factors with real coe� cients), so that

Q(x) = (x § r1)
n1 ···(x § rp)

np
¢
a1x

2 + b1x + c1

·m1 ···
¢
aqx

2 + bqx + cq

·mq
;

where n1 through np and m1 through mq are positive integers, and
a1x

2 + b1x + c1, and so on, have no real roots. For example, if Q(x) =
x3 § x; then Q(x) = x(x § 1)(x + 1), whereas, if Q(x) = x3 + x, then
Q(x) = x(x2 + 1).

3. For each linear factor of Q(x) of degree n | say, (x § r)n | write down
a contribution to R(x) that is an expansion with n terms; namely,

A1

x § r
+

A2

(x § r)2
+ ···+ An

(x § r)n ;

where A1 through An are constants to be determined.

4. For each quadratic factor of Q(x) of degree m | say,
¢
ax2 + bx + c

·m

| write down a contribution to R(x) that is an expansion with m terms;
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namely,

B1x + C1

ax2 + bx + c
+

B2x + C2

(ax2 + bx + c)2
+ ···+ Bmx + Cm

(ax2 + bx + c)m ;

where B1 through Bm and C1 through Cm are constants to be deter-
mined.

5. Add the contributions to R(x) from all the terms in Q(x) and set them
equal to R(x). Now cross-multiply this identity in x by Q(x) to evaluate
the constants.

Example 1 :

Write 1=
¢
x2 § 1

·
as a partial fraction.

Here P (x) = 1, and Q(x) = x2 § 1. The degree of Q(x) | two |
exceeds that of P (x) | one | so we do not divide P (x) by Q(x) but use
R(x) = 1=

¢
x2 § 1

·
: Now Q(x) = (x § 1)(x + 1), so we have two linear roots,

each of degree one. The contribution from (x § 1) is A=(x § 1), and the
contribution from (x + 1) is B=(x + 1). Thus the total contribution to R(x)
is

1

(x § 1)(x + 1)
=

A

x § 1
+

B

x + 1
;

where A and B are constants to be determined by making this last equation
an identity. Cross-multiplying by (x § 1)(x+1) gives 1 = A(x+1)+B(x § 1);
or

1 = (A + B)x + (A § B):

For this to be true for all x; we must have

A + B = 0
A § B = 1

;

which can be solved to give A = 1=2 and B = § 1=2. Thus, the partial fraction
form of 1=

¢
x2 § 1

·
is

1

x2 § 1
=

1=2

x § 1
§ 1=2

x + 1
:

2

Example 2 :

Write x= (x § 1)2 as a partial fraction.
Here Q(x) = (x § 1)2 has a linear factor of degree two, so we try

x

(x § 1)2
=

A

x § 1
+

B

(x § 1)2
:

This gives x = A(x § 1) + B; or

x = Ax § A + B:

Thus A = 1; and § A + B = 0, so B = 1, giving

x

(x § 1)2
=

1

x § 1
+

1

(x § 1)2
:

2
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Example 3 :

Write (x + 1) =[x(x2 + 1)] as a partial fraction.
The contribution from x will be A=x, and from

¢
x2 + 1

·
will be (Bx +

C)=(x2 + 1). Thus, we try

x + 1

x (x2 + 1)
=

A

x
+

Bx + C

x2 + 1
:

Cross-multiplying by x(x2 + 1) gives x + 1 = A(x2 + 1) + (Bx + C)x; or

x + 1 = (A + B)x2 + Cx + A:

Thus A = 1, B = § A = § 1, and C = 1, so we have

x + 1

x (x2 + 1)
=

1

x
+
§ x + 1

x2 + 1
:

2

A.3 In�nite Series, Power Series, and Taylor Se-
ries

An in± nite series,
P1

k=0 ak; either converges or diverges.
Convergent series are divided into two groups | absolutely convergent

and conditionally convergent.

�If
P1

k=0 ak and
P1

k=0 jakj are both convergent, then
P1

k=0 ak is abso-
lutely convergent.

�If
P1

k=0 ak is convergent, but
P1

k=0 jakj is divergent, then
P1

k=0 ak is
conditionally convergent.

�The third possibility | that
P1

k=0 ak is divergent, but
P1

k=0 jakj is
convergent | cannot occur because if

P1
k=0 jakj is convergent, so isP1

k=0 ak.

The reason that it is important to distinguish between absolutely and
conditionally convergent series is Riemann's rearrangement theorem.

Theorem 4 : The terms of an absolutely convergent series may be rearranged
in any order without a� ecting the convergence of the series. In particular, its
sum is unchanged. Rearranging the terms of a conditionally convergent series
may change its sum.

There are a variety of tests to decide whether a series converges or diverges,
but, for ordinary di¯ erential equations, the most important is the ratio test.
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