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Abstract

In this paper, we provide the first experimental proof for the existence of rank one

chaos in the switch-controlled smooth Chua’s circuit by following a step-by-step

procedure given by the theory of rank one chaos. At the center of this procedure

is a periodically kicked Hopf limit cycle obtained from the unforced system. The

periodic kicking is achieved by adding externally controlled switches to the original

smooth Chua’s circuit. Experimental results are found to be in perfect agreement

with the conclusions of the theory.
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1 Introduction

In a sequence of papers published recently, Oksasoglu and Wang have pro-

posed a generic scheme of creating rank one chaos in practical circuits by

using periodically controlled switches [1–4]. This chaos scheme is based on

a new chaos theory, namely the theory of rank one maps, developed in re-

cent years by Wang and Young [5–7]. The theory of rank one maps is based

on Jakobson’s theory on quadratic maps [8] and the studies of Benedicks and

Carleson on strongly dissipative Hénon maps [9]. The theory of rank one maps

has previously been applied to rigorously verify the existence of rank one at-

tractors, and extensive numerical simulations have been conducted in search

of the strange attractors implicated under the guidance of the theory [1–4].

The results of these numerical simulations were found to be in perfect match

with the conclusions of the theory.

In this paper, we provide the first experimental evidence of rank one chaos in

a switch-controlled circuit, namely the switch-controlled smooth Chua’s cir-

cuit [11] as proposed by Oksasoglu and Wang in [4]. Following the procedure

outlined in [12], a Chua’s circuit with a nonlinear resistor of cubic v − i char-

acteristics is first constructed. The use of a nonlinear resistor with a cubic

nonlinearity is necessitated by the fact that a local nonlinearity is needed to

create Hopf bifurcations. The parameters of the circuit are so chosen that it

has a weakly stable oscillation freshly coming out of a supercritical Hopf bi-

furcation. Then, switches, controlled by periodic pulses, are added in such a

way to modulate the state variables in the circuit. The addition of periodically

controlled switches to an existing nonlinear system provides a natural setting

for the application of the theory of rank one maps. In other words, the use of
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periodically controlled switches generates the kicking effect proposed by Wang

and Young [7,10] to create rank one chaos. In the range of parameters where

the theory of rank one maps applies according to the previous computations in

[4], strange attractors do appear experimentally in the way that was predicted

by the theory.

A great majority of the existing studies on chaotic attractors are based on

breaking the homoclinic loop by small perturbations to yield transverse ho-

moclinic orbit (transversal intersections of the stable and unstable manifolds)

in the phase space (see, e.g., [13]). The rank one attractors presented in this

paper are, however, of a different kind. They are generated by small distur-

bances that are periodically applied to a weakly stable limit cycle. When the

periodic kicks are introduced (by use of externally controlled switches in this

case), the shape of the weakly stable limit cycle is slightly deformed. Then the

natural force of shearing created by the nonlinearity of the original system goes

to work to exaggerate the initial deformation to create chaos. The dynamical

properties of the rank one attractors created that way are dominated by the

so-called SRB [14] measures representing the statistical law of the system.

It is also worth noting that the study of the strange attractors in this paper

is backed up by a comprehensive theory of dynamics with a long history.

The theory itself was little known outside the pure mathematical side of the

dynamical systems community, and has only been recently developed into a

form that is applicable to concrete systems of differential equations. We refer

the reader to a recent tutorial paper [15] for more background information on

the theory and its potential applications to circuits and systems.
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2 Theoretical setting and implementation approach

In this section, we briefly discuss the setting of the theory and a practical

approach introduced in [4] to generically satisfy the requirements of the theory.

We first start with an autonomous system given by

du

dt
= fµ(u) (2.1)

where u ∈ Rn, n ≥ 2 represents the system state variables, and µ ∈ Rm the

system parameters. It is assumed that there is a µ = µ0 at which the system

of Eq. (2.1) goes through a supercritical Hopf bifurcation. This system is then

modified to obtain the following nonautonomous system:

du

dt
= fµ(u) + εΦ(u)PT,p(t) (2.2)

where PT,p(t) is a periodic pulsetrain with a pulsewidth of p and a period of T ,

Φ(u) is a function that determines the shape of the forcing, and ε is used to

control the magnitude of the forcing. Let T >> p so that a pulse of pulsewidth

p is followed by a long relaxation period T − p. We regard the system of Eq.

(2.2) as the kicked version of the system of Eq. (2.1). When the system of Eq.

(2.1) is an electrical system whose state variables are the capacitor voltages

and inductor currents, it can be implemented by modulating the state variables

through switches externally controlled by PT,p(t). This scheme, depicted in

Fig. 1, was proposed by Oksasoglu and Wang in [4]. In Fig. 1, each switch

is controlled by the periodic pulsetrain PT,p(t). In this case, the governing
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equations for the capacitor voltage and the inductor current are given by

C
dvc
dt

=is(t)− vcG1PT,p(t)

L
diL
dt

=vs(t)− iLR2PT,p(t)

(2.3)

In the scheme of Fig. 1, the resulting Φ(u), the shape of the forcing, becomes

Φ(u) = −u.

3 Switch-controlled smooth Chua’s circuit

For the experimental investigations of this paper, we apply the above-outlined

scheme to the well-known Chua’s circuit [11]. The modified circuit, which

will, from this point on, be referred to as the switch-controlled smooth Chua’s

circuit, is depicted in Fig. 2. The switches Si are controlled by a periodic

pulsetrain with p0 and T0 being the pulsewidth and the period, respectively.

Due to the need for a local nonlinearity for Hopf bifurcations to occur, the

piecewise linear characteristic of the nonlinear resistor in the original Chua’s

circuit is replaced with a cubic polynomial one in the switch-controlled circuit.

More explicitly, the v − i characteristic of the nonlinear resistor in Fig. 2 is

given by

in(v1) = g(v1) = a1v1 + a3v
3
1 (3.1)

The actual realization of this cubic nonlinearity is achieved using the design

approach given in [12]. The governing equations for the switch-controlled cir-
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cuit can be given by

C1
dv1

dt
=G(v2 − v1)− g(v1)−G1v1

C2
dv2

dt
=i+G(v1 − v2)−G2v2

L
di

dt
=− v2 −R3i

(3.2)

for nT0 ≤ t < nT0 + p0, and by

C1
dv1

dt
=G(v2 − v1)− g(v1)

C2
dv2

dt
=i+G(v1 − v2)

L
di

dt
=− v2

(3.3)

for nT0 + p0 ≤ t < (n + 1)T0, n = 0, 1, 2, · · · . Putting Eqs. (3.2) and (3.3)

together, we obtain

C1
dv1

dt
=G(v2 − v1)− g(v1)−G1v1

∞∑

n=0

Fn,p0,T0(t)

C2
dv2

dt
=i+G(v1 − v2)−G2v2

∞∑

n=0

Fn,p0,T0(t)

L
di

dt
=− v2 −R3i

∞∑

n=0

Fn,p0,T0(t)

(3.4)

where

Fn,T0,p0(t) =





1 nT0 ≤ t < nT0 + p0

0 elsewhere.

(3.5)

By setting

x =
v1

V0

, y =
v2

V0

, z =
i

I0

, t→ t

ωn
, (3.6)
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we obtain the following dimensionless set of equations

dx

dt
=α[y − h(x)]− ε1xPT,p(t)

dy

dt
=γ[x− y + ρz]− ε2yPT,p(t)

dz

dt
=− βy − ε3zPT,p(t)

(3.7)

where

PT,p(t) =
1

p

∞∑

n=−∞
Fn,T,p(t), h(x) = b1x+ b3x

3;

b1 = 1 +
a1

G
, b3 =

a3V
2

0

G
;

p = p0ωn, T = T0ωn;

α =
G

C1ωn
, γ =

G

C2ωn
= 1.0;

ρ =
R

Rn

, Rn =
V0

I0

, β =
Rn

Lωn
;

ε1 =
αRp

R1

, ε2 =
γRp

R2

, ε3 =
βR3p

Rn

.

(3.8)

Although various single- or multi-switch control schemes can be formulated by

setting selected εi to zero, in our experimental investigations, we only employ

S1 and S2 by setting ε3 = 0.

4 Hopf bifurcation and conditions for rank one chaos

In this section, by following the procedure introduced in [4], we seek for the

values of parameters for the system of Eq. (3.7) where rank one chaos is

likely to occur. First, we consider the autonomous part of the system of Eq.

(3.7) and look for the values of parameters for a supercritical Hopf bifurcation
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at (x, y, z) = (0, 0, 0). For the computations to follow, we regard ρ as the

bifurcation parameter. Observe that at

ρ0 = −α(b1 − 1)(αb1 + 1)

β
> 0, (4.1)

the eigenvalues of the linear part of Eq. (3.7) are ±iω and −(αb1 + 1) where

ω2 = −α2b1(b1 − 1) > 0. (4.2)

Thus, a necessary condition for a Hopf bifurcation to occur is

b1 ∈ (0, 1). (4.3)

According to the standard theory of Hopf bifurcations, Eq. (3.7) has a center

manifold, on which the equation for the flow can be transformed into the

following normal form:

dz

dt
= (a(µ) + ω(µ)

√−1)z + k1(µ)z2z̄ + k2(µ)z3z̄2 + · · · (4.4)

where k1(µ), k2(µ) are complex numbers. The fact that there is a well-defined

computational process to reach the indicated normal form is important to us.

Let us write

k1(µ) = −E(µ) + F (µ)
√−1. (4.5)

k1(0) is explicitly calculated in [4]. From the computations in [4], we have

E(0) = −c1(1 + 2αb1 − α), F (0) = −c1
ω

αb1

(1 + 2αb1). (4.6)
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where

c1 =
−3αb3

8b1(1 + 2b1α + b1α2)
. (4.7)

Furthermore, in order to have a weakly stable periodic solution coming out of

the origin, it is also necessary to have E(0) > 0 yielding

−3αb3

8b1(α2b1 + 2αb1 + 1)
[1 + 2αb1 − α] < 0. (4.8)

Consequently, for a supercritical Hopf limit cycle to occur, we must have

b1 >
α− 1

2α
, if b3 > 0

b1 <
α− 1

2α
, if b3 < 0.

(4.9)

According to the theory of [10], in order for rank one attractors to exist we

should have a relatively large twist number, which is defined as

τ :=

∣∣∣∣∣
F (0)

E(0)

∣∣∣∣∣ . (4.10)

Therefore, to find rank one attractors we need to adjust the values of param-

eters in such a way to make

∣∣∣∣∣
F (0)

E(0)

∣∣∣∣∣ =

∣∣∣∣∣
Im(k1)

Re(k1)

∣∣∣∣∣ =

∣∣∣∣∣
ω(1 + 2αb1)

αb1(1 + 2αb1 − α)

∣∣∣∣∣ . (4.11)

large.

In summary, the values of parameters are determined using the following

guidelines [15]. Let α, β, γ, ρ, b1, b3 be the parameters of the autonomous part

of Eq. (3.7), and p, ε = ε1, T be the parameters of the periodic forcing. We

fix the values of all parameters except T as follows:
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(i) Parameter values for Hopf bifurcation: b3 6= 0, β > 0, α > 1 are

arbitrarily fixed, and ρ is around ρ0 = −α(b1−1)(αb1+1)
β

.

(ii) Strong shearing: choose b1 ∈ (0, 1) sufficiently close to b1 = α−1
2α

either

from above or below depending on the sign of b3 (see Eq. (4.9) for stability

criterion).

(iii) Parameters of forcing: choose ε relatively small, e.g., ε < 1.

Following the steps outlined above, to have a supercritical Hopf limit cycle,

we choose and fix

α = 2.0, β = 2.0, γ = 1.0, b3 = −1.0, b1 = 0.242

ρ0 = 1.124872, εi = 0, ρ = ρ0 − 0.005.

(4.12)

A Hopf limit cycle numerically obtained for these values is shown in Fig. 3. In

this case, the twist constant is roughly

τ :=

∣∣∣∣∣
F (0)

E(0)

∣∣∣∣∣ = 108. (4.13)

Two rank one attractors found through numerical simulations by kicking the

limit cycle of Fig. 3 are shown in Figs. 4 and 5. The attractor of Fig. 4 is

obtained by employing S1 only with ε1 = 0.5, p = 0.5, and T = 97.0. The

attractor of Fig. 5 is obtained by using two switches S1 and S2 with ε1 = 0.5,

ε2 = 0.34, p = 0.5, and T = 87.5. For Figs. 4 and 5, part (a) (top) is the

plot of an orbit of the time-T map on the x− y plane, part (b) (bottom left)

is the plot of the x-coordinate of this orbit versus discrete time k, and part

(c) (bottom right) is the frequency spectrum of the x-coordinate for the orbit

plotted.
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5 Circuit implementation and experimental results

The circuit implementation of the cubic v − i characteristic, in = a1v1 +

a3v
3
1, of the nonlinear resistor in Fig. 2 can be accomplished by use of analog

multipliers. Here, we follow the same design approach given in [12]. The specific

analog multipliers used for this purpose are AD633 of Analog Devices. For Op

Amps, AD711s are used. The biasing used for all the active elements is ±5V.

The resulting implementation of this cubic v− i characteristic is given in Fig.

6.

For the controlled switches of Fig. 2, Texas Instruments’ CD4016 is used. In

order to stay in the vicinity of the normalized parameter values given in Eq.

(4.12) the element values for Figs. 2 and 6 are chosen as follows:

C1 = 1.0nF, C2 = 2.0nF, L = 2.5mH, R = 1.7KΩ

Ra = Rb = Rd = 2.2KΩ, Rc = 2.07KΩ, Re = 3.72KΩ

(5.1)

With the choice of above values, we are very close to the normalized parameter

values given in Eq. (4.12). Specifically,

α = 2.0, β = 2.0645, γ = 1.0,

b3 = −1.0, b1 = 0.242, ρ ≈ 1.12.

(5.2)

In this case, the frequency normalization constant is found to be ωn ≈ 294118.

A Hopf limit cycle obtained experimentally for the physical element values of

Eq. (5.1) is shown in Fig. 7. For Fig. 7, the horizontal axis is v1(t) of Fig. 2

with 0.5V/div, and the vertical axis is v2(t) of Fig. 2 with 0.25V/div.

Our experimental simulations involve two cases: the case of a single switch
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S1, and the case of two switches S1 and S2. To obtain rank one attractors, we

choose the pulsewidth p0 of the switch control signal such that the resulting

dimensionless pulsewidth p = 0.52. Next, we choose and fix the values of ε1

and ε2. This is accomplished by fixing the values of R1 and R2. Then, to

generate chaotic attractors, only T0 (i.e., T ) is varied. The time-T maps of

the chaotic attractors obtained in the single-switch case are shown in Figs.

8 and 9. In this case, the value of R1 is kept at 4KΩ to give ε1 = 0.442. A

value of T0 = 1/f0 = 1/3630s⇒ T = 81.0 is used for Fig. 8, and T0 = 1/f0 =

1/3060s⇒ T = 96.0 is used for Fig. 9.

In a similar manner, the time-T maps of the chaotic attractors obtained in the

two-switch case are shown in Figs. 10 and 11. In this case, R2 = R1 = 4KΩ to

give ε1 = 0.442 and ε2 = 0.221. A value of T0 = 1/f0 = 1/3400s ⇒ T = 86.5

is used for Fig. 10, and T0 = 1/f0 = 1/2100s ⇒ T = 140 is used for Fig. 11.

In Figs. 8-11, the horizontal axis is v1(kT ) of Fig. 2 with 0.5V/div, and the

vertical axis is v2(kT ) of Fig. 2 with 0.25V/div.

Note that the resemblance between the attractors of the numerical and the

experimental simulations is striking, and that these results are in perfect agree-

ment with the expectations of the theory [15]. It also seems that the geometric

complexity of the resulting attractors increases with the number of switches

employed. Another point worth mentioning here is that the width of the ap-

plied pulses p0 is not crucial as long as it is followed by a much longer relaxation

interval, i.e., T0 >> p0.
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6 Concluding remarks

In this paper, we have provided the first experimental proof of rank one chaos

in the smooth Chua’s circuit. Our scheme involves a recipe-like procedure

given by a new and comprehensive theory of dynamics, namely, the theory of

rank one chaos. First, a weakly stable Hopf limit cycle coming out of a fixed

point is generated. Then, under the guidance of the theory, this limit cycle

is subjected to periodic kicks to obtain rank one attractors. The generic set-

ting of the theory is satisfied by adding externally controlled switches to the

original circuit. The single switch and two-switch cases have been explored ex-

perimentally. It is observed that the results of the experimental simulations are

in perfect agreement with the predictions of the theory. For more background

information on the theory of rank one chaos and its potential applications to

circuits and systems, we refer the reader to a recent tutorial paper [15].
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FIGURE CAPTIONS

Figure 1. A switch-controlled state variable modulation scheme.

Figure 2. Switched-controlled Chua’s circuit.

Figure 3. A Hopf limit cycle from numerical simulations (εi = 0).

Figure 4. A single-switch case rank one attractor from numerical simulations
(ε1 = 0.5, ε2 = ε3 = 0, p = 0.5, T = 97.0). (a) Phase portrait xk − yk. (b)
Time evolution of xk. (c) Frequency spectrum of xk.

Figure 5. A two-switch case rank one attractor from numerical simulations
(ε1 = 0.5, ε2 = 0.34, ε3 = 0, p = 0.5, T = 87.5). (a) Phase portrait xk − yk.
(b) Time evolution of xk. (c) Frequency spectrum of xk.

Figure 6. A cubic polynomial nonlinear resistor realization.

Figure 7. A Hopf limit cycle from experimental simulations (εi = 0).

Figure 8. A single-switch case strange attractor from experimental
simulations (T = 81, ε1 = 0.442, ε2 = ε3 = 0).

Figure 9. Another single-switch case strange attractor from experimental
simulations (T = 96, ε1 = 0.442, ε2 = ε3 = 0).

Figure 10. A two-switch case strange attractor from experimental
simulations (T = 86.5, ε1 = 0.442, ε2 = 0.221, ε3 = 0).

Figure 11. Another two-switch case strange attractor from experimental
simulations (T = 140, ε1 = 0.442, ε2 = 0.221, ε3 = 0).
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